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Helium crystals show facets as any usual crystal but no other crystal can grow and melt fast
enough to make the propagation of crystallization waves possible at its surface. After nearly two
decades of controversies, it is now generally accepted that helium crystals are model systems for
the general study of crystal surfaces, but also exceptional systems with unique quantum properties.
All along this review, which summarizes twenty five years of research on helium crystals, what
is general to all crystals is distinguished from what is particular to helium. A central issue
among the general properties is the “roughening transition”, i.e., the phase transition from a
smooth facetted state of the crystal surface at low temperature to a rough fluctuating state
at high temperature. This review describes the series of experiments which have significantly
improved the understanding of this transition and the related critical phenomena. A particular
emphasis is given to the renormalization theory of roughening by Noziéres which has been carefully
compared with experimental measurements. Other general properties of crystal surfaces have also
been studied in helium, such as the energy of steps on the facets and their mutual interactions,
and several instabilities. The relevant experiments are presented together with their theoretical
interpretation. The quantum mechanisms which control the growth dynamics of helium crystals
are also reviewed. Here too, theories are compared with experiments, not only on crystallization
waves, but more generally on the mass and heat flows in non-equilibrium situations. This concerns
both stable helium isotopes, *He and 3He, which behave in quite different ways. At the beginning
of this review, experimental techniques are described, which are rather unusual in many cases.
Finally, a series of open questions is presented for future research.
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I. INTRODUCTION

It is paradoxical. Helium crystals are ordinary crys-
tals in a sense, but exceptional crystals in another sense.
Their study has brought crucial information on the very
general properties of all crystal surfaces. It has also
shown that some of their other properties are surpris-
ing, as is often the case when quantum mechanics plays
a major role (Balibar and Noziéres, 1994).

Why exceptional? At low enough temperature, for ex-
ample below 0.5 K, *He crystals grow and melt so eas-
ily that “crystallization waves” can propagate at their
surface. Imagine that you have a cryostat with optical
access, and that the experimental cell inside contains a
4He crystal in equilibrium with its liquid phase. Now,
shake the cryostat. You will see waves propagating at
the liquid-solid interface just as if you looked at the free
surface of water (see Fig. 1). These waves propagate be-
cause *He crystals grow and melt very fast. They were
predicted in 1978 (Andreev and Parshin, 1978) and dis-
covered a year later (Keshishev et al., 1979). Moreover,
the lower the temperature, the faster “He crystals grow.
No classical crystal behaves in this manner.

As we shall see in this review, the crystallization waves
and the unusual growth dynamics are spectacular phe-
nomena which are linked to quantum properties of lig-
uid and solid helium at low temperature. When crystal
growth takes place from a superfluid, there are situations
where no dissipation at all takes place at the moving in-
terface; this would be impossible in a classical fluid where
the sticking of individual atoms necessarily dissipates en-
ergy because of a momentum exchange at the moving
crystal surface.

At 0.1 K, the growth of 3He crystals is slower than the
growth of *He crystals by 11 orders of magnitude (Graner
et al., 1989)! If one compared classical crystals made of
different isotopes of the same element, one would find
that they have very similar properties. On the contrary,
3He atoms being Fermi particles while *He ones are Bose

FIG. 1 . Keshishev et al. discovered crystallization waves
in 1979 by shaking their cryostat: the interface between a
4He crystal and superfluid “He moves so easily by growth and
melting that it looks like a free liquid surface.

particles, the growth dynamics of 3He crystals is very
different from that of *He crystals.

Given all this, how can it be that helium crystals are
ideal for the study of universal properties of crystal sur-
faces? As temperature goes down, and as happens with
any other crystal, the surface of these crystals in equi-
librium is covered with more and more facets, which are
smooth and flat states of the surface (see Fig. 2). Of
course, in helium everything happens at lower tempera-
ture than anywhere else because the interaction energy
between atoms is much smaller, but the physical mech-
anism for the existence of facets is the same as in other
systems. Furthermore, the fast dynamics allows the use
of unusual experimental methods for the measurement of
quantities which are difficult to access with usual crystals.
This is particularly true for the surface tensions and step
energies, which are the quantities controlling facetting
and roughening, i.e., the appearance and disappearance
of facets at the surface of crystals.

Suppose that you pour some liquid into a glass. The
liquid occupies the bottom part and its free surface
reaches quickly an equilibrium shape minimizing the sum
of the surface and gravitational energies. Suppose now
that you pressurize a cell which contains superfluid *He
at low temperature. At 25.3 bar, a crystal appears. Now
stop the pressurization. The helium in the cell relaxes to
its thermodynamic equilibrium within a very short time.
This equilibrium means that the shape of the liquid-solid
interface also minimizes the effects of gravity and sur-
face tension: the crystal occupies the bottom part of the
cell, with a horizontal surface in the middle and with
some capillary effects at the edges, just as if it was a
liquid. This relaxation is fast because the thermal con-
ductivities of both the liquid and solid *He are large and
also because the latent heat of crystallization is small, so
that the crystal shape is not perturbed by any tempera-
ture inhomogeneity as in classical systems. Furthermore,
since the mass transport is very easy in a superfluid, the
crystal evolves very quickly by melting in one place and
freezing in another place (except in the facetted areas).
Its shape evolution does not include any deformation of
the lattice inside, all the mass transport takes place in
liquid. In Section IV we shall see more precisely how
this dynamics proceeds but the result is there: capillary



FIG. 2 . As temperature goes down, more and more facets
appear at the surface of *He crystals. From top to bottom, the
temperature is successively 1.4 K, 1 K, 0.4 K and 0.1 K. The
size of facets is enlarged by a slow growth from the surround-
ing superfluid. The colors are real, obtained with a prism,
a lens and a small mask; more details on the visualization
technique are given in Section II (photographs by S. Balibar,
C. Guthmann, and E. Rolley, ENS-Paris, 1994).

phenomena show up with helium crystals as if they were
liquids, although they are among the very best quality
crystals one can find in nature.

In fact, the crystallization waves are manifestations
of the same capillarity phenomena and an evidence has
been found that they propagate from zero up to thermal
frequencies (10! Hz). Of course this would never hap-
pen with classical crystals where heat and mass diffuse
too slowly. Usually, the surface phenomena are hidden
by bulk diffusion, but not in helium. This is what has
allowed important comparisons of experimental results
with theoretical predictions, and it is particularly true
for the renormalization group (RG) theory of roughening
which has been improved thanks to a comparison with
experiments in helium (Balibar and Noziéres, 1994).

From the theoretical point of view, the problem of the
existence of facets at crystal surfaces has been a long
standing problem in Statistical Physics. Already in 1949,
Landau was interested in this problem and he predicted
that, at T' = 0, the crystal surface should be covered with
facets in all crystalline directions having rational Miller
indices (Landau, 1965). In 1949-51, Burton, Cabrera and
Frank then predicted that all facets should disappear at
successive “roughening temperatures”, which they cal-
culated in the frame of an approximate theory (Burton
and Cabrera, 1949; Burton et al., 1951). One thus re-
alized that, as temperature increased, crystal surfaces
were more and more rounded, with “smooth” facets only
in a decreasing number of high-symmetry directions and
“rough” surfaces in all other directions.

The modern theory of roughening came only after
Wilson had introduced the renormalization group the-
ory (Wilson, 1971). Van Beijeren, and Chui and Weeks
solved the first models (van Beijeren, 1975, 1977; Chui
and Weeks, 1976, 1978) and their work was soon extended
by many other authors [for a review, see (Weeks, 1980)].
Some predictions of the RG theory of roughening have
been tested with metallic crystals such as copper (Lapu-
joulade, 1994; Mochrie, 1987) and nickel (Conrad and En-
gel, 1994), but it seems to us that the most complete and
quantitative check of this theory, one should probably
say this class of theories, has been done with the hexag-
onal facets of *He crystals. These experiments triggered
later developments of the theory itself (Nozieres, 1992;
Nozieres and Gallet, 1987). The RG theory of roughen-
ing is now well established and can be universally ap-
plied to predict the existence of facets at the surface of
crystals, as shown by the recent case of some liquid crys-
tals (Noziéres et al., 2001).

As we shall see, a smooth facet becomes a rough sur-
face at its roughening temperature T when the energy
of steps between successive crystal planes decreases to
zero. The long range order of facets is destroyed by the
proliferation of steps. But at low temperature, facets are
well-ordered surfaces whose size and growth rate are con-
trolled by steps with non-zero energies. For a complete
understanding of the properties of facets, it is important
to know not only the energy of steps at this surface, but
also their width, fluctuations and mutual interactions.
Here again, helium crystals have allowed precise mea-
surements of all the above properties of steps, while with
ordinary crystals it is usually rather difficult.

Helium crystals have thus appeared as an interesting
model system for the general study of crystal growth
and shapes. Not less interesting are the quantum mech-
anisms underlying many aspects of their dynamics. A
classical crystal grows or melts slowlier as its temper-
ature decreases. This is because the microscopic pro-
cesses are thermally activated so that, as temperature de-
creases, they become exponentially slow. With helium at
low temperature, it seems that atoms go through energy
barriers by quantum tunnelling (Andreev and Parshin,
1978). As a result, the growth dynamics of crystals is
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FIG. 3 . The phase diagram of *He has no triple point where
the solid and the liquid would coexist with the gaseous phase.
At low temperature, the solid “He has an hcp structure; there
is a small region between 1.46 and 1.76 K, where the crystal
structure is bcc.

limited only by the scattering of the moving crystal sur-
face with thermal excitations in the liquid and solid, on
both sides of the interface (Andreev and Knizhnik, 1982;
Andreev and Parshin, 1978; Bowley and Edwards, 1983).
At low temperature, where the dominant thermal excita-
tions are phonons, the growth resistance of *He crystals
has been predicted to vanish proportionally to T* (An-
dreev and Knizhnik, 1982; Andreev and Parshin, 1978;
Bowley and Edwards, 1983). This behavior was also ob-
served experimentally by Keshishev et al. (1979, 1981).
It is reminiscent of the electrical resistivity of a metal-
lic crystal at low temperature. Electrons tunnel through
the lattice of positive ions and, in a certain tempera-
ture range, their mobility is limited by collisions with
phonons. As a consequence, the metallic resistivity de-
creases with temperature.

It was also predicted (Andreev and Parshin, 1978;
Puech et al., 1986a), and observed later (Graner et al.,
1989) that, in ®He, the scattering of Fermi quasiparti-
cles leads to a much higher growth resistance than in
“He. One thus understands that the study of the growth
dynamics of helium crystals has illustrated another gen-
eral problem, namely the motion of surfaces in quantum
systems. In the sub-millikelvin range, where liquid *He
is superfluid and solid ®He is a nuclear antiferromagnet,
new original properties are currently under investigation.

For most of these studies, it has appeared very useful
to be able to vary the temperature within a substantial
range. This is possible in helium because of particular
features of its phase diagram. As shown in Figs. 3 and 4,
there is no triple point in helium where the liquid, solid,
and gas phases would coexist. Instead, the liquid exists
down to absolute zero and the solid is stable only above

a pressure of the order of 25 bar in *He and 30 to 35
bar in 3He. As a consequence, the crystal surface which
we consider in this review, is a liquid-solid interface. Ex-
periments have been performed in a temperature domain
which extends over nearly four decades, from 5 x 10~% K
to 2 K, without much change in pressure or density. Liqg-
uid *He is superfluid below about 2.17 K while liquid *He
becomes superfluid at temperatures which are thousand
times smaller. There is a transition from the hexagonal
close packed (hcp) structure to the body-centered cubic
one (bce) in “He at 1.46 K. At low temperature, >He
crystals have a bcc structure, with a nuclear antiferro-
magnetic phase below Ty = 0.93 mK (see Fig. 4).

This review article is organized as follows. In Sec-
tion II, we describe the experimental techniques which
have been specifically developed for the study of helium
crystals over the past twenty five years. Section III is
devoted to the roughening transitions, starting with *He
crystals. We present the successive theories with a spe-
cial emphasis on the Nozieres’ RG theory. We then de-
scribe various experimental measurements of quantities
such as the surface tension, crystal curvature, step en-
ergy and surface mobility, and we compare the experi-
mental results with theoretical predictions. We continue
with other aspects of crystal shapes, in particular with
the effect of the step-step interactions. This section ends
with *He crystals where the study of roughening is more
difficult than in *He, but where additional information
on the step-step interactions has been found, thanks to
the discovery of a large number of different facets. In
this section, as in all others in fact, we describe not only
well-understood properties but we also mention the open
questions which deserve further study.

Section IV describes the dynamics of rough surfaces,
i.e., the growth and melting of crystal surfaces which
are rough. We start with a description of crystalliza-
tion waves on the rough surfaces and explain how their
study has led to precise measurements of the surface ten-
sion (more precisely the surface stiffness), step energies
and mutual interactions between steps. In the same sec-
tion, we consider the damping of crystallization waves as
a function of temperature. We analyze it as one aspect
of a more general problem of non-equilibrium thermody-
namics. We also describe sound transmission and heat
flow through the liquid-solid interface, as well as crossed
effects of temperature and chemical potential differences
in the frame of the relevant Onsager matrix. After con-
sidering ‘He, we present the dynamic properties of *He
crystals, which are quite different as already mentioned.

Section V is devoted to the dynamics of smooth
facetted surfaces, which is much slower than of rough
ones and related to the motion of steps. Here again,
the observed mechanisms such as the spiral growth are
common to all crystalline surfaces, while some others are
particular to helium, for example the existence of critical
velocities for the motion of steps.

In Section VI, we finally review various instabilities
which have been studied in helium and further illustrate
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FIG. 4 . As for *He, the phase diagram of ®He has no liquid-
solid-gas triple point. There are two distinct superfluid phases
below T, = 2.5 mK, and the bcc crystal is antiferromagnetic
below Ty = 0.93 mK.

the role of helium as a model system for other crystal
surfaces. One example is the “Asaro-Tiller-Grinfeld” in-
stability. This is an instability of the shape of crystal sur-
faces when a non-hydrostatic stress is applied: corruga-
tions appear above some threshold value, a phenomenon
which has been related to the spontaneous pattern for-
mation in heteroepitaxy. We describe its theory and the
experiments with *He crystals which have brought the
first experimental evidence for its existence. We then
consider the dendritic instability and describe mainly the
original case of *He crystals. We shortly mention also a
few other instabilities which would be interesting to study
in helium.

Our conclusion contains a list of open questions for
future work with these remarkable crystals.

1. EXPERIMENTAL TECHNIQUES
A. Optical cryostats

When Keesom discovered solid helium (‘He) in 1926,
he tried to visualize the liquid-solid interface, but he
failed. Through the walls of his glass dewar, “...there
was nothing peculiar to be seen ...” (Keesom, 1926).
Thirty five years later, Shal’nikov was able to grow good
quality helium crystals and he also took the first pictures
of the liquid-solid interface down to 1.2 K, for both *He
and *He (Shal’nikov, 1961, 1964). However, the quan-
titative study of the surfaces of helium crystals really
started near the end of 1970s with the work of three dif-
ferent groups, respectively in Haifa (Landau et al., 1980),
Moscow (Keshishev et al., 1979) and Paris (Balibar et al.,
1979). Although many experiments could be done with
blind cells, for example in Paris (Balibar et al., 1979; Cas-
taing et al., 1980), at Brown University (Graf et al., 1984;

FIG. 5 . The experimental cell used by Keshishevet al. (1979,
1981). 1: ferrochrome cell body; 2: bifilar capacitor for the
wave excitation; 3: *He fill line; 4: electrical feedthrough; 5:
thermal contact to the *He refrigerator; 6: thermometer; 7:
cadmium temperature reference.

Huber and Maris, 1981), in Texas (Wang and Agnolet,
1992a), in Grenoble (Amrit and Bossy, 1990; Puech and
Castaing, 1982), and in Kyoto (Kawaguchi et al., 2002;
Nomura et al., 1994), the use of cryostats with good qual-
ity optical access proved to be very useful in these stud-
ies because the direct observation of the crystal shape
allows to determine the crystal orientation, its surface
state and the quality of the surface, before performing
measurements.

One has to avoid looking through liquid nitrogen which
usually boils, preferably also through a 4 K bath of the
ordinary liquid helium, where convection takes place and
snow-flakes of frozen air often move around. Conven-
tional optical cryostats have windows attached to the low
temperature screens in vacuum and optics outside (see
Fig. 6 as an example). They allow easy adjustments or
even complete changes of the optical setup in the course
of experimental runs, but their lowest temperature is lim-
ited by the heat leak due to thermal radiation from the
outside world at 300 K through the windows.

Keshishev et al. (1979, 1981) modified Shal’nikov’s ap-
paratus and observed crystals through five pairs of win-
dows, respectively at 300 K, on the 77 K shield, on the
two sides of a 4.2 K liquid helium bath, and on the ex-
perimental chamber which was cooled down by a ®He
refrigerator. These windows were sealed with epoxy glue
(Stycast 1266). In order to minimize the risk of leaks,
the cell was built out of ferrochrome, so that the differ-
ential thermal contraction was not too large between the
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Optical setup of the Paris group (Rolley et al.,

cell body and the large chemical glass windows (12 mm
x 28 mm) which were glued on it (see Fig. 5). For their
later experiments in Paris, Wolf et al. (1985) and Rolley
et al. (1995b) preferred sealing their windows with in-
dium rings on stainless steel or copper pieces, a technique
which appeared reliable and was also used in Mainz (Sav-
ignac and Leiderer, 1982), Konstanz (Thiel et al., 1992),
Helsinki (Babkin et al., 1995; Manninen et al., 1992; Ru-
utu et al., 1998; Tsepelin et al., 2002b), Tokyo (Nomura
et al., 1994), etc. The Leiden group successfully glued
fused silica windows with Stycast 1266 on a cell made
out of Araldite (Marchenkov et al., 1999; van Rooijen
et al., 2001; Wagner et al., 1994).

In conventional optical cryostats, low temperatures
could not be reached without filtering the incoming in-
frared radiation. This is particularly important when the
cell sees the room temperature environment. Radiation
with wavelengths larger than 0.8 ym can be efficiently
filtered with suitable coatings of windows. In order to
improve this, the Paris group used pyrex glass for the
windows’ material (except on their cell where the use of
sapphire, which is stronger, allowed the windows to be
thinner). In their latest cryostat, the total absorbtion of
radiation by the cell was about 10 uW with four sets of
large windows from 34 mm diameter on the cell to 70
mm at 300 K (see Fig. 6). By using one set of windows
only, reducing the size of windows, and improving the
infrared filtering, this radiation power could probably be
lowered down to 1 uW, and this would be compatible
with temperatures of a few mK.

Above its superfluid transition temperature T, (2.5 mK
on the melting curve), liquid ®He is a Fermi liquid with
poor thermal conductivity and the latent heat of crystal-
lization is large. As a consequence, He crystals behave
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FIG. 7 . The Leiden optical setup for studies of *He crystals
in a high magnetic field (van Rooijen et al., 2001).

in a way similar to classical crystals at such tempera-
tures. However, the superfluid-solid interface below T
is expected to behave differently, and the effect of the
magnetic ordering transition in the solid, at Ty = 0.93
mK, is also expected to be interesting. Thus, different
groups built special cryostats for optical studies in the
sub-millikelvin range (Manninen et al., 1992; Tsepelin
et al., 2002b; Wagner et al., 1994).

The Helsinki group was able to see the free surface of
superfluid *He down to about 0.7 mK by using optical
fibers to communicate between room temperature and
the low temperature part of their cryostat (Manninen
et al., 1992). The Leiden group designed and constructed
a new type of optical cryostat with a CCD-camera sen-
sor inside its vacuum can (Wagner et al., 1994), their
latest setup is presented in Fig. 7. This sensor works at
low temperature (about 60 K) and with slow scanning
(1 image every 4 s) in order to improve the sensitivity
and allow the use of less light. The illumination is pro-
vided by a led which is also located inside the cryostat.
In their latest cryostat, the Helsinki researchers have also
adopted a low temperature CCD-camera because the res-
olution (576 x 384 pixels) was better than with a bundle
of 30 000 fibers (Babkin et al., 1995; Ruutu et al., 1998).
For laser light illumination a single-mode optical fiber is
used as before. After filtering the thermal radiation from
the CCD-sensor with two filters of CaFs and sapphire
(see Fig. 9), the radiation power into the experimental
cell was reduced down to a few nW.



B. Imaging techniques
1. Black and white or color imaging

The polarizability of helium is weak and the density
difference between the liquid and solid helium is small, so
that the difference of the refractive indices is also small.
However, the incidence angle for total reflection is 85 de-
grees from the solid side in *He, so that the liquid-solid
interfaces are visible at grazing incidence. A “He crys-
tal in its liquid is a transparent object in a transparent
medium; when looking at it with a naked eye, it looks
like an ice cube in water: one sees its profile but not its
3D shape. Growth shapes may have facet edges which
are sharp enough so that light diffraction takes place and
that makes these edges visible (see Fig. 37). In practice,
infrared (IR) filters on the windows usually absorb some
red light so that images look greenish, especially if taken
with ordinary cameras whose films are sensitive to IR ra-
diation and thus not supposed to give real colors if IR is
suppressed. Video or digital cameras are not so sensitive
to these IR problems.

Simple imaging techniques can be used to improve the
observations of the crystal shape. If the crystal is ob-
served in transmission with white light, a dark back-
ground can be obtained by stopping the light with a little
mask at the focal point of the imaging lens. Due to the
difference of the indices, the light is deviated when pass-
ing through the crystal and it converges in the focal plane
but not through the focal point; thus the crystal looks
bright on a dark background. A spectacular improve-
ment of this dark background technique can be obtained
by using a glass prism which disperses the white light
before it reaches the helium crystal (see Fig. 8). In this
case, each couple of facets forms a helium prism which
refracts light at an angle which depends on the opening
of the helium prism. As a result, each couple of facets ap-
pears with its own uniform color, which is different from
the background color, except of course if the two facets
are parallel (see Fig. 2). All these colors can be easily
changed by moving the mask, which in practice was a 2
mm black rod in the Paris experiment, in the focal plane.

2. Interferometry

Conventional imaging techniques can be used for the
demonstration of qualitative properties of crystal sur-
faces. Quantitative studies require interferometry. The
refractive indices are given by the Clausius-Mossotti re-
lation:

n?= 22 1)
L—n

where

47TpOéM
= 2
" 3M (2)

mask

imaging lens

FIG. 8 . The principle of the color imaging technique used
by Balibar, Rolley and Guthmann in Paris (not on scale).
In practice, the “mask” was a small black cylinder with a
diameter of 2 mm. By moving this mask in the focal plane
of the imaging lens, the color of the background could be
changed. Each couple of facets forms a helium prism whose
angle determines the refraction and thus the color.

and where M is the molar mass (4.0026 g/mole for “*He
and 3.0160 g/mole for ®He), p is the density, and the
polarizability aps slightly depends on frequency. From
the work of (Cuthbertson and Cuthbertson, 1932; Don-
nelly and Barenghi, 1998; Edwards, 1958; Harris-Lowe
and Smee, 1970), it is found to be 0.1233 at zero fre-
quency, 0.1241 for red light (632.8 nm) and 0.1245 for
green light (515 nm) (Chavanne et al., 2001). As a result,
in “*He on the melting curve at low temperature, where
pr = 0.17245 g/cm? and pc = 0.19076 g/cm?, one has
ng = 1.0338 and nc = 1.0374 for red light (respectively
1.0339 and 1.0375 for green light). The index difference
dn = ng — ny, equals 3.6 x 1073, As for 3He in the very
low temperature limit, one finds dn = 1.0324 - 1.0307 =
1.7 x 102 for red light.

(Landau et al., 1980; Pipman et al., 1978) applied a
differential holographic technique which soon appeared
too complicated to use. All other groups have installed
an interferometric cavity inside their cryostat. For ex-
ample, Bodensohn et al. (1986) and Gallet et al. (1987)
were able to measure height changes of about 1 ym of a
liquid-solid interface. This was made possible by analyz-
ing the fringe pattern with an accuracy of one hundredth
of a fringe. In such cavities, the fringe structure depends
on the reflection coefficient of the walls. For small coef-
ficients one has two-beam interferometry and sinusoidal
fringes which is suitable for studies of large size surfaces.
Small surface areas, such as facets, need sharper fringes
for analysis, and this can be obtained using surfaces with
larger reflection coefficients (in the limit of a Fabry-Pérot
interferometer, the fringes are delta functions).

It is also possible to use the helium interface itself
as one of the walls of the optical cavity. In this case,
one gains a factor (n/dn) ~ 10° in sensitivity but, since
the reflection coefficient of the crystal surface is very
small (1076...1077), the other cavity wall, which is a
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FIG. 9 . Interferometric setup for the studies of “He crystals
built inside the 4 K vacuum can of the nuclear demagnetiza-
tion cryostat (Ruutu et al., 1998).

glass plate, has to be covered with antireflection coat-
ings in order to obtain a reasonable contrast. With the
best available coatings, which have a reflection coefficient
of about 107, the contrast between bright and dark
fringes is about 1.5, i.e., quite sufficient for good mea-
surements (Hakonen et al., 1995). However, this tech-
nique can only be used if the crystal surface is nearly
parallel to the glass plate.

For their studies of “He crystals, the Helsinki group
used the optical setup shown in Fig. 9. A He-Ne laser
light (A = 632.8 nm) enters the cryostat through a single
mode optical fiber (leak-tight feedthroughs are made with
Stycast 1266 epoxy glue). From the end of the fiber, the
beam is expanded with two lenses, and a parallel beam
with an 8 mm diameter illuminates the experimental cell.
Most of the illumination is transmitted through the cell
and absorbed by a black surface which is thermally an-
chored to the 0.7 K still of the dilution refrigerator. Only
about one ppm of light is reflected back from the liquid-
solid interface and about 100 ppm from the reference
plane which is the antireflection coated upper surface of
the lower window of the cell. These two reflected beams
form the interference pattern which is focused to a cooled
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FIG. 10 . The compressional cell and a Fabry-Pérot multiple-
beam interferometer for the studies of 3He crystals (Tse-
pelin et al. (2002b).

CCD-sensor inside the vacuum can.

The optical cell of Ruutu et al. is a cylindrical copper
volume with an inner diameter of 17 mm. The upper
window is tilted and the lower window wedged by about
two degrees with respect to the cylinder axis in order to
prevent the reflections from the corresponding surfaces to
reach the CCD-sensor. The optical volume is connected
to the silver heat exchanger at the top of the nuclear
stage (not shown in Fig. 9). The pressure in the cell is
measured using a sensitive capacitive gauge (Straty and
Adams, 1969). With that setup the *He crystals have
been imaged down to about 2 mK (Ruutu et al., 1998).

Later on, the Helsinki group concentrated on the stud-
ies of 3He crystals and, for that purpose, they modified
the setup by Ruutu et al. and built a multiple-beam
interferometer inside their nuclear demagnetization cryo-
stat (see Fig. 10). The multiple-beam interferometry was
chosen because it was necessary to determine the orien-
tation of small facets from fringe spacings in a small area.

The volume of the experimental cell of Tsepelin et al.
is about 13 cm?. In its optical part there is a ring made of
Stycast (SR) with a diameter of 18 mm. This ring stops
direct flow of the liquid to the optical part of the cell and
also serves as a holder for the tungsten-tip nucleator.

The interferometer consists of two nearly parallel mir-
rors with 50% and 70% reflectivities placed above and
below the optical part of the cell and these mirrors are
thermally anchored to the mixing chamber. The vertical
resolution of the interferometer is a few pm while the hor-
izontal resolution of about 15 pm is limited by the pixel
size of the CCD-sensor. Crystal surfaces with a slope up
to 70 degrees with respect to the bottom mirror of the
interferometer could be resolved.

A typical interferogram taken with that multiple-beam
interferometer is shown in Fig. 38, where a growing *He
crystal has been imaged at 0.55 mK. The adjacent fringes
correspond to multiples of A/2(dn) in the optical path
length which corresponds to 190 um in *He crystal thick-
ness. The facets show up on the interferograms as sets
of equidistant parallel straight lines, the background pat-
tern is due to the liquid wedge and the non-perfect align-
ment of mirrors.



C. Nucleation and orientation of crystals

The liquid-solid transition being of first order, there
exists an energy barrier against the nucleation of crys-
tals. In most experiments in helium, an overpressure of
a few mbar is enough to overcome it. Crystals usually
nucleate on local defects which are favorable to the solid
phase and might be graphite dust particles attached to
walls (Balibar et al., 2000). Once nucleated, the crystals
grow and fall down to the bottom of the cell as soon as
they feel the effect of gravity, i.e., when they are larger
than the capillary length [, =~ 1 mm. After melting a
given crystal by reducing the cell pressure, it often hap-
pens that a new nucleation leads to a crystal with the
same orientation as the previous one. This is usually at-
tributed to the possibility that wall defects keep crystal
seeds even at pressures below the melting pressure P,,.
These seeds could be killed by reducing the pressure fur-
ther, sometimes very far below P,,, or by warming up
the cell.

Keshishev et al. invented a clever method to obtain
oriented crystals: they noticed that nucleation can be
forced to occur at a particular place in the cell by us-
ing an electric field (Keshishev et al., 1979). For that
purpose, they made a double winding of 30 um diame-
ter insulated wires and applied a high voltage, typically
800 V, between the two wires. They obtained a region of
high electric field in this manner; due to electrostriction,
the solid density being larger than the liquid one, crys-
tals preferably nucleated on the coil when the pressure
inside the cell was increased. By locating this coil on top
of the cell, they then forced the crystals to fall down to
the bottom through superfluid helium. At a fraction of a
Kelvin, the shape of *He crystals is often flat with large c-
facets, so that crystals land on a nearly horizontal c-facet
(see Fig. 11). This method has been successfully used by
other groups (Rolley et al., 1995b; Ruutu et al., 1998);
the double winding could be replaced by an interdigi-
tal evaporated layer or by a sharp needle (Tsymbalenko,
1995). Eventually, since *He crystals were shown to grow
by epitaxy on graphite substrates (Balibar et al., 1980;
Eckstein et al., 1980; Ramesh and Maynard, 1982; Wang
and Agnolet, 1992a), it is also possible to obtain oriented
crystals by placing a small piece of clean graphite in the
cell. Balibar et al. (1980) showed that this graphite piece
has to be properly degassed to work.

In order to study crystals with different orientations,
it is possible to repeat the nucleation procedure several
times, so that a random distribution of orientations is ob-
tained. However, a better control could be achieved by
first obtaining a crystal with known orientation and then
rotating the cell. With ordinary crystals, one usually
gets surfaces with different orientations by cutting new
crystals at different angles. With *He crystals, it was
shown possible to do this in a completely different way
(Andreeva and Keshishev, 1987; Rolley et al., 1995b). If
crystals are larger than the capillary length, their upper
surface is forced by gravity to be horizontal. As a result,

FIG. 11 . Sequence of photographs showing a “He crystal
falling from the top, where it nucleates, to the bottom of the
cell. If its shape is a flat prism, the crystal flies like a paper
sheet and lands horizontal (Babkin et al., 1985).

when a crystal is rotated together with the cell, it melts
on one side and grows on the other side. This change
in shape occurs within much less than a second at tem-
peratures well below 1 K. As a consequence, the crystal
surface keeps horizontal but it changes crystalline orien-
tation because the lattice orientation rotates with the cell
walls. Thanks to this method, very precise studies on the
angular variation could be done with a single *He crystal.
Andreeva and Keshishev (1987) could rotate their cell by
as much as + 60 degrees around one axis. Rolley et al.
(1995b) could rotate their cell by + 6 degrees around two
perpendicular axes (see Fig. 12).

What about crystal quality? At low temperature, the
melting pressure P, of solid helium is nearly independent
of temperature, so that helium crystals can be grown
only by applying a small overpressure. Furthermore,
Shal’nikov had shown that the quality of helium crystals
was not good when they were grown by cooling down
the cell which had first been filled at high temperature
and then closed to follow an isochore. This is presum-
ably because, above 1.2 K or so, the melting pressure
of “He increases significantly with temperature so that



FIG. 12 . The rotating box in the Paris setup (Guthmann
et al., 1994). Two micromotors (M1 and M2) allow rotation
by £ 6 degrees around the axes X and Y. The motors are
coupled to the box (B) and to the plate (C) thanks to flexible
metallic wires (W) attached to screws (S).

varying the temperature leads to stresses in the crystal.
These stresses lead to an instability of the crystal surface
which has been carefully studied in *He by the Konstanz
group (Bodensohn et al., 1986; Thiel et al., 1992) (see
Section VI.A).

In order to obtain good quality helium crystals, one
has to grow them from a small seed as is done with any
other crystal. For that, the crystal is first nucleated,
and then melted to the smallest possible size in order
to eliminate as many defects as possible. These defects
can be dislocations which are important for the growth
of facetted surfaces (see Section V). They can also be
stacking faults, in which case the crystal surface shows
macroscopic grooves as on the skin of an orange. This
is because stacking faults have a surface energy compa-
rable to the liquid-solid interfacial energy so that they
create cusps with finite angles when they emerge at the
liquid-solid interface. Rolley et al. (1995b) showed that,
by growing *He crystals around 0.1 K, from a 1 mm
seed and not faster than 0.1 pm/s, it was possible to
obtain liquid-solid interfaces without defects. Ruutu et
al. (1996) obtained dislocation-free crystals by nucleating
them spontaneously and growing them at 20 mK with-
out special care. It thus seems that growing crystals by
applying a small overpressure (a few mbar) at the lowest
possible temperature leads to the best quality.

This overpressure is usually applied through the fill
line of the cell, from the outside of the cryostat. The
Moscow group used a buffer volume outside the cryostat,
whose temperature was regulated around 300 K, some-
times modulated in order to produce successive growth
and melting (Keshishev et al., 1979, 1981). The Paris
group used a high pressure cylinder containing high pu-
rity helium gas and an electronic flow regulation (Rolley
et al., 1995b). It should be noticed here that this fill line
does not usually block (except if the helium is not pure
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FIG. 13 . As shown by this photograph, the contact angle
of the liquid-solid interface of *He is about 135 degrees; the
walls are preferably wet by the liquid phase (Balibar et al.,
1979). ®He crystals show a similar property (see Fig. 34).

enough), although the melting curve of *He has a shal-
low minimum near 0.8 K, so that the melting pressure
in a low temperature cell is higher than in some part of
the fill line. Liquid “*He has thus to be in a metastable
state in this fill line somewhere. This looks marginally
possible since experiments have shown that the metasta-
bility can extend about 10 mbar above F,, in the presence
of ordinary walls, while the depth of the melting curve
minimum is 8 mbar. However, in the case of *He, where
the depth of the minimum in the melting curve is about 6
bar, crystals cannot be grown/melted at low temperature
by varying the pressure from the outside and deformable
cells (either with bellows or with diaphragms) have to be
used (Nomura et al., 1994; Osheroff et al., 1972; Sydoriak
et al., 1960; Tsepelin et al., 2002b; Wagner et al., 1994).

Since in *He the negative slope of the melting curve
is large, it is possible to nucleate crystals by applying
a small heat pulse (Osheroff et al., 1991). In the sub-
millikelvin range, they first cooled down the liquid to
about 0.4 mK while keeping the cell pressure at least 200
mbar below the liquid-solid equilibrium pressure P,,. Af-
ter that, the 3He pressure was slowly increased up to 1.2
mbar above P,,, and a 1 ms heat pulse applied with an
energy of 2 erg. In the experiments by Tsepelin et al.
(2002b) the 3He crystals were nucleated with an electri-
cal field like in *He. By growing their crystals in a narrow
tube, Osheroff et al. (1991) could keep only one magnetic
domain of the antiferromagnetic structure. The correla-
tion between magnetic domains and crystal growth was
later studied in Kyoto (Kawaguchi et al., 2002).

D. Surface tension measurements

The surface tension of ordinary crystals is rarely ac-
curately known. On the contrary, in the case of helium
crystals, the fast growth dynamics allows simple measure-
ments of capillary effects to be done, as if these crystals
were liquids. Three different methods have been used to
measure either a capillary rise, the capillary length (from
the shape of large crystals), or the dispersion relation of
crystallization waves.

In their early experiments, Balibar et al. (1979) mea-



sured a capillary rise between the two electrodes of a
cylindrical capacitor, inside a blind cell. In fact, this rise
was negative, it was a capillary depression because the
copper wall was preferentially wet by the liquid. They
found a contact angle of typically 135 degrees between the
cell wall and the liquid-solid interface (see Fig. 13). This
was attributed by (Dash, 1982) to the existence of large
stresses in solid *He near the wall, especially if this wall
was rough, and later observed with most other types of
solid walls, also with 3He (see Fig. 34). Graphite is excep-
tional since some matching of the crystal lattice leads to
epitaxial growth of hcp “He on it, i.e., complete wetting
by solid “He. A similar matching has been reported by
(Eckstein et al., 1980) for bee ®He crystals on cubic MgO
substrates. It is not yet clear if there exist other sub-
strates which are completely wet by He crystals, i.e., on
which they could grow by epitaxy. Balibar et al. (1979)
also measured the minimum overpressure which was nec-
essary for the liquid-solid interface of *He to pop through
a circular hole. (Balibar and Castaing, 1980) later under-
stood that, if facets were well developed on the crystal
surface, the rather high measured overpressure was not
directly related to the surface tension of the crystal. This
was an indirect indication that *He crystals are facetted
below 1 K.

The surface tension could also be measured by study-
ing the equilibrium shape of crystals which are larger
than the capillary length I, ~ 1 mm. This was first done
by Landau et al. (1980) with *He crystals, and later by
Rolley et al. (1989) with *He crystals (see Fig. 34). The
most precise method uses the dispersion relation of the
crystallization waves, as described below.

E. Excitation and detection of crystallization waves in ‘He

Crystallization waves were discovered in 1979 by
Keshishev et al. who first saw the effect of shaking their
cryostat on the crystal surface. However, for an accu-
rate measurement of crystallization wave properties, it
is necessary to excite plane waves at known frequencies.
For that purpose, Keshishev et al. used an electrostatic
method: they made a small flat capacitor by winding two
30 pum diameter copper wires around a Fiberglass plate.
This capacitor was placed on one side of the cell (see
Fig. 5) and they applied to it a dc voltage in the range
from 400 to 800 V plus an ac voltage (20 to 200 V).

A similar method was used by Wang and Agnolet
(1992a) and by Rolley et al. (1995b), except that the
double winding was replaced by an inter-digital structure
evaporated on a borosilicate glass plate, so that smaller
voltages could be used. Rolley et al. (1995b) found that
the dissipation was about 30 uW at 1 kHz with 100 V
peak-to-peak for the wave excitation. They attributed it
to dielectric losses in the glass and this was a serious lim-
itation for the lowest temperature at which they could
study these waves. In Moscow as well as in Paris, the
dc voltage was used to adjust the contact angle of the
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FIG. 14 . Standing crystallization waves in “*He as seen by
Rolley et al. (1995b). The photograph shows the experimen-
tal cell with the oscillating interface between the crystal in
the lower part and the superfluid above it. The wave was ex-
cited with an interdigital capacitor on the tilted plate on the
right and it resonated in the width of the cell. The excitation
frequency was about 30 Hz, so that the wavelength was close
to 2/3 of the cell width (24 mm).
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FIG. 15 . The profile of a crystallization wave propagating
at the surface of a *He crystal, as measured by Rolley et al.
(1994b). In this particular case, T = 280 mK, the surface
was oriented 3 degrees away from the (0001) plane, and the
frequency was 1946 Hz, so that the wavelength was 0.660 mm.
The recorded quantity is the local tilt angle of the crystal
surface with respect to the horizontal.

liquid-solid interface to the glass plate. Figure 14 shows
a standing wave which was excited near 30 Hz and had a
macroscopic amplitude. At higher frequency, or close to
facetted directions as in Fig. 15, the damping is higher
so that the reflection of waves from the opposite wall is
negligible, except at very low temperature.

In order to detect the waves, more precisely to measure



FIG. 16 . Interference pattern of a charged liquid-solid *He
interface (Bodensohn et al., 1986). The field of vision is about
2 cm in diameter. Here the electrons are concentrated in the
central region to enhance the visibility of the deformation.
The parallel fringe pattern outside the center results from a
small angle between the two interferometer plates.

their amplitude as a function of time or distance, Keshi-
shev et al. (1979) first used the diffraction of light, but
this method was not very sensitive, due to the large me-
chanical vibrations of their apparatus. They improved
the detection sensitivity by using a light transmission
technique and a lock-in amplifier. An 1 A resolution in
height was achieved by Rolley et al. (1995b) who mea-
sured the deflection of a laser beam on the oscillating sur-
face (see Fig. 15), as was previously done by (Boldarev
and Peshkov, 1973) and (Leiderer et al., 1977) to mea-
sure the surface tension of liquid helium mixtures. Of
course, none of these experiments worked if the surface
had facets or surface defects on the path of the waves,
so that special care had to be taken with the quality and
orientation of crystals. Wang and Agnolet (1992b) used
the same inter-digital capacitor for the emission and de-
tection of the waves in a resonant cavity.

F. Electrons at the liquid-solid interface

Leiderer and his group used electrons to study the
liquid-solid interface of *He (Bodensohn et al., 1986; Lei-
derer, 1995). The principle of the method is the follow-
ing. Electrons are first injected to the liquid with a field
emission tip or with a radioactive source. Once they have
slowed down, they form a bubble with a radius of the or-
der of 17 A. In the solid, the electron bubble energy is
higher by about 200 K, so that there is a large energy
barrier against the penetration of electrons from the lig-
uid into the solid. Thanks to a properly oriented electric
field E,, the electrons can thus be pressed against the
crystal surface. If the electrons are confined horizontally
in some region of the crystal surface, for example in the
center as shown in Fig. 16, and if the electron charge
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FIG. 17 . Charge-induced instability of a superfluid-hcp *He
interface, as observed by Savignac et al. (1983) above the
critical electric field. The instability develops in the form of a
lattice of dimples where electrons accumulate (dark spots on
the image). The diameter of this pattern is about 1.5 cm.

density there is o.;, this part of the crystal melts down
by an amount h = 0 E,/g(pc — pr). Any change in the
applied electric field produces a local change in height,
which can be accurately measured with conventional in-
terferometric techniques. From the relaxation time of
this height change, Leiderer and his group measured the
growth dynamics of rough crystal surfaces (see Fig. 44) in
a temperature region where crystallization waves are too
heavily damped to be used (Bodensohn et al., 1986; Lei-
derer, 1995). Eventually, they found the same instability
of the surface shape as in the case of the free surface of
liquid *He: beyond some critical electric field, a lattice of
dimples appears [see Fig. 17 and (Savignac et al., 1983)].

11l. ROUGHENING TRANSITIONS
A. Historical observations of facets on helium crystals

Facets were first seen at the surface of slowly grow-
ing *He crystals by Landau et al. (1980) in Haifa and
by Keshishev et al. (1979) in Moscow. Balibar and Cas-
taing (1980) then proposed the existence of a roughening
transition around 1 K in order to understand the appar-
ent discrepancy between the measurements of the surface
tension of “*He crystals by Balibar et al. (1979) in Paris
and the measurements by Landau et al. (1980) and by
Keshishev et al. (1979) below this temperature. These
three groups had studied different capillary effects. Bal-
ibar et al. had measured the minimum pressure which
was necessary for a “*He crystal to grow through a small
hole. Landau et al. had measured the shape of a large
liquid-solid interface which was governed by both grav-
ity and surface tension. As for Keshishev et al., they had
measured the dispersion relation of crystallization waves.

It was soon confirmed by Keshishev et al. (1981) that



FIG. 18 . Horizontal c-facet at the surface of a *He crystal
as seen by Keshishev et al. (1981).

FIG. 19 . The unit cell of hcp *He crystals. The plane con-
taining three atoms in the center of the unit cell has the same
energy as the bottom and top (0001) planes, so that the step
height is half the lattice period in the [0001] direction.

facets existed not only on growth shapes but also on the
equilibrium shapes (see Fig. 18). Furthermore, both Lan-
dau et al. (1980) and Keshishev et al. (1981) had seen
that facets existed in the “c” or [0001] direction, on the
basal planes of the hexagonal structure (see Fig. 19), and
in the “a” direction perpendicular to “c”, which was later
identified as the [1010] direction (Andreeva and Keshi-
shev, 1990; Wolf et al., 1983a).! A third type of facets
was discovered by Wolf et al. (1983a) below about 0.36 K;
it was identified as the [1011] direction which is tilted by
58.5 degrees with respect to the [0001] direction by An-
dreeva and Keshishev (1990). Figure 2 shows all these
three different types of facets in *He.

As for the maximum temperatures at which facets
could be observed, they increased with time. It is now
understood that the roughening transition is very con-

1 Note that, for the hcp crystal structures, one uses sets of four
Miller indices where the last index refers to the six-fold symmetry
axis. The projection in the basal planes is decomposed over
three equivalent vectors of the hexagons, so that the notation is
symmetric and the sum of the first three indices has to be zero;
the notation 1 means “—1”.
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growth shape

melting shape

FIG. 20 . Facets grow and melt more slowly than rough
corners; as a consequence, facets are larger on growth shapes
than on melting shapes.

tinuous, so that the facets are very small and fragile in a
definite temperature domain below the roughening tem-
perature Tr. As a consequence, improved measurement
techniques revealed the existence of facets at higher and
higher temperatures.

Some of the first measurements were done on the equi-
librium crystal shapes. However, it was soon realized
that, close to Tg, the facets were too small to be detected.
This is because the equilibrium facet size is proportional
to the step energy [see (Landau, 1965; Noziéres, 1992)],
which was found to vanish exponentially [see Eq. (13)
and Fig. 23 below]. Actually, when the surface state
of a crystal changes from rough to smooth, its mobil-
ity drops by several orders of magnitude, so that the
growth shapes are highly anisotropic below the roughen-
ing temperature and reveal the slowly-growing parts of
the surface. On the contrary, the melting shapes tend
to be more rounded, and this can be understood from a
simple geometric construction (see Fig. 20). In fact, most
facets have been seen during growth in helium, both in
“He and in ®*He. Note, however, that the growth has to be
slow enough to avoid “dynamic roughening” as explained
below.

The first measurements of facet sizes (Avron et al.,
1980) led to a roughening temperature Ty = 1.08 K
in the [0001] direction, but the analysis by Wolf et
al. (1985), Gallet et al. (1987) and Balibar et al. (1993)
progressively concluded that Thry = 1.30 K. Wolf et
al. (1985) found that, for the (1010) facets, Trs may be
as high as 1.07 K, and Andreeva and Keshishev (1990)
claimed that, for the (1011) facets, Tgs is higher than
0.43 K. Although some indication has been found for the
existence of a fourth type of facets at 0.21 K (Puech et al.,
1983), there is not yet a clear proof for the existence of
more than three types of facets in *He.



As for the bee 2He crystals, the measurements by Rol-
ley et al. (1986, 1989) in Paris showed that the (110)
facets exist up to 100 mK. Some years later, the (100)
and (211) facets were found by the Leiden group (Wagner
et al., 1996) and many other ones [(310), (111), (321),
(411), (210), (510), (431) and (311)] by the Helsinki
group (Alles et al., 2001; Tsepelin et al., 2001).

Among all these facets, only the (0001) facet in *He has
been studied with enough accuracy to check that the pre-
cise value of its roughening temperature T'g; is correctly
predicted by the theory, as well as the critical behaviors
near the roughening transition. The first purpose of the
next section is to present this theory and its comparison
with the experiment. For the other roughening temper-
atures, although the measurements have been much less
precise and somewhat incomplete, we shall also compare
experimental observations with theoretical predictions.

B. Main theoretical predictions
1. Static properties of simple surfaces

Why are there roughening transitions at the surface of
crystals? As we shall see, this has been the subject of
an intense theoretical activity during the recent decades.
At zero temperature, the crystal energy is the lowest if
all atoms minimize their interaction energy with neigh-
bors. This implies that the surface is smooth in all direc-
tions as predicted by Landau in 1949 [see Landau (1965)].
As temperature increases, the thermal fluctuations cre-
ate defects such as terraces bounded by steps. At high
enough temperature, the crystal surface will be invaded
by steps and loose reference to the crystal lattice. This
is illustrated in Fig. 21 (Leamy et al., 1975). In fact,
it is not only the density of steps which increases, it is
also their average length and the size of thermally acti-
vated terraces. This is because the free energy of these
steps tends to zero at a critical temperature, as can be
expected for the following reason.

Consider a simple cubic crystal with a lattice spacing
a, as in Leamy’s simulations. Now, let us estimate the
free energy f of a step with a length Na. The step is like
a random walk with three possibilities at each site. The
step entropy is thus kg In (3%) and the step free energy
writes as

B = Nlafo — ksTIn(3)], ®3)
where Sy is the internal energy per unit length of the
step (afo is approximately one half of the bond energy
J between two neighboring atoms). The above equation
predicts that the step free energy vanishes at the critical
temperature Tr = afo/kp1n(3) = 0.45 J, at which both
the density of steps and the typical size of terraces should
diverge.

In fact, the existence of a roughening transition was
first predicted by Burton, Cabrera and Frank (BCF)
within a model which was nearly as simple (Burton and
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FIG. 21 . Numerical simulations by Leamy et al. (1975) show
the basic physics of the roughening transition. The crystal
has a simple cubic lattice and each atom is represented by a
cube. At low temperature, there are very few defects such as
adatoms, surface vacancies, steps and terraces. As tempera-
ture increases, steps proliferate and the crystal surface looses
reference to the lattice. The temperature is expressed as a
function of the bond energy J. The roughening transition
occurs at Tr = 0.632 J.

Cabrera, 1949; Burton et al., 1951). BCF considered the
surface of a cubic crystal as the last lattice plane where
sites are either occupied or empty. They introduced an
interaction only between the nearest neighbors, so that
their surface was strictly analogous to a two-dimensional
(2D) Ising model of spins. BCF then used Onsager’s so-
lution of the 2D Ising model to predict a transition to
take place at T = 0.57.J, where .J was the bond en-
ergy. However, BCF had realized that the crystal surface
was not confined in only one atomic layer. Terraces can
pile up on top of each other (see Fig. 21). As a conse-
quence, later calculations showed that the above formulae
are only rough approximations and the critical behaviors
near Tg different from those found with the Ising model.

Further progress was obtained from the exact solu-
tions of various models through an equivalence to other
2D systems whose transition was known. In particular,
Chui and Weeks (1976) found a transition in the “dis-
crete gaussian solid-on-solid model” (DGSOS) which was
equivalent to the one found in the “2D Coulomb gas”.
“Gaussian” refers to the quadratic variation of the en-
ergy of local columns of atoms with their height, and
SOS means that the atoms pile up without overhangs.
The 2D Coulomb gas is a layer of positive and nega-
tive charges; it has an insulating phase at low temper-
ature, where charges bind as neutral molecules, and a



conducting phase at high temperature where molecules
are ionized. It is known to belong to the “Kosterlitz-
Thouless” class of transitions which are of “infinite or-
der”. This means that critical behaviors are exponential
with no discontinuity in any of the temperature deriva-
tives of the free energy. Chui and Weeks thus predicted
that the roughening transition was even more continu-
ous than the second order phase transition of the Ising
model. At the same time, van Beijeren (1977) demon-
strated that the “body-centered solid-on-solid model”
was equivalent to the “six-vertex model”, another mem-
ber of the Kosterlitz-Thouless class. Many 2D systems
were soon found to be of the Kosterlitz-Thouless type
like the superfluid transition of films, the “XY”-model of
spins, some liquid-solid transitions, etc.

When it appeared possible to compare theories with
experiments in helium, another theoretical progress was
necessary. Indeed, it was needed to include a few ad-
justable parameters in the theory, so that a real crystal
surface could be described. This is what Nozieres and
Gallet (1987) achieved. For an extensive presentation
of this theory, we refer to Noziéres’ lecture notes at the
Beg-Rohu summer school (Nozieres, 1992). Here we only
summarize its principle, starting point, approximations
and main results, so that one can understand how it could
be compared with experimental results.

Nozieres starts by writing an effective hamiltonian to
describe the energy of a surface deformation:

. )

H= /dzr [%7(Vz)2 + Vcos%—z
In this expression, z(r) is the height of the crystal sur-
face at a position r and the cosine-term describes the
periodic influence of the underlying lattice; the quantity
d is thus the periodicity of the surface energy as a func-
tion of height and it is also the step height in the smooth
facetted state. Note that, in the direction under consid-
eration, d is usually different from the lattice spacing a.
This lattice potential is what anchors the surface to the
lattice planes at low temperature. As for the quantity
7, it is the surface stiffness of the crystal and deserves a
paragraph of comments.

As it is well known from the Laplace equation, the cur-
vature of a free liquid surface is equal to the ratio of the
pressure difference across the surface to the surface ten-
sion «, which is the free energy per unit area. A crystal
being anisotropic, there is not only a tension which tends
to minimize the surface area, but also a torque which
tends to rotate the surface towards a direction with min-
imum surface energy [see (Herring, 1953) or (Noziéres,
1992)]. As a result, it is the surface stiffness tensor

0’a
i = o0+ 50— 5
’Y’l] 6 ¢z 6 (ZS] ’ ( )
which governs the equilibrium curvatures of the crystal
surface (¢;,; are the reference angles). In the case of a
liquid-solid interface, one can write a generalized Laplace
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equation as

L2

Y1
0P = —
Ry’

x ©)
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where 71 and v are the two components of the surface
stiffness tensor after diagonalization and R; and R, are
the two radii of curvature in the corresponding directions.
The pressure difference §P = (Pr, — Ppo) is the departure
from the liquid-solid equilibrium pressure Pro when the
interface is flat?2. Once multiplied by the density factor
in Eq. (6), this pressure term is a generalization of the
pressure difference across the interface (the problem here
is that, except if the solid is under hydrostatic equilib-
rium, its stress tensor is not isotropic, so that the solid
pressure is not a well defined quantity). In the case of
the (0001) surfaces of the hcp *He crystals, and in the
absence of gravity, the surface has a cylindrical symme-
try axis [0001] since y; = 2, and the right-hand side of
Eq. (6) simplifies to 2v/R with v = a + 0%a/0¢*.

The hamiltonian in Eq. (4) is often called the “continu-
ous sine-Gordon” hamiltonian because it uses continuous
variables and a sinusoidal potential. Its form calls for a
few more remarks. The roughening transition is a macro-
scopic phenomenon and one is interested in the proper-
ties of the surface at a large scale. This is what justifies
the use of continuous variables. At these large scales,
the amplitude of fluctuations is always smaller than their
wavelength, so that the local slopes are small ( Vz < 1).
This is why only the leading term with (Vz)? is kept in
the expansion for the surface shape. Furthermore, it is
assumed that V/v < 1: the crystal surface is weakly cou-
pled to the lattice. This “weak-coupling approximation”
is shown to be valid close to the roughening transition
temperature, where critical behaviors are calculated. It
also justifies the use of the first harmonic only, a cosine
term, instead of a periodic function of arbitrary shape
[see (Nozieres, 1992)].

Although the algebra involved in the renormalization
calculation of the roughening transition is tedious, its
principle is simple. One calculates the free energy of
the surface by averaging on fluctuations with larger and
larger scale. At each scale L, the hamiltonian keeps the
same form, Eq. (4), but its coefficients v(L) and V(L) are
now scale-dependent, i.e., “renormalized” because fluc-
tuations with larger and larger wavelengths are progres-
sively accounted for. By comparing coarse graining at
scale L and at scale L + dL, one obtains coupled dif-
ferential equations for v(L) and V(L); their integration
gives the “renormalization trajectories”, i.e., the scale-
dependence of these two quantities. The important result
of this theory is that there are two different behaviors.

If T > Tg, the potential energy U = V' L? renormalizes
to zero at large L. The interface becomes free from the

2 Pr is also called the melting pressure Py, of the solid; for a gas-
solid interface, just replace liquid by gas in the above expressions.



influence of the crystal lattice, like a free liquid surface.
Its fluctuations diverge at large distance, as described by
the height-height correlation function

_ kBT 1 r

G(r) =< [sr) = 2O >= Gn .

= (7)
which is the same as for a free liquid surface (Lo is the
cutoff of fluctuations at a small scale). Physically, one
understands that the fluctuations are so large that the
crystal surface wanders over many periods d, so that the
potential Vcos(2nz/d) is averaged to zero.

On the contrary, if T < Tg, the potential energy U
diverges at a large scale. Actually, as soon as U becomes
larger than kT one understands that it should kill the
fluctuations and the renormalization should stop. This
renormalization is “truncated” at a maximum scale L, 4z
which appears in the problem. As a result, the height-
height correlation function saturates:

kBT Lmaz

= —1In T

lim G(r) 2

=00

(8)

We thus understand that the crystal surface is “rough”
like a free liquid surface at high temperature, and
“smooth” at low temperature. The difference between
these two states is not at the atomic scale. It is at the
larger scale L,,,, where fluctuations are either free or
killed by the lattice. It is thus preferable to avoid expres-
sions like “atomically smooth” or “atomically rough”,
which have been used by many authors in the past.

The quantity L,,., appears in Eq. (8) as a correlation
length, but one usually defines the correlation length &
from the step profile which can be calculated within this
sine-Gordon model. The step which we consider here is a
macroscopic step. It is the surface defect whose existence
is forced by pinning the crystal surface, say, at the height
2z = 0 on the left (x = —00) and at z = +d on the right
(z = +00). Its profile is given by

)
i

Close to T, the theory predicts that £ & Ly,4,/2, but the
exact value depends on the way how the renormalization
is truncated [see below and (Balibar et al., 1993)]. Lyaz
is the minimum size for a smooth state to be defined, and
it is not surprising to find that it is related to the step
width, but, here again, there are numerical factors which
need to be considered for a comparison with experiments.
If one defines a step width w as the horizontal distance
necessary for the surface height to go from 0.1d to 0.9d,
then Eq. (9) implies that

— arctan
™

w4~ 2Ly - (10)

At T = Tg, the renormalization goes to a “fixed point”,
where U = 0 and the surface stiffness has the universal
value v(Tr) given by

2
kBTR = ; ’)’(TR) d2 . (11)
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This is known as the “universal relation of roughening”.
It was first obtained by Fisher and Weeks (1983) and by
Jayaprakash et al. (1983). It is universal in the sense that
it does not depend on any microscopic detail such as the
interatomic interactions and so on. Note that v(Tg) is
the critical value of the surface stiffness in the right direc-
tion and exactly at the critical temperature Tr. Equa-
tion (11) refers to a surface with a cylindrical symmetry.
For an arbitrary symmetry, when there are two different
stiffness components, Fisher and Weeks (1983) showed
that the universal relation writes as

2
= = (pm)'? . (12)

kpTr = —
™
There are two other predictions about critical behav-
iors near Tr. The first one concerns the step free energy
B, which is predicted to vanish exponentially according
to

B o exp [— (13)

™
2\/tt. |
Heret = 1 — T/Tg is the reduced temperature and the
parameter t. is defined as

t = 27?2\/A(2)U0

¢ Yod?

where A(2) ~ 0.4 and the index “” asin vy and in Uy =
Vo L3 means the unrenormalized value at the microscopic
scale Lg. The parameter t. indicates the strength of the
coupling of the crystal surface to the underlying lattice.
It is weak if ¢, < 1. Note that the critical domain
in temperature is large if this coupling is weak and wvice
versa. It has been found that the correlation length ¢
diverges exponentially near Ty since

kBTR

¢~ .
wp

The theory also predicts that the magnitude of ¢, con-

trols the amplitude of the renormalization of the surface
stiffness since

; (14)

(15)

Y(Tr) = (1 + t/2).

Another important prediction concerns the tempera-
ture dependence of 7. Below Tg the stiffness is infinite,
so that the crystal curvature is zero (the facet is flat).
This is because, the step energy being non-zero, the an-
gular variation of the surface energy a(¢) has a linear
cusp

(16)
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around the smooth (¢ = 0) direction. As for above
TR, the surface stiffness reaches its universal value y(Tg)

with a square root cusp:

y(T)
v(Tr)

~ 1—+/|t|te -

(18)



Consequently, as temperature decreases, the crystal cur-
vature shows a square root cusp till it reaches a uni-
versal value where it jumps to zero. Such square root
cusps and universal jumps are found with all Kosterlitz-
Thouless type of transitions. Depending on the system
under consideration, the physical quantity showing this
remarkable behavior is different. For example, it is the
superfluid density for the superfluid transition of films,
the shear modulus for the melting of 2D crystals, the
magnetization in the “XY”-model of spins, the dielectric
constant in the Coulomb gas, etc.

2. Vicinal surfaces and dynamic roughening

Several experiments also needed predictions for crystal
surfaces whose orientations were tilted by a small angle ¢
with respect to the high-symmetry facetted ones (vicinal
surfaces). Noziéres calculated the properties of such sur-
faces within a slightly modified version of his first original
theory. He replaced the potential term Vcos(2mz/d) in
Eq. (4) by Vcos[2n(z — ¢x)/d]. A new scale appeared
in the problem, which was the average distance between
steps, [ d/¢. At a scale larger than [, the surface
extends over more than one period d, so that the lat-
tice potential is zero and the renormalization stops. In
other words, the tilt angle introduces a “finite size effect”
in the renormalization procedure. The exact scale at
which it stops has been found numerically to be L = /6
(Nozieres and Gallet, 1987), and we will see below that
this numerical factor “6” is important. The RG theory
was thus able to predict also the angular variation of v(¢)
at small ¢ and near Tg.

Another kind of finite size effect appears when the crys-
tal grows (or melts) with some finite velocity v z.
Nozieres’ theory of this dynamic situation follows an ap-
proach first introduced by Chui and Weeks (1978). It
uses the same renormalization group (RG) technique, but
it is now applied to the Langevin equation of motion of
the surface position z(z, y):

2 2
Tysin 2 4 R(z,t) (19)

pPc .
i = + YAz —
2 = podp + YAz 7 7

k
instead of the hamiltonian of Eq. (4). In this new equa-
tion, the important coefficient k is the surface mobility,
sometimes called the “growth coefficient” (1/k is conse-
quently the friction coefficient or the growth resistance);
we will discuss it more extensively in Section IV; R(z,1)
is the random force at the origin of fluctuations and
0p = pr, — pc is the difference in chemical potential be-
tween the liquid and crystal, which drives the net growth.

In the limit of du tending to zero (zero growth ve-
locity), Nozieres and Gallet (1987) have found a critical
behavior for the mobility k£ which has a square root cusp
similar to the one found for the surface stiffness:

MDD 1 _ /5661 ,

k(Tr)

(20)
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but this time, the mobility k(Tg) is not universal. Now,
as soon as a finite departure from equilibrium produces a
net growth with some average velocity v, the roughening
transition is blurred. Indeed, a time scale appears which
is 7 = d/v, the time necessary for the crystal surface to
move by one layer d. During 7, the surface fluctuations
diffuse by a distance (ky7/pc)'/? according to Eq. (19),
which is a diffusion equation. As a result, the renormal-
ization cannot proceed beyond this new scale. If it is
larger than the correlation length &, there is no change.
If it is smaller, then the renormalization stops before the
lattice potential diverges, and the surface is dynamically
rough. The criterion for the “dynamic roughening” is
thus ¢ & (po7/ky)'/?, which can be rewritten as

/32

—— =~ 1.
dpcoukgT

(21)
There is a simple physical interpretation of this criterion.
Indeed, on a smooth facet, and if the step free energy is
small enough as happens close to Tr, the growth of a
crystal proceeds by nucleation of terraces. In order to
grow in size, these terraces need to have a radius larger
than a critical value

B

e = .
dpcdp

(22)

Equation (21) means that this critical radius is com-
parable to the correlation length ¢ = kpTr/fB: dynamic
roughening occurs if the critical radius for nucleation is
smaller than the step width, which is also the minimum
size for the definition of a smooth state. Let us finally
remark that this dynamic roughening is different from
another type of roughening (Kardar et al., 1986), as ex-
plained by (Balibar and Bouchaud, 1992).

C. “He crystals
1. The (0001) surface

Balibar et al. (1993) summarized and discussed the
way how the Paris group compared the RG theory of
roughening with the surface properties of He crystals in
the [0001] direction. Wolf et al. (1985) had measured the
equilibrium shape of *He crystals at a known overpres-
sure dP. From this they obtained that the large scale
angular variation of the surface stiffness of crystals was

Yo(¢) = 0.245 (1 — 12¢?) erg/cm?.

They found that this angular variation was independent
of temperature. They expected this result since they had
to calculate the second derivative of the profile, and this
could not be done in an angular domain smaller than
about 10 degrees. This was not small enough to catch the
critical behavior of 7. Indeed, as it appeared at the end of
the analysis, the critical angular domain was only about
2 to 3 degrees. As a consequence, they considered 0.245

(23)
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FIG. 22 . Experimental measurement by Wolf et al. (1985) of
the growth characteristics of a c-facet on *He crystals: semi-
log plot of the growth velocity V divided by a departure in
height H from the equilibrium position (H = 0), as a func-
tion of 1/H. The difference in chemical potential across the
interface is dp = (0p/pc)gH. A good agreement was found
with Eq. (24), from which values of the step free energy could
be obtained.

erg/cm? as the value of the non-renormalized quantity o
in Eq. (16).

Wolf et al. (1985) and Gallet et al. (1987) measured
also the step free energy of the (0001) or c-facets. This
was done by studying the relaxation of a horizontal crys-
tal surface towards its equilibrium height. In this case,
in Eq. (19), the difference in chemical potential du is due
to the hydrostatic equilibrium in the liquid; it is propor-
tional to the departure H from the equilibrium height.
The visual observation technique of Wolf et al. was im-
proved by Gallet et al. who used interferometry (see Sec-
tion II.B.2). In the temperature range from 1.13 to
1.23 K, they found that the crystal growth apparently

proceeded by 2D nucleation of terraces. If true, the
growth velocity had to be given by
w32
= ko R el 24
v “eXp( 3dpc<5ukBT> (24)

In this equation, the factor “3” indicates that terraces
coalesce to form new atomic layers. As shown in Fig. 22,
good agreement with this exponential behavior was found
over several decades in the velocity values, and this al-
lowed them to determine the step free energy .

Figure 23 shows measurements of the step free energy
close to Tr1 (Gallet et al., 1987; Wolf et al., 1985). In
this figure, the solid line corresponds to a numerical inte-
gration of the Noziéres’ renormalization equations, which
tend to the exponential form of Eq. (13) in the vicinity of
the roughening transition. The best fit was obtained by
Balibar et al. (1993) with the following set of parameter
values:

Tri= 130K ; t.= 058 ; Ly = 4d ~2&. (25)
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FIG. 23 . The temperature variation of the step free energy
B on the c-facets in “*He. The symbols correspond to the
successive experiments by Wolf et al. (1985) and by Gallet
et al. (1987). The solid line is the last fit of the RG theory
by Nozieres and Gallet (1987) which was done by Balibar et
al. (1993) using the parameters of Eq. (25).
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FIG. 24 . As the temperature approaches the roughening
temperature Ty = 1.3 K, the growth characteristics evolves
smoothly from non-linear to linear behavior. These measure-
ments were made by Gallet et al. (1987) and analyzed using
the RG theory of dynamic roughening (see Fig. 25).

In reality, these three parameters were determined not
only from the fit of the step free energy but also from
the fit of the critical variation of the growth velocity of
facets. The temperature 1.2 K appeared to be the thresh-
old for dynamic roughening in these experiments, so that
Eq. (24) could not be used above this temperature. Fig-
ure 24 shows that the growth characteristics v(du) is
still slightly nonlinear at 1.2 K and evolves continuously
into a linear regime near 1.3 K. This kind of evolution
of growth is a central characteristics of the roughening
transition and it is described by the dynamic part of the
Nozieres’ theory, which could also be fitted with these
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FIG. 25 . Measurements of the growth velocity of the c-facets
by Gallet et al. (1987). Open circles correspond to a 0.7 mm
height difference, and crosses to 0.07 mm. The “reduced ve-
locity” is the ratio of the velocity V of the (0001) surface to
the velocity V; of a typical rough surface at the same temper-
ature (taken in another crystalline direction). The two solid
lines are theoretical fits by Balibar et al. (1993) using the the-
ory of dynamic roughening by Nozi¢res and Gallet (1987) and
the parameters from Eq. (25).

data as shown in Fig. 25. In this figure, three sets of
experimental data points are shown which correspond
to three different values of du. The velocity of facets
has been normalized by the velocity of rough surfaces in
other crystalline directions. The parameters used for the
theory are the same as above [Eq. (25)].

Figure 25 also illustrates the dynamic roughening.
When submitted to a larger driving force du, the tran-
sition from large growth velocity (in the rough state) to
small growth velocity (in the smooth state) is broader
than in the case when the driving force is small. At the
intermediate temperature of 1.23 K, the applied force
drives the surface into a faster growing, i.e., more rough
state. In the limit of vanishingly small force, the velocity
would jump sharply to zero at the roughening transition.
Note also that the normalized velocity depends on du
only below the roughening transition: this is where the
growth is nonlinear.

Once this agreement was found and the parameters
adjusted [Eq. (25)], Balibar et al. (1993) compared the
RG theory with other measurements of the surface stiff-
ness which had been done in Moscow (Andreeva et al.,
1989; Babkin et al., 1985). The solid line in Fig. 26 is
a numerical calculation of the angular variation of v at
1.2 K, the temperature of Babkin’s measurements. The
stiffness variation has an inflexion point in between 2
and 3 degrees, where it departs from Wolf’s measure-
ment of its noncritical behavior [Eq. (23)]. This angular
range is directly connected to the value of Lg. Indeed, as
explained above, the renormalization stops at the scale
Loz =1/6 = d/6¢. With Ly = 4d, the Nozieres’ theory
predicts no renormalization if ¢ is larger than 1/24 rad =
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FIG. 26 . Angular variation of the surface stiffness close

to the [0001] direction. The measurements are by Babkin
et al. (1985) at 1.2 K (circles and crosses), by Andreeva et
al. (triangles) at 0.4 K, and by Wolf et al. (1985) [dotted line,
Eq. (23), in the interval from 1.18 to 1.41 K]. Given the scatter
in the data, the agreement is good with the result from the RG
theory at 1.2 K [solid line (Balibar et al., 1993)]. It confirms
that the critical angular domain is small, about 2 or 3 degrees,
the only region where the surface feels the formation of the
facet and where the stiffness has some temperature variation.

2.4 degrees. This is remarkably consistent with Fig. 26.
As we shall see in Section III.C.5, it has been further
checked by the later studies of stepped surfaces (Rolley
et al., 1994b, 1995b), with an excellent agreement again.

Finally, the amplitude of the renormalization of ~ is
also correct: Babkin’s data tend to the universal value of

0.58
v(Tgr1) = 0.315 erg/cm2 = 0-245(1+T)erg/cm2 (26)

at ¢ = 0, more precisely to a slightly larger value be-
cause the measurements were unfortunately done at 1.2 K
instead of 1.3 K (at that time, the exact value of Tg;
was not yet precisely known). This further confirms the
values of t. and Tg;. Despite the scatter in the data,
Babkin’s measurements can be considered as the best
available check of the universal relation of roughening
[Eq. (11)].

A few additional comments are needed because, at the
time of their publications, the Moscow group considered
their results as contradictory to the RG theory [see, for
example, Keshishev and Andreeva (1991)]. They first
considered the value of v as too high by about 20%, but
this was because they took Tr; as 1.20 K. However, with
Tr1 = 1.30 K, good agreement is found with the Moscow
measurements whose typical error bar is at least 10%,
given the scatter in their experimental data. Further-
more, they objected that no temperature dependence of
~ was observed. This was because they did not look at a
sufficiently small angle, nor at temperatures low enough
to be in the critical domain. Later Rolley et al. (1994b,
1995b) performed experiments down to 40 mK and be-
tween 0.3 and 6 degrees. Their results showed a drastic



change as soon as the step width was small enough, once
more in a very good agreement with the predictions from
the RG theory (see Section III.C.5).

Although a rather good agreement was found between
the RG theory and the properties of the c-facet in “He,
so that the validity of this theory looks well established
now, there remains at least two problems which need to
be clarified. The first one was pointed out by Balibar
et al. (1993). As explained above, the renormalization
stops at the maximum scale Ly, 4, if T < Tgr, a procedure
which is often called a “truncated renormalization”. In
their analysis, the Paris group stopped the renormaliza-
tion when the lattice potential U equals kgT. Gallet et
al. (1987) found this physically correct because, beyond
the corresponding length scale, the lattice potential is
too large and kills the fluctuations. This implies the re-
lation € & Lpqz/2. However, as explained by (Noziéres,
1992), the weak coupling approximation needs in fact
47U /kT < 1 to be justified, so that the renormaliza-
tion should perhaps be stopped when U = kgT /4w more
than U = kgT.

As explained by Balibar et al. (1993), a good fit of the
experimental results was possible by changing the max-
imum scale slightly, but not if the renormalization was
stopped when U = kgT/4w. The exact maximum scale
is in fact an additional adjustable parameter which is
not explicit, but raises an interesting difficulty. In order
to solve it, one would need independent measurements
of both the correlation length £ and the step free en-
ergy B. The exact scale at which renormalization has
to be stopped could then be more accurately determined
and the other parameters slightly modified. The corre-
lation length £ could perhaps be obtained from a mea-
surement of the height-height correlation function in an
X-ray scattering experiment. This looks difficult but an
important challenge. Another experiment was suggested
by (Giorgini and Bowley, 1995) to obtain more informa-
tion on the best truncation scale, namely a measurement
of the response of the interface, near the roughening tran-
sition temperature, to an external drive at a few kHz.

The second problem came very recently from critics
by (Todoshchenko et al., 2004) of the way how the ex-
perimental data were analyzed in the work of Wolf et al.
(1985), Gallet et al. (1987), and Balibar et al. (1993).
Todoshchenko’s argument is that the assumption of a 2D
nucleation mechanism is not well justified because the
step mobility should be larger by a factor £/d than the
mobility & of rough surfaces ([as Gallet et al. (1987) er-
roneously assumed]. If the facets have no dislocations
at all, then, of course, Gallet’s assumption holds; but
if the mechanism is in fact the spiral growth due to
the Frank-Read sources, then a fit with a quadratic law
leads to new values for the step free energy  which are
larger than previously thought. From new fits with the
RG theory, where the renormalization was stopped when
U = kpT/4x this time, Todoshchenko et al. obtained
values for the three parameters Tr1,t. and Ly which are
slightly smaller than those obtained by the Paris group
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[Eq. (25)]. That recent critics asks for further examina-
tion of the critical behavior near the roughening transi-
tion temperature, especially for new independent mea-
surements of both 8 and &.

2. Quantum roughening and mean field theories

A certain number of other theoretical ideas have been
proposed. Andreev and Parshin (1978) (AP) first in-
troduced the idea of quantum kinks. AP had noticed
that, similarly to other point defects in quantum systems
[see (Andreev and Lifshitz, 1969)], kinks on steps behave
as delocalized quasiparticles. The energy of the ground
state of such a quasiparticle is always lower than the en-
ergy of a localized state. According to AP, this effect
is strong enough to make the net kink energy negative,
i.e., “zero-point kinks” should exist. The step with such
kinks, a “quantum rough step”, should be very mobile
at low temperatures, in contrast to classical steps. For
a further discussion on the properties of quantum kinks
and steps, see Sections IV.C.3 and V.A.2.

The presence of zero-point kinks decreases the step en-
ergy, therefore AP further proposed that this effect could
be strong enough to make also the step energy negative,
i.e., “zero-point steps” should exist. In such a case the
smooth state of a given facet would be unstable against
“quantum roughening”, even at 7' = 0. However, Fisher
and Weeks (1983) have shown that this is impossible: the
step energy cannot be zero at 7' = 0. Here we meet with
a fundamental difference in the role of quantum fluctua-
tions in 1D and 2D cases, first suggested by Fisher and
Weeks. As we have seen, the roughening transition is a
problem of divergence of fluctuations at a large scale. In
the 2D case the integral of quantum fluctuations leads to
a finite contribution to the height-height correlation func-
tion which cannot diverge at T' = 0, so that the thickness
of the crystal surface is always finite. As a consequence,
the crystal surface is always sensitive to the periodic po-
tential of the lattice; the energy of the above defined
macroscopic steps is always positive at 7' = 0, whatever
happens to the steps at a microscopic scale. In contrast,
in the 1D case the height-height correlation function of
quantum fluctuations may diverge at a large scale, the
pinning of a step to the lattice potential may be elimi-
nated, and the step may be indeed quantum rough. The
absence of quantum roughening in the 2D case was fur-
ther demonstrated by solving various quantum models
of crystal surfaces (Bol’shov et al., 1984; Fradkin, 1983;
Tordanskii and Korshunov, 1983, 1984).

We now understand that quantum effects enter in the
determination of the surface thickness and the step width
at T = 0, and a priori calculation of the parameters t,
or Lo would have to consider them: with more quantum
fluctuations, the crystal surface and the steps at it are
thicker at T' = 0, the length L is also larger, so that the
surface should be more weakly coupled to the lattice (the
coupling parameter ¢, should be smaller as well as the



step energy at T = 0). But the universal relation does
not depend on this. Iordanskii and Korshunov (1984)
mention a small dependence of the surface stiffness on
quantum effects, but the quantity which they consider is
o0, not Y(Tr).

From the theoretical point of view, there is one more
question of general interest: weather facets can appear as
a result of a phase transition other than the Kosterlitz-
Thouless one? Of course it could be the first order tran-
sition caused by some bulk transformation or even with-
out it (Fisher and Weeks, 1983; Keshishev et al., 1982;
Nozieres, 1992). To our knowledge, there is no mani-
festation of such transitions in helium crystals. Another
possibility was studied by Andreev (1981), who proposed
a mean field theory of faceting, similar to the Landau
theory of the second order phase transitions. In the An-
dreev’s approach, the rough surface plays the role of the
symmetric phase and the step free energy the role of the
order parameter. This theory predicts that the step free
energy should vanish near Tk according to the square
root law 8 o +/Tr — T and that the surface stiffness
should continuously diverge to infinity as a function of
angle at Tr. Furthermore, Andreev predicted the exis-
tence of surfaces with one zero curvature only, i.e., with
a cylindrical shape. None of these predictions were ob-
served in experiments (Babkin et al., 1984; Gallet et al.,
1987; Wolf et al., 1985). In fact, as clearly stated by
Tordanskii and Korshunov (1984), the mean field theory
“has no range of applicability because of the governing
role played by fluctuations”.

3. Other facets in ‘He

Let us now examine the other facets in *He. Here
again, there has been some controversy in the past. The
analysis of the data on the (0001) facets showed that sev-
eral measurements are needed for a precise comparison
with the RG theory. In the case of the (1010) and (1011)
facets, the comparison is more difficult due to the ex-
istence of two components of the surface stiffness tensor
instead of one. Not only it is hard to obtain a crystal with
vertical [1010] or [1011] axes, but this would not be even
sufficient: one would need to rotate the crystal around
this vertical axis and find the values of the two principal
components of the stiffness tensor at the right temper-
ature and in the precise directions where facets appear.
This might be done hopefully in the future, but, for the
moment, let us consider the available experimental data.

Supposing that the roughening temperature Try = 1
K for the (1010) surfaces, it would be consistent with the
RG theory if the geometric mean (y;7y2)'/? of its two sur-
face stiffness components is 0.21 erg/cm? at 1 K since the
step height is 3.18 A in this direction. Wolf et al. (1985)
have measured the average value v = 0.19 erg/cm? for
this direction at 0.95 K and Andreeva et al. (1989) have
measured 0.36 erg/cm? 1.5 degrees away from the [1010]
direction at 0.4 K. Andreeva and Keshishev (1990) have
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measured also 0.21 erg/cm? 13 degrees away from the
[1010] direction while Edwards et al. (1991) have es-
timated the two surface stiffness coefficients to be 0.2
erg/cm? and 0.16 erg/cm?, correspondingly. Clearly,
more precise measurements are needed in this direction,
but there is no contradiction with the universal relation
from the RG theory: the measured values of the surface

stiffness components have the right order of magnitude.

As for the [1011] direction, the lack of precise mea-
surements is similar. If we assume that the roughen-
ing temperature Tgs3 is as high as 0.43 K, as proposed
by Keshishev and Andreeva (1991), then the mean sur-
face stiffness (7172)'/2 should be 0.11 erg/cm? for this
third direction, where the step height is 2.80 A. Only
one component, y; = 0.22 erg/cm?, has been measured
by Keshishev and Andreeva (1991). Agreement with the
RG theory would need the other component s to be
much smaller, but this is not unreasonable since a value
as low as 0.08 erg/cm? has been measured in the [1120]
direction by Keshishev and Andreeva (1991). In fact, the
study of the [1011] direction would perhaps be easier to
do than of the [1010] direction because the stiffness could
be measured from the dispersion of crystallization waves
around 0.4 K (at 1 K and above, they are overdamped).

What about other directions then? How can it be that
no more than three types of facets have yet been ob-
served? In the [1120] direction, the step height is 1.83 A,
thus if the average stiffness is about 0.2 erg/cm?, the
facets should appear below Trs = 0.3 K [below 0.15 K
if (y192)'/? = 0.1 erg/cm?]. Puech et al. (1983) have
found an anomaly at 0.21 K which might be due to this
fourth roughening transition, but no systematic search
of higher order facets has yet been done in *He. When
crystal grows (slowly enough that no dynamic roughen-
ing occurs), the facet sizes are enhanced because they
grow more slowly than the adjacent rough surfaces. Since
the growth rate depends on the step energy, the facets
with large Miller indices grow faster than those with
small indices, and they are more difficult to see on the
growth shapes. Furthermore, the hep structure is highly
anisotropic, so that the growth shapes of hcp *He crystals
are usually dominated by the [0001] and [1010] facets.
The [1011] facets are very often absent on the growth
shapes, and usually not as clearly visible as in Fig. 2.
Is this a sufficient argument to explain that only three
facets have been observed in *He? May be, but a more
systematic study would be useful.

If one looked at the equilibrium shapes, it would be
also difficult because the equilibrium facet size is propor-
tional to the step energy. For the (0001) facet in the low
temperature limit, Rolley et al. (1995b) found that the
step energy 3/d was equal to 0.014 erg/cm?, less than one
tenth of the surface tension value, so that the equilibrium
facet radius should be less that one tenth of the typical
crystal radius. The sizes of facets with higher Miller in-
dices would be even smaller and thus these facets would
be even more difficult to see on the equilibrium shapes of
crystals. One possibility would be to enhance the facet



size with the help of gravity which assumes having a prop-
erly oriented crystal. This might produce a picture sim-
ilar to the one shown in Fig. 18.

Note finally that, for the bce *He crystals which ex-
ist above 1.46 K and have a surface tension value less
than 0.12 erg/cm? (Balibar et al., 1979; Gallet et al.,
1984), the universal relation [Eq. (11)] predicts the first
roughening transition for the (110) surfaces to take place
below 0.45 K. This is, of course, consistent with the ob-
servations that the bce “He crystals are rough in their
whole domain of existence. As for the bee 3He crystals,
their roughening transition temperatures are considered
in Section ITI.D.

4. Surface tension of *He crystals

As we have seen above, the surface stiffness of “He
crystals is known in various directions and it has a sub-
stantial anisotropy. The Moscow group has investigated
the general shape of « in all directions (Andreeva and
Keshishev, 1991; Andreeva et al., 1989; Keshishev and
Andreeva, 1991). The surface stiffness could also be ex-
tracted from the equilibrium shape of free standing crys-
tals and Wulff (1901) has introduced a geometric con-
struction of the equilibrium crystal shape from the polar
plot of «. Even the values for the step energies could be
extracted from the facet sizes on the equilibrium crys-
tal shapes, but it has been observed that the facet sizes
are hysteretic. The facet sizes depend on the history of
a crystal because, when they grow from the motion of
steps attached to the screw dislocations (see Section V),
there is a threshold force below which the steps do not
move [see (Nozieres, 1992) again)].

One should not forget also that only rough *He crystal
surfaces have a fast dynamics. Even for the extraction
of the values of the surface stiffness of rough surfaces,
the inverse Wulff’s construction of « from an equilib-
rium shape would not be easy. One would need to know
the exact pressure difference from the equilibrium pres-
sure to obtain the absolute value of the surface stiffness.
Furthermore, one would need a very good resolution on
the measured shape to obtain its exact local curvature
everywhere. Eventually, the crystal shape is sensitive
to defects. All these difficulties probably explain why
the surface stiffness of classical crystals is rarely accu-
rately known, so that an accurate experimental check of
Eq. (11) is usually impossible.

The method of Andreeva et al. (1989) and Keshishev
and Andreeva (1991) was different: they used the dis-
persion relation of crystallization waves to determine +.
Some of their results are shown in Figs. 27 and 28. Fur-
ther analysis of these data was performed in order to
extract the surface tension a (Andreeva and Keshishev,
1991; Edwards et al., 1991). It was found that a typi-
cally varies from 0.16 to 0.18 erg/cm?. The anisotropy
of a is much smaller than for . The value of «a is im-
portant for the study of the nucleation of solid helium,
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FIG. 27 . A set of measurements of the surface stiffness v
of the hcp *He crystals in the (1010) plane. The angle ¢ =
0 corresponds to the (0001) plane and ¢ = 90 degrees to the
(1120) plane (Andreeva and Keshishev, 1991).

FIG. 28 . General variation of the surface stiffness v of *He
crystals as measured from the dispersion relation of crystal-
lization waves by Andreeva et al. (1989) and Keshishev and
Andreeva (1991).

where it is the free energy of the liquid-solid interface
which matters, not the stiffness [see (Balibar, 2002) for a
review].



5. Step-step interactions

The shape of the facet edges at a crystal surface has
attracted a lot of attention. It is related to the inter-
action between steps. Consider a vicinal surface, i.e., a
surface which is tilted by a small angle ¢ with respect
to a certain facet (the temperature has to be lower than
the roughening temperature of that facet). If ¢ is small
enough, the steps are well separated and we call this vic-
inal surface a “stepped surface” because its properties
are determined by the steps. The surface energy of the
stepped surface does not depend on the sign of ¢ and it
can be expanded as

a(¢) = [ao +§tan|¢| + %tan3|¢|]cos¢. (27)

In this equation, we have assumed that the interaction
energy between steps is a repulsion inversely proportional
to the square of their mutual distance [, so that it writes
as (0/d?*)tan? ¢. From Equation (27), one can derive
the values of the two components of the surface stiffness
tensor for such a vicinal surface:
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Just like a corrugated iron sheet, the stepped surface
should be easy to bend in one direction and it should
be very stiff in the direction perpendicular to the first
one. The physics is simple: if one bends the surface
in a plane perpendicular to the steps, one changes the
distance between the steps, and the energy cost depends
on the interaction between steps, which is small if the
steps are far apart (small ¢). On the contrary, if one
bends the surface along the steps, one forces the steps
themselves to bend, that is to increase their length; the
associated cost is now a step energy and the step bending
is proportional to the inverse step density, i.e., to 1/¢ (see
Fig. 29).

Several kinds of interactions have been predicted to
exist between steps. The dominant ones are the elastic
interaction d.; and the entropic interaction §g. Both of
them vary as 1/1? but with different coefficients. Let us
start with the entropic interaction. It comes from a no-
crossing condition. If two neighboring steps crossed, a
local overhang would appear at the surface (see Fig. 30),
and that is, of course, unlikely. Steps are thus confined
by their neighbors, so that their long-wavelength fluctu-
ations are cut and their entropy consequently reduced.
This is a fundamental effect which has an equivalent in
one more dimension: the entropic repulsion between fluc-
tuating membranes known as the “Helfrich interaction”
(Helfrich, 1978). Its exact magnitude was first calculated
from an analogy with one-dimensional Fermi particles,
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FIG. 29 . Bending of a vicinal surface is easy in a plane
parallel to the c-axis, but difficult in the plane perpendicular
to it. For waves propagating with g//c, the relevant surface
stiffness component v,, is proportional to the interaction be-
tween steps and vanishes as the tilt angle ¢ tends to zero. On
the contrary, the component <y, is proportional to the step
energy S and diverges as 1/¢.

whose trajectories in a space-time plane are lines which
do not cross (Bartelt et al., 1990; Jayaprakash and Saam,
1984; Williams and Bartelt, 1991). After correction of a
numerical error [see note 34 in (Balibar and Noziéres,
1994)], the result of this calculation agreed with the one
obtained with a different method (Akutsu et al., 1988):

(55 _ 7(2 (kB T)2

2 6 pIz2 -
This is another remarkable result which is universal in
the same sense as Eq. (11).

The elastic interaction was first calculated by
Marchenko and Parshin (1980a). Its physical origin is
the overlap of the strain fields around each step. The
atoms in the step have an environment which is differ-
ent from the one of the bulk atoms. As a consequence,
there is a force doublet on each step which induces a lo-
cal strain field. Since the elastic energy is the integral of
the square of the strain, the elastic energy of two steps
is different from the sum of the elastic energies of two
single steps: the cross term in the calculation gives the
elastic interaction, which is repulsive for identical steps.
Nozieres (1992) wrote it as

S _ 2(1—0})(fi-fi)
2 E? ’

T
where op ~ 1/3 is the Poisson ratio, E is the Young
modulus (3.05 x10® erg/cm?® for the hcp *He crystals)

(30)

(31)



FIG. 30 . A crossing between steps (left) would induce a local
overhang at the surface (cross-section below); this is rather
unlikely, so that steps do not cross (right). The no-crossing
condition for steps implies a reduction of the step entropy,
hence a repulsive interaction.

and f-;,z are the force doublets on each step. Each of
these doublets is made of the local stretch of the surface
f* and of the local torque f* which tends to twist the
crystal.

As explained by Marchenko and Parshin (1980a), f*
o°d, where o° is a surface stress (Andreev and Kose-
vich, 1981; Marchenko and Parshin, 1980a; Suttleworth,
1950). In the case of *He crystals, Edwards et al. (1991)
estimated this surface stress to be 0.6 erg/cm? from the
pressure variation of the surface tension, and suggested
to measure it from the transmission of phonons through
the liquid-solid interface as a function of the direction of
incidence. This does not seem to be an easy experiment
to do, but ¢® has to be comparable to the surface ten-
sion or surface stiffness. If one estimates also f* as -y, one
finds the elastic interaction to be of the order of v*/E 2.

Since they had not observed the anisotropy predicted
by Egs. (28) and (29), Andreeva et al. (1989) questioned
the validity of the whole above reasoning. In fact, Rolley
et al. (1994b, 1995b) found this anisotropy when studying
vicinal surfaces at lower temperature and with a smaller
tilt angle. Both groups measured the surface stiffness
from the dispersion of crystallization waves at surfaces
with variable orientation. They changed this orientation
by rotating the cell containing a crystal with horizontal
surface (see Fig. 14). Figure 40 presents all their exper-
imental results. Only the low temperature and low tilt
angle measurements by Rolley et al. could show the ex-
pected anisotropy of the surface stiffness tensor close to
the c-facet. This experiment is described in more details
in Section IV.B; Rolley’s main results are that

(1) at low temperature, the step energy is 8/d = 14 +
0.5 erg/cm? for ultrapure *He crystals. In the presence
of 3He impurities, Rolley et al. found the lower value
B/d =11 +£1 x 1072 erg/cm?, and they attributed the
difference to adsorption, as explained in Section IV.C.8.

(2) the step-step interactions are consistent with the
1/1? interactions predicted by Eqs. (30) and (31).

Eventually, hydrodynamic interactions were also calcu-
lated by (Uwaha, 1989, 1990). The fluctuations of steps
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induce some flow field around them, and if steps are close
to each other, these fields overlap. Since the kinetic en-
ergy is quadratic, this phenomenon leads to a hydrody-
namic repulsion between steps. Uwaha first calculated
the interaction at 7 = 0 and found a 1/I? repulsion. At
high enough temperature, Uwaha predicted a crossover
to 1/1 interactions. Rolley et al. (1995b) could not verify
Uwaha’s predictions because these hydrodynamic inter-
action were too small in their experimental conditions.

6. Facet edges and related shape problems

The nature of step-step interactions has a direct con-
sequence on the equilibrium shape of crystals. As cal-
culated by Jayaprakash et al. (1983) and Jayaprakash
and Saam (1984), the shape of the crystal profile near
the facet edge has to obey a power law equation with a
“3/2” exponent if the interaction energy is proportional
to 1/12. Suppose that the facet is some portion at z < 0
of the horizontal plane z = 0, then the shape of the crys-
tal edge should be described by z o z3/2. Jayaprakash
et al. obtained this result by using Andreev’s analysis
of the Wulff construction (Andreev, 1981; Wulff, 1901).
The “3/2” exponent is different from the mean field ex-
ponent “2”; it relates the problem of crystal shapes to
the Pokrovsky-Talapov transition of crystalline layers on
incommensurate substrates (Gruber and Mullins, 1967;
Jayaprakash and Saam, 1984; Jayaprakash et al., 1983;
Rottman et al., 1984).

Several experimental attempts were made to check this
new universal property. For *He crystals, (Carmi et al.,
1987) found an exponent 1.55 £ 0.06 between 0.9 and
1.1 K; (Gallet, 1986) found 1.55 £+ 0.3 from fits in a
small angular domain (from 0.14 to 0.18 rad), and a
higher value at larger tilt angle. He also noticed that
the fit of the exponent is so sensitive to the choice of
the edge position z = 0 that its error bar cannot be
small. Furthermore, it was noticed that, for large crys-
tals and horizontal facets, gravity might change the expo-
nent from “3/2” to “3” (Avron and Zia, 1988). Finally,
(Jayaprakash et al., 1984; Rottman et al., 1984) discussed
the finite-size effects which could be responsible for some
rounding of the crystal profile very close to the facet edge;
however, (Parshin et al., 1988) showed with direct calcu-
lations of the shape that the exponent “3/2” holds down
to an atomic scale.

The most accurate experimental attempt was done by
the Helsinki group. Babkin et al. (1985) measured the
equilibrium profile of “He crystals near the edge of the
c-facets, using their high-resolution interferometric tech-
niques in the temperature interval from 0.05 to 0.7 K
(Babkin et al., 1995). They studied very high qual-
ity crystals, whose growth threshold was about 1 ubar,
meaning an average density of screw dislocations or pin-
ning centers of about 10 cm~?2 only. They confirmed the
“3/2” exponent but also obtained unexpected results.

Figure 31(a) shows their measured surface profile at
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FIG. 31 . Surface profile of a *He crystal at 0.05 K (a) in a
wide angular region 0 < © < 4.5 mrad; the dashed line cor-
responds to the gravitational horizon and the arrow indicates
the slope discontinuity, and (b) at small © (magnified view);
the line is an exponential fit as explained in text (Babkin et
al., 1995).

0.05 K. The facet is shown on the left side at ( = 0. Far
away from the edge the horizontal crystal profile follows
the dashed line, the gravitational horizon. Figure 31(b)
shows a magnified view of the same profile near the facet
edge. There are two remarkable features. First, there is
a discontinuity (marked by the arrow): the slope jumps
from ¢.; = 0.43 mrad to ¢.o = 2.3 mrad, indicating a
separation between two regions with distinct properties.
In the right side region the profile could be fitted with the
form ¢ ~ z%, with 8 between 1.3 and 1.8, in agreement
with the “3/2” prediction. As in the Gallet’s analysis,
the large error bar in the determination of the exponent
comes from the uncertainty in the determination of the
facet edge position. As for the left side region, which
should be a flat facet, it appeared curved at that scale.
The deviation from a flat plane was well represented by
an exponential law ( « exp(—z/xg), where z was cal-
culated from the facet edge and zy was a temperature
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dependent constant.

Several possible ideas were proposed to explain this
surprising curvature of facets. Since there are disloca-
tions emerging on the facet, there is a finite density of
steps on this facet and these steps could be polarized by
the growth (Uwaha and Nozieres, 1987); they could also
be pinned by defects (Thuneberg, 1997), and the flatness
of the facet can be affected by these phenomena. How-
ever, the density of dislocations and other pinning defects
in these crystals looked to be too small for these expla-
nations to be accepted. Another possibility was that the
six-fold symmetry of the facet was broken, so that two
different surface states could exist, with the same sur-
face energy but with different orientations of the surface
stress tensor; this would lead to a logarithmic interaction
between steps (Alerhand et al., 1998; Marchenko, 1981a),
with an exponential bending of facets and a slope discon-
tinuity as observed in the experiment. However, the ori-
gin of the symmetry breaking, if real, is unknown, so that
this explanation looks rather speculative. Before accept-
ing this explanation, one would like some independent
observations to be done, and some physical arguments to
be found, in support of the idea that a reconstruction of
the c-facet takes place, leading to a new surface state.

Eventually, another explanation was proposed, which
involved the existence of thermally excited dislocation
loops at the interface (Andreev, 1990). This idea arose a
lively discussion on the effect of dislocations, dislocation
loops, point defects of different nature on the long-range
order in 3D and 2D systems, and on the surface rough-
ening in particular (Andreev, 1995; Andreev and Mel-
nikovsky, 2001; Armour et al., 1998; Bowley and Armour,
1997; Thuneberg, 1997). Andreev introduced the idea of
thermodynamical equilibrium plasticity and argued that
even point defects might destroy faceting. On the con-
trary, Armour et al. came to the conclusion that closely
spaced pairs of dislocations with opposite signs can only
slightly reduce the temperature of the roughening transi-
tion. They also predicted that, if the dislocations are ran-
domly distributed, the interface seems to have a glassy,
non-faceted low temperature state, and it undergoes a
super-roughening transition, which is not a “true” phase
transition (i.e., not infinitely sharp in the thermodynam-
ical limit); its rounding would be detectable only on huge
length scales (Toner and DiVincenzo, 1990).

To our knowledge, the whole issue is still an open prob-
lem. Turning back to Babkin’s experiments, the activa-
tion energy of Andreev’s loops was later estimated by
the Helsinki group (Saramaiki et al., 1998), who found
it larger than 18 K, and this looks too high to produce
any observable effect at temperatures as low as 0.05 K.
Thus, no satisfactory explanation exists for the observed
curvature of the c-facets in Babkin’s experiments, nor for
the slope discontinuity at the edge of the facets.

Additional support to the existence of 1/I? interactions
were obtained in *He from the growth of stepped crystal
surfaces (see Section V.A.3)(Tsepelin et al., 2002a).
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FIG. 32 . Adsorption isotherms of solid “He on graphite.
At low temperature, the coverage shows jumps, i.e., first or-
der transitions, between layers with integer numbers of layers
[noted j by Ramesh et al. (1984)]. The first order transitions
have critical end points at successive temperatures T, which
depend on the number of atomic layers.
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FIG. 33 . Extrapolation of the critical layering transition
temperatures T.(n) as a function of the number n of lay-
ers, more precisely (Inn)~2. According to Huse (1984) and
Nightingale et al. (1984), Tt tends to the roughening temper-
ature Tr at infinite thickness (Ramesh et al., 1984).

7. Roughening and layering transitions

As already mentioned in Section II.C, *He crystals
grow by epitaxy on clean graphite substrates. Maynard
and his group carefully studied the variation of the thick-
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ness of the adsorbed film of solid “He as a function of
pressure and temperature (Ramesh and Maynard, 1982;
Ramesh et al., 1984). As shown in Fig. 32, the shape of
the adsorption isotherms evolves with temperature. At
high enough temperature the coverage is a continuous
function of pressure P. As P approaches the equilib-
rium pressure P,,, the coverage increases; it shows struc-
tures but it evolves continuously. At low temperatures,
the isotherms show jumps in thickness, i.e., first order
transitions between films with integer numbers of atomic
layers. Each of these “layering transitions” has a criti-
cal temperature T,,, which depends on the number n of
layers.

This phenomenon was related to roughening by (Huse,
1984) and by (Nightingale et al., 1984). This is because
the physics is similar: the liquid-solid interface can ei-
ther be anchored by the lattice potential, in which case
it occupies positions corresponding to an integer number
of layers adsorbed on the graphite substrate, or it is free
to occupy any position. However, the critical layering
transitions are different from the roughening transition
because of the van der Waals attraction which confines
the interface fluctuations. For the first layer, for example,
the attraction is so strong that atoms can be in the first
or in the second layer only. In this case, the system is
strictly equivalent to the 2D Ising model, with a second
order phase transition, not with a Kosterlitz-Thouless
one. As the film thickness increases, fluctuations feel a
weaker and weaker van der Waals attraction and the crit-
ical layering transition was predicted to evolve into the
roughening transition. More precisely, Huse and Nightin-
gale et al. predicted that T, tends linearly to Tk as a
function of [In (n)]=2. This prediction was qualitatively
verified by Ramesh et al., as shown in Fig. 33 at a time
when Tg; of *He crystals was not yet accurately known.
It would be very interesting to extend Ramesh’s mea-
surements beyond 8 layers, the maximum thickness in
Ramesh’s experiment, in order to obtain a better check
of this prediction.

Later on the same group, (McKenna et al., 1992) dis-
covered a surprising phenomenon. As temperature was
lowered below about 0.5 K, their fourth sound measure-
ment technique showed the existence of a feature at a
half filling of layers. It seems that layers are being com-
pleted in two stages, not in a single one as was expected
before. They first proposed to relate this observation
to the existence of quantum kinks whose mobility drasti-
cally changes when thermal rotons disappear or when *He
impurities adsorb on the steps. They proposed another
possible interpretation, namely that some reconstruction
of the (0001) surface could occur if one forces a half filling
of layers. Such ideas were also proposed by (Gridin et al.,
1984) who observed similar features in their adsorption
isotherms. The whole issue looks interesting and unde-
cided yet.



FIG. 34 . ®He crystal in equilibrium at 320 mK (Rolley et al.,
1989). Their analysis of such equilibrium shapes allowed to
measure the surface stiffness of *He crystals (see Fig. 35).

D. ®He crystals
1. Surface tension of *He crystals

In 3He, crystallization waves could propagate only at
sub-millikelvin temperatures. At higher temperatures
the surface stiffness of 3He crystals can be measured from
the equilibrium crystal shape, but it is difficult because
the crystal shape can be easily distorted by defects, impu-
rities or temperature gradients. The crystal size should
be larger than the capillary length, which is about 1 mm.
Owing to the large latent heat of crystallization, the re-
laxation time of the crystal shape is very long (many
hours or even days), except in the vicinity of the melting
curve minimum (T7,;, = 320 mK), where the latent heat
vanishes.

Rolley et al. (1989) have made such measurements be-
tween 150 and 330 mK. Figure 34 shows the equilibrium
shape of one of their crystals at 320 mK. As shown in
Fig. 35, the measured profile fits very well with a sin-
gle value of the surface stiffness «y; this proves that the
stiffness is close to isotropic, consequently equal to the
the surface tension «, as usually found for the bcc struc-
tures. Moreover, the measured value of a = 0.060 £
0.011 erg/cm? (see Fig. 35) does not depend on temper-
ature within the experimental accuracy. (Rolley et al.,
1994a) later estimated the anisotropy of v from the shape
of quasi-spherical liquid inclusions inside crystals. Good
fits were obtained with v(¢) = 7o[l + ecos(49)], and
€ = 0.02 £ 0.01, as found for other bce structures.

An important observation is the absence of visible
facets above 150 mK on these 3He crystal shapes. More
recently, the surface stiffness of 3He crystals has been
measured down to 80 mK by the Helsinki group (To-
doshchenko et al., 2004). They used a Fabry-Pérot
multiple-beam interferometer (see Section I1.B.2) and ob-
served the whole crystal shape, not only the profile. The
results of Todoshchenko et al. confirm those by Rolley et
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FIG. 35 . When the size of a crystal is larger than the capil-
lary length, its equilibrium shape depends on both the gravity
g and the surface stiffness 7. From a fit with Laplace equa-
tion, Rolley et al. (1989) obtained v = 0.06 erg/cm>.

-

FIG. 36 . *He crystals growing at 80 mK (Rolley et al., 1986).
The facets are the (110) surfaces.

al. (1989).

2. Roughening transitions in He

In 3He, Rolley et al. first observed (110) facets below
80 mK (Rolley et al., 1986), later up to 100 mK (Rolley
et al., 1989) (see Fig. 36). Two other types of facets
[(100) and (211)] were seen by Wagner et al. (1996) in the
millikelvin range, during growth of the crystals from the
A-phase of superfluid He (see Fig. 37). More recently,
the Helsinki group observed up to eleven different types of
facets at 0.55 mK (Alles et al., 2001; Tsepelin et al., 2001)
(see Fig. 38). Thanks to their interferometer, facets could
be observed even when they occupied a small fraction of
an otherwise rounded surface. With the same setup it
was observed that at least three types of facets exist up
to 55 mK (Todoshchenko et al., 2003).

From all these publications, it appears that the max-



FIG. 37 . Growing ®He crystal at 2.2 mK (Wagner et al.,
1996). Three types of facets [(110), (100) and (211)] were
identified from a comparison of this image with computer
simulations. The (211) facets are barely visible in between
some of the two neighboring (110) facets.

FIG. 38 . The interferogram of a growing *He crystal at 0.55
mK revealing seven different types of facets which are labelled
with Miller indices (Alles et al., 2001).

imum temperatures at which facets can be seen in 3He
are definitely lower that expected from the universal re-
lation [Eq. (11)]. This was already noticed by Rolley
et al. (1989) who deduced from their measured value of
~ that the roughening temperature of the (110) facets
should be about 260 mK. Table I shows the maximum
temperatures at which facets have been observed by the
Helsinki group and a simple estimate of the correspond-
ing roughening temperatures. For this estimation, the
critical variation of v was neglected: Eq. (11) was used
with v = 0.06 erg/cm? and the respective values of step
heights for each orientation.

In order to explain this discrepancy, Rolley et al. (1989)
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TABLE I . For bce *He crystals, the calculated roughening
transition temperatures (T¢qic) are systematically larger than
the maximum temperatures at which facets have been ob-
served (T732%); the different facets are represented by their
respective Miller indices.

Miller index|Tyqre (mK)|T/2%% (mK)
110 260 100
100 130 55
211 86.6 55
310 52 0.55
111 43.3 0.55
321 37.1 0.55
411 28.8 0.55
210 26 0.55
510 20 0.55
431 20 0.55
311 11.8 0.55

invoked dynamic roughening. Since a 3He atom is lighter
than a “He one, they noticed that the zero-point motion
of atoms in the lattice was even larger in 3He than in
“He: 0.37a in *He compared to 0.24a in *He, according
to (Pierre et al., 1985). From this they concluded that
the coupling of the liquid-solid interface to the crystal
lattice should be even weaker in 3He than in *He. This is
because the lattice potential is expected to decrease ex-
ponentially with the interface width (Nozieres, 1992). As
a consequence, the step energies of facets should be very
small. This means that it would be nearly impossible to
see the facets on the equilibrium shapes of crystals, as no-
ticed in all experiments; as for the growth shapes, they
would reveal the existence of facets only if the growth
speed was slow enough to avoid dynamic roughening.
Within this model, they used Eq. (21) to estimate the
step free energy for the (110) facets at 100 mK, and found
Bi10 = 1.2 x 10711 erg/cm. Under these conditions, the
correlation length had to be &19 &~ 3 x 107 cm, i.e., by
two orders of magnitude larger than the lattice constant
of 3He crystals. Such an extremely weak coupling leads
to very wide steps and it is possible. Its verification is in
progress in the Helsinki group.

There appeared a serious difficulty when Tsepelin et al.
(2002a) measured the step free energy at 0.55 mK, where
the solid is ordered in its antiferromagnetic state and is in
contact with the B-phase of superfluid 2He. They found
Bi1o = 6.6 x 1071 erg/cm, about fifty times more than
the Rolley’s estimate at 100 mK. If the coupling is really
weak, it seems impossible to imagine that the step free
energy increases that much from 100 to 0.55 mK. More-
over, Tsepelin’s value is about one third of the product ~vd
= 1.8 x 1079 erg/cm?, indicating strong coupling at low
temperature. They also noticed that facets could be ob-
served even during slow melting, not only during growth,
and this confirms that the step energy is comparable to



the surface energy yd. Another indication of strong cou-
pling at low temperature comes from the comparison of
the step energy values on successive facets: Tsepelin et
al. (2002a) showed that the 1/1? law seems to hold down
to interstep distances [ of order d, and this is contradic-
tory with a large step width (see Section V.A.3).
Altogether, these measurements lead to a series of
unanswered questions in ®He: is the liquid-solid inter-
face strongly or weakly coupled to the crystal lattice; is
it possible that the strength of this coupling changes with
temperature; what could be the effect of the superfluid
transitions on the surface properties of a crystal; what
about the magnetic ordering transition in the solid; could
it be that the RG theory of roughening does not apply to
3He for some unknown reason? The whole issue is under
investigation by the Helsinki group who has undertaken
systematic measurements in the whole temperature range
from 0.5 to 120 mK along the melting curve of *He.

IV. DYNAMICS OF ROUGH SURFACES

A. Crystallization waves and the unusual growth dynamics
of rough *He surfaces

In 1978, Andreev and Parshin realized that at low
temperatures, when all individual degrees of freedom are
frozen, the melting and crystallization of helium from the
superfluid are quantum collective processes, which can
proceed without energy dissipation. Therefore the liquid-
solid interface could oscillate as freely as the surface of a
non-viscous classical liquid (Andreev and Parshin, 1978).
As we shall see, the dispersion relation of crystallization
waves is similar to that of ordinary surface waves because
the potential energy is due to the same gravity and sur-
face tension terms. One difference is that the mass flow,
hence the kinetic energy, comes from the difference be-
tween the crystal density pc and the liquid density pr:
any growth or melting leading to a displacement of the
interface requires a mass flow in the liquid which is pro-
portional to the difference dp = pc — pr.. Another differ-
ence is that a crystal being anisotropic, the crystallization
waves are not isotropic either. Eventually, the attenua-
tion of ordinary surface waves originates in the viscous
dissipation in the bulk of the liquid while for crystalliza-
tion waves it is mainly a surface mechanism.

In order to derive the dispersion relation, one proceeds
as follows. Let us call {(z) the displacement of the crys-
tal surface from its average horizontal position. Mass
conservation implies a velocity vy, in the liquid, which is
related to the velocity ¢ of the surface by

PL — PC ;
=0 =
AL

vL (32)

If there is no dissipation, the difference in chemical po-
tential du = pr — pe is zero at the interface. Since the
chemical potentials puc,; are taken per unit mass, they
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Furthermore, the mechanical equilibrium of the interface
implies that

(33)
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where « is the surface tension and -y, the surface stiff-

ness in the z-direction. The two above equations can be
combined as

(i - i) 6Py — pLg¢) +
L pPC

Finally, at low enough frequency, these waves propagate
with velocities which are small compared with the sound
velocity, so that the fluid can be considered as incom-
pressible, and the equations for a potential flow are

UL = v’lp ’ (36)
(SPL = —pL@L - (37)

For a sinusoidal wave ((z,t) = (o exp (ikz — iwt), one
finds a potential 1 = g exp (tkz — iwt — kz), where z is
the vertical coordinate, and one obtains the dispersion
relation

_. 0%

— Jlxq o9 4
Yo 52 (34)

1 ¢ _

p—c%@ =0. (35)

w? = 5%%!13 + gg—zq- (38)

The first term describes the capillary waves which are
anisotropic because v, depends on orientation; it domi-
nates at high frequencies (short wavelengths); the second
term involves g, the acceleration of gravity. As usual, the
crossover from the capillary to gravitational waves occurs

for wavelengths larger than the capillary length

le= /<.
dpg

Equation 38 was first verified by Keshishev et al. (1979)
between 70 Hz and 5 kHz (see Fig. 39), later by Rolley et
al. (1994b). From such graphs, very accurate measure-
ments of the surface stiffness could be made in different
crystalline directions (see, for example, Figs. 27 and 28).

Supposing now that growth and melting dissipate a
small amount of energy, a finite velocity v of the liquid-
solid interface produces a small difference in chemical
potential du between the solid and liquid; the dissipa-
tion can be described by the growth coefficient & in the
equation

(39)

v="Fkéu. (40)
As a consequence, Eq. (35) has to be replaced by the
more general form

¢ 1

p_c%ﬁ =-C,

¢

1 1
(P_L - p_(;) (0P — prg¢) +
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FIG. 39 . The measurements by Keshishev et al. (1979) of the
dispersion of crystallization waves. At high enough frequen-
cies, a “3/2” power law was found, in a very good agreement
with Eq. (38). Below about 20 cm™, the slight deviation
from the “3/2” power law indicates the crossover to the grav-
itational waves.

and the dispersion relation acquires an imaginary term:

PL . _ POPL g

2 _ PL 3
g(qu op? k

w (42)

Keshishev et al. (1979) obtained the first measure-
ments of the dissipative coefficient k¥ from the damping
of the waves (see, for example, Fig. 15). A more elabo-
rate theoretical description of the dissipative coefficients
is presented in Section IV.C.1, together with a compar-
ison with several experiments. Corrections to the above
equations have been calculated by (Uwaha and Baym,
1982) who considered the effect of compressibility at high
frequency (see Section IV.C.9). Other corrections have
to be introduced if the crystal is under stress (see Section
VLA).

B. Crystallization waves on *He vicinal surfaces

Rolley et al. (1994b,1995a,b) studied crystallization
waves on the vicinal surfaces, i.e., on surfaces with an ori-
entation close to that of facetted ones. They were inter-
ested in investigating the properties of stepped surfaces,
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FIG. 40 . As measured by Rolley et al. (1994b,1995b), the

stepped surfaces show a large anisotropy as their tilt angle ¢
with respect to a high symmetry plane tends to zero. One
component of the surface stiffness sensor tends to zero while
the other one diverges, as predicted by Egs. (28) and (29).
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FIG. 41 . With this measurement, Rolley et al. (1995a) ver-
ified that the surface stiffness coefficient 7, is inversely pro-
portional to the tilt angle ¢, as predicted by Eq. (29); from
the initial slope, they measured the step free energy 8/d =
0.014 erg/cm? for ultrapure *He (0.011 erg/cm? with 130 ppb
of 3He impurities).

which are particular vicinal surfaces where steps are well
separated and control the surface properties of crystals.
They measured the energy of steps on the (0001) surfaces
as well as their mutual interactions.

As described in Section II.C, they were able to rotate
their crystals in two perpendicular directions and study
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FIG. 42 . Rolley et al. (1994b,1995b) verified that the stiff-

ness coefficient v,, vanishes as the tilt angle ¢ tends to zero.
They could not measure it down to small enough angle to
verify the linear asymptotic behavior predicted by Eq. (28),
but their measurements are consistent with Egs. (30) and (31)
(solid lines).

the case were the wavevector k was parallel to the pro-
jection of the c-axis on the surface, or the case where k
was perpendicular to it. They obtained the angular vari-
ation of the two corresponding components 7,, and 7y
of the surface stiffness tensor. Figure 40 shows that v/,
decreases while v, increases as the surface approaches
the (0001) basal planes, i.e., as its tilt angle ¢ tends to
Zer0.

Rolley et al. (1995b) compared this behavior with the
predictions of Egs. (28) and (29). As shown in Fig. 41,
the component v, was found to be inversely proportional
to the tilt angle ¢ and the low temperature value

Bo/d=14+£0.5 x 1073 erg/cm? (43)
of the step energy was inferred from this measurement.
This value was found close to the value (17 x 1073
erg/cm?) which had been predicted with the parameters
of the RG theory. Although these parameters had been
adjusted by comparing with measurements close to the
roughening transition temperature, the extrapolation of
the theory far from the roughening transition was con-
sidered as a good approximation because the value of
the parameter ¢, indicated weak coupling even at low
temperature. For a more accurate calculation of fy, one
would need to go beyond the first approximations of the
Nozieres’ theory. One attempt has been made by (Haza-
reesing and Bouchaud, 2000) who used a more elaborate
renormalization method (“functional renormalization”).

Rolley et al. (1994b,1995b) also showed that the ¢-
dependence of the component v,, approached the predic-
tion of Eq. (29). They could make measurements down
to ¢ = 0.7 degree (see Fig. 42), but they found that this
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was not small enough to reach the linear behavior, char-
acteristic to well separated steps. This is because the
steps were confirmed to be very wide. As can be seen
from Fig. 40, it is only below the crossover angle 6. = 2.5
degrees where the surface stiffness components depart
from the roughly isotropic value of 0.245 erg/cm?, which
had been previously measured by Andreeva et al. (1987-
92) and by Wolf, Gallet et al. (1985-87). This finding
agreed with the RG theory, which predicted a crossover
angle 0. ~ d/6Lg ~ 1/24 rad [see Eq. (25)]. Andreeva
et al. (1989) had questioned the existence of the stepped
behavior but, after the work of Rolley et al. , it was
shown to exist only at rather small ¢ and at low enough
temperature for the wide steps to be well separated [re-
member that an estimate of the step width was given as
w & 4E & 2L, in Eq. (10)].

Although the steps were not fully separated at ¢ =
0.7 degree, Rolley et al. compared their measurements
with the predictions for the interaction between two steps
with a distance | = d/¢ apart. In his mean field theory,
Andreev had assumed a ¢-independent value of v, im-
plying a 1/l interaction between steps (Andreev, 1981;
Andreev and Knizhnik, 1982); this was clearly ruled out.
Rolley et al. compared their results with the prediction
of entropic and elastic interactions which varied as 1/12
(see Section III.C.5). From the temperature variation
and the known value of By, they found good agreement
with the entropic interaction, in particular with Akutsu’s
universal coefficient (72/6) in Eq. (30) which had been
a matter of debate for some time (Akutsu et al., 1988).
From an estimate of the temperature independent term
in the interaction, they found agreement with the pre-
diction of Marchenko and Parshin (1980a) for the elastic
interaction, if the surface stress was roughly equal to the
surface stiffness yo = 0.245 erg/cm?. It would be useful
to measure this interaction at a smaller tilt angle for the
steps to be better separated, and to extend the theory of
the step-step interactions to the case where, steps being
close to each other, their interaction depends on their
structure, primarily on their width.

C. Surface dissipation in “He
1. Heat and mass flow: the Onsager matrix

When Keshishev et al. (1981) had measured the damp-
ing of crystallization waves, several authors started to
calculate the dissipation at the liquid-solid interface (An-
dreev and Knizhnik, 1982; Bowley and Edwards, 1983;
Castaing and Nozieres, 1980; Huber and Maris, 1981).
Keshishev et al. found that the inverse attenuation length
of the waves varied as w'/3, in agreement with Eq. (42).
It corresponds to a damping rate proportional to the
wavevector ¢, and confirms that the dissipation takes
place at the crystal surface; a viscous dissipation in the
bulk would lead to a damping proportional to ¢2. Fur-
thermore, they found that the growth resistance k!



could be decomposed as a sum of three terms:

A
k™' = Ay + BoT* + Cyexp — (7) : (44)

The constant term Ay was not reproducible from one
crystal to another and was therefore attributed to de-
fects or impurities; the two other terms were respectively
attributed to the scattering of phonons and rotons by the
moving liquid-solid interface.

Andreev and Parshin (1978) assumed that the dissipa-
tion was due to the total reflection of phonons and rotons
and they first predicted that the growth resistance should
be proportional to T in the low temperature limit. An-
dreev and Knizhnik (1982) later distinguished “ballistic”
and “hydrodynamic” regimes. The ballistic regime cor-
responds to a situation where the size of the system is
smaller than the mean free path I, of excitations. In
this case the interface moves with respect to an excita-
tion gas which is at rest in the frame of the experimental
cell. For crystallization waves, this means gl,,y > 1, or
wTt > 1if 7 is the collision time of the excitations. In the
opposite limit, the excitations move with the interface
and the dissipation is due to the viscosity of the excita-
tion system in the adjacent bulk phases; it does not take
place at the interface. This is a remarkable situation: the
transformation of the condensate into a crystalline phase
is accompanied by no dissipation at all at the interface.
In a classical system, the sticking atoms have to release
their momentum, consequently some kinetic energy, so
that the dissipation has to take place at the interface.

Castaing and Noziéres (1980) formulated the whole
problem in the frame of an Onsager matrix relating
currents to the differences in chemical potential (du =
ur, — pe) and in temperature (67 = Tp, — T¢) between
the two phases; more precisely, they linearized the rela-
tion between the two forces du/T and 6T /T?, and the
mass current J and heat current Jg flowing through the
interface. They were followed by numerous authors who
used different notations. In order to avoid confusion with
the lattice spacing a and the sound velocity ¢, we here
define the Onsager matrix coefficients A, B and C by the
following relations:

b
TM = AJ + BJg, (45)
5T

The Onsager matrix being symmetric, its cross coeffi-
cient B is the same in the two equations. Furthermore,
the condition that the dissipation, i.e., the entropy pro-

duction
- o oT
§=u(7)+ ()

is positive, requires B2 < AC. In the absence of mass
current (J = 0), one sees that the coefficient C' describes
the thermal resistance of the interface, known as the

(47)

32

“Kapitza resistance” Ry
ties are related by

(0T /JE). The two quanti-

Rx =CT?. (48)
As for the growth coefficient & which was introduced
above, this general formulation shows that two different
cases have to be distinguished. The growth is called “adi-
abatic” if there is no heat current (Jg = 0). In this case,
the “adiabatic growth coefficient” (also called “adiabatic
interface mobility”) is

1
"~ pcAT '

ke (49)
If the growth is “isothermal” in the sense that 07 = 0,
then the “isothermal growth coefficient” is different and
given by

ke

ok

(50)

The cross coefficient B describes the way how the two
entropies are shared between the two sides of the inter-
face during growth. Its physical meaning was clarified
by (Balibar et al., 1991a), using the previous work of
(Nozieres and Uwaha, 1987). They represented the flow
of heat and entropy at the interface as shown in Fig. 43.
In this figure, Q¢ is the heat flow from the walls into the
crystal and @)r, is the heat flow from the liquid into the
walls. One has:

Qc = JTSc — Ji (51)
QL=JTS, —Jg . (52)
(53)

Furthermore, the heat current Jg which flows through
the interface can be expressed as

oT B
so that
Qc =J(T'Sc —B/C) - 6T/Rk , (55)
QL:J(TSL+B/C)—5T/RK. (56)

One now understands that §7/Rk is the heat which is
conducted through the interface, and that (—B/CT) is
the entropy per unit mass which is carried through the
interface by the mass current J.

2. The growth resistance: phonon contribution

Bowley and Edwards (1983) first calculated the growth
resistance k;l in the low temperature limit where they
assumed phonons to dominate and to be ballistic. The
dissipation is the work of the phonon radiation pressure
on the moving interface: as it moves, the interface per-
turbs the distribution of phonons, and it is the relaxation
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FIG. 43 . Diagram of entropy conservation at the liquid-
solid interface during growth, as represented by Balibar et al.
(1991a) following Noziéres and Uwaha (1987).

of the perturbed distribution towards equlibrium, which
produces entropy. In a first step, and following Castaing
and Nozieres (1980), they assumed that, due to the high
mobility of the interface at low temperature, all phonons
were totally reflected at the interface (see the next sub-
section). They also neglected mode conversion and found

that
keT\*[1 2 1
(5 [F+a+a)

where ¢y, is the sound velocity in the liquid, ¢; and ¢; are
the respective velocities of the transverse and longitudi-
nal sounds in the crystal. At low temperature, the above
equation predicts that the growth resistance is dominated
by the phonons with the smallest velocity, i.e., by the
transverse phonons in the crystal. The result by Bowley
and Edwards is more general than the one obtained by
Andreev and Knizhnik (1982) who only calculated the
contribution from phonons in the liquid.

Equation 57 also explains the anisotropy of the growth
resistance: it depends on the sound velocities in the crys-
tal. Finally, Bowley and Edwards showed that the ef-
fect of phonon transmission was small, a reduction of the
growth resistance by about 3% only; they also showed
that the effect of mode conversion is even smaller.

How does the above theory compares with experi-
ments? Equation (57) predicts that the growth resis-
tance is proportional to T* with a coefficient between
3.06 and 3.32 cm-s~1-K~*. Keshishev et al. (1981) had
found 2.67* for one crystal and 3.4T* for another crystal.
The agreement is obviously good, but a precise compar-
ison would need to know the exact orientation of these
crystals. Furthermore, Keshishev’s data were taken in
the temperature range from 0.36 to 0.59 K, where the
phonons in the crystal are not expected to be ballistic
(Golub and Svatko, 1980). This was later confirmed by
Wang and Agnolet (1992a). Below 0.25 K, Wang and
Agnolet observed the coefficients varying from crystal to
crystal in the range from 2.7 to 3.5. They also found a
systematic drop of this coefficient above 0.25 K, when
the crystal phonons entered a hydrodynamic regime, so

_y _ h#?
~ 30pc

(57)
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FIG. 44 . The roton contribution to the growth resistance
k! of solid “He [noted (m4K)~" by Bodensohn et al. (1986)].
The different symbols respectively correspond to the experi-
ments by Keshishev et al. (1981) (+), Castaing et al. (1980)
(x) and Bodensohn et al. (1986) (circles, squares and dia-
monds). The solid line is a best fit with a simple exponential
function [Eq. (60)]. The phonon contribution has been sub-
tracted in the case of Keshishev’s measurements.

that, progressively, only the contribution from the lig-
uid phonons was left. The crossover from a ballistic to a
hydrodynamic regime of crystal phonons was also the ex-
planation for the frequency dependence of the damping
of crystallization waves, which was measured by Rolley
et al. (1995b).

3. Rotons and kinks

At even higher temperature, none of the phonons are
ballistic and their contribution to the growth resistance is
negligible; the thermodynamics of liquid helium is domi-
nated by rotons. Rotons are totally reflected at the inter-
face because their velocities are very different from that
of phonons in the crystal. There are two different types
of reflections because there are two sorts of rotons, which
were named Rt and R~ by (Wyborn and Wyatt, 1990).
R* rotons have their momentum parallel to their group
velocity while R~ rotons have it antiparallel. A normal
reflection corresponds to rotons staying in the same cate-
gory and an “Andreev reflection” corresponds to the op-



posite case, when there is conversion from one type into
another. Assuming ballistic rotons and a fraction &4 of
Andreev reflections, Bowley and Edwards (1983) found
a roton contribution to the growth resistance:

bk = - 0 M8 o capier) 69
~2.36 x 10°(1 — €4) exp (=7.21/T) cm/s,  (59)

where ¢¢ is the roton minimum wavevector; this result
agreed with Keshishev’s experimental results if £4 ~ 0.3
to 0.4. However, they also pointed out an important dif-
ficulty which remained as a puzzle for several years (Cas-
taing, 1984; Edwards et al., 1990). As shown in Fig. 44,
all experiments (Bodensohn et al., 1986; Castaing et al.,
1980; Keshishev et al., 1981) agreed with each other and
showed a unique exponential increase of the growth re-
sistance in the whole temperature range from 0.45 K to
1.7 K.

Bodensohn et al. (1986) gave a simple law for the

growth resistance:

k™' =2.4 x 10°exp —(7.8/T) cm/s, (60)
which was close to Eq. (59). But the roton-roton mean
free path was certainly smaller than the wavelength of
Keshishev’s waves; it was also smaller than the size of
the experimental cell used by Castaing et al. (1980),
who measured the temperature dependence of the sound
transmission (see below). As for Bodensohn et al. (1986),
they measured the relaxation of a surface deformation by
charging the liquid-solid interface and applying a vari-
able electric field to it; once more, the size of their ex-
perimental cell was much larger than the roton mean free
path. If rotons were in a hydrodynamic regime, i.e., mov-
ing with the interface, the growth resistance should have
been much smaller.

Castaing (1984) first proposed that rotons were mov-
ing with the interface, but were scattered by the lattice
potential which was immobile with respect to the cell
walls. He also questioned the validity of the assumption
by Andreev and Knizhnik (1982) of a fraction {4 = 1
of Andreev reflections of rotons. Later, Edwards et al.
(1990) proposed that, at the scale of rotons, i.e., at an
atomic scale, rough helium surfaces have a large density
of microscopic steps with moving kinks (note that these
microscopic steps should not be confused with the macro-
scopic steps which are considered in Section III). Even
if the roton distribution moved with the interface, the
kinks moved with respect to it. Edwards et al. devel-
oped a theory for the roton-kink collisions, in which the
kink mass my was an important parameter. This mass
has been introduced by Kosevich and Kosevich (1981) as
a consequence of the flow of superfluid towards the kink
which acts as a moving sink. The existence of a kink
mass implies the existence of a surface inertia mjy, which
is proportional to my.

Furthermore, as explained by (Puech and Castaing,
1982), the surface inertia has a direct consequence on
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the transmission coefficient 7 of phonons through the
liquid-solid interface, consequently on its Kapitza resis-

tance (see below). From a fit of both 7 and the roton
-1

contribution to the growth resistance k,,;, Edwards et
al. (1990) obtained a kink mass

m$ = 0.002my (61)
at T = 0, in agreement with the prediction mj; =~

my(vy/ve — 1)?/2m by Kosevich and Kosevich (1981).
They also found that this mass increased with temper-
ature (see Fig. 45). This time, they found good agree-
ment with the measurements of k,_, if the fraction &4
was nearly zero. Their latest theoretical result was

k_l

rot —

(0.25 4+ 0.37)(2.36 x 10°) exp (—7.21/T) (62)
in cm/s again and in good agreement with all available
experimental results (see Fig. 44). As explained in the
next section, the value of the surface inertia was con-
firmed by the series of experiments done by Poitrenaud
and her group.

Andreev and Knizhnik (1982) had assumed a fraction
( €4 = 1) by considering that rotons were reflected by
a plane rigid boundary. In their model, Edwards et
al. (1990) considered a rough surface with a large density
of moving kinks, a rather different picture which implied
&4 ~ 0. Note finally that all these comparisons use the
theoretical value of the isothermal growth coefficient kr,
but experiments only measure some approximation of k7.
For example, Balibar et al. (1991a) explained that, in the
experiment by Bodensohn et al. (1986), there should be a
small temperature difference across the interface, so that,
in fact, an effective growth resistance

kopp =kr' + (TSc)?

pcRi
63

- (63)
was measured, where S¢ is the crystal entropy per unit
mass. Consequently, a small negative correction should

be applied to their measurements of k;l, from - 20% at
09K to-2% at 1.4 K.

4. Sound transmission and surface inertia

As we now understand, one cannot calculate the
growth coeflicient nor the Kapitza resistance without cal-
culating the sound or phonon transmission. Castaing and
Nozieres (1980) had first noticed that the high mobility
of the liquid-solid interface of “*He strongly affects the
transmission of sound through it. They showed that the
transmission probability 7 from the liquid to solid is re-
lated to the interface mobility k by

2
)

where the quantities Z¢ and Zp, are the respective acous-
tic impedances in the crystal and in the liquid. The

-1 ZC + ZL
T =

kZrpc
27¢ +

2

(PC —PL (64)

pcprL
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FIG. 45 . The transmission coefficient of thermal phonons
through the liquid-solid interface of “He. Various symbols
refer to the measurements by (Wolf et al., 1983b) (filled sym-
bols) and (Puech and Castaing, 1982) (open symbols). The
dashed curve was calculated by Edwards et al. (1990) using
a temperature independent surface inertia m? = 2.1x 10~ *°
g/cm?3. A better fit was obtained with a temperature depen-
dent inertia m; = ym?, where v = my(T)/m? is a kink mass
ratio shown in the insert.

physical interpretation of this effect is as follows. If
the liquid-solid interface was immobile, the transmission
probability would be equal to the usual impedance ratio
2Z¢/(Zc + Z1). On the contrary, if the interface was
infinitely mobile, it would move in phase with any acous-
tic wave or incident phonon, so that there would be no
difference in chemical potential across it, the pressure in
the solid would always be equal to the equilibrium melt-
ing pressure, and no sound would be transmitted. In
reality, we have seen above that the growth coefficient
k is limited by interactions with the thermal density of
excitations (phonons and rotons), so that 7 depends on
temperature.

Furthermore, Marchenko and Parshin (1980b) showed
that, if the incidence angle of the incoming phonon is
non-zero, a capillary wave is produced at the interface,
which couples to phonons in the solid. As a result, they
found a probability 7 to be proportional to the square
of the phonon frequency, and consequently a Kapitza re-
sistance proportional to T—° instead of T2, the usual
behavior. Eventually, as we saw above, the interface has
a non-zero inertia so that it cannot respond immediately
to any perturbation. This was first predicted by Kose-
vich and Kosevich (1981), who proposed a hydrodynamic
origin for this inertia. They found that the dispersion
relation of crystallization waves departs from Eq. (38)
when their wavelength is comparable to the average dis-
tance between steps. Puech and Castaing (1982) later
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FIG. 46 . The transmission coefficient of acoustic waves in
*He as a function of the inverse temperature 1/7T and at three
different frequencies. These measurements by Amrit et al.
(1995b) show that at low enough temperature, the mobility
of rough crystal surfaces is limited by the surface inertia, so
that the transmission is larger at higher frequency.
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FIG. 47 . The surface inertia was deduced in *He by Amrit
et al. (1995b) from their sound transmission measurements.
This graphs shows its angular dependence, which was found
to be in a good agreement with the theory of Edwards et al.
(1990) (solid line). The broken line represents the theory of
Kosevich and Kosevich (1981) in the limit of well separated
steps, i.e., with a small tilt angle. The horizontal dotted line
indicates the surface inertia of rough surface at a large tilt
angle.

explained that the local rearrangement of atoms pass-
ing from the liquid to the solid phase would induce the
existence of a surface inertia even if pc was equal to pr,.

The surface inertia was measured by Poitrenaud and
her group (Amrit et al., 1995a,b; Poitrenaud et al., 1989;
Poitrenaud and Legros, 1989). They measured the trans-
mission of sound as a function of frequency (in the range
from 10 to 70 MHz), crystal orientation and temperature.
Figure 46 shows that at low enough temperature the sur-
face inertia limits the mobility of rough surfaces so that



the transmission of sound is larger at higher frequency.
They wrote an acoustic impedance (; for the interface as

2
CPL 1 . wmg
o= (s erizmnel
pc — prL pck  prLpc
where mj is the surface inertia, or dynamic mass per
unit area. The real part of the impedance is due to the
finite value of k, while the imaginary term originates in

the inertia m;. This inertia was related to the kink mass
my(T) by Edwards et al. (1990):

(65)

MgNg

sona (66)

my =

In the above equation, the cross section o¢ is related
to the surface of a kink o by o¢ = opr/pc, ns is the
density of steps on the crystal surface and ny is the
density of kinks on the steps; as for (, it is a dimen-
sionless roughness factor which depends on the density
difference between the plus and minus kinks on steps
(¢ =0c < (ny —n_)? >). Amrit et al. (1995b) found
a good agreement between their measurements and the
theory of Edwards et al. (1990) as shown in Fig. 47. Ac-
cording to their latest estimates, the inertia of rough sur-
faces is

mr = (2.4£0.5) x 107*% g/cm? , (67)
increasing by more than a factor of ten as the surface
orientation tends to the facetted one.

5. Heat flow: the Kapitza resistance

The Kapitza resistance Rx can be expressed as

Rk = %PLS¢LCL7_', (68)
where T is the average transmission probability for the
phonons from the liquid into the crystal, and Syr is
the phonon part of the liquid entropy (Maris and Hu-
ber, 1982). There have been three series of measure-
ments on the Kapitza resistance. The first one was done
by (Huber and Maris, 1981, 1982). They used a heat
pulse technique at temperatures between 0.1 and 0.4 K.
They found significant variations from crystal to crys-
tal, which they attributed to unknown changes in crys-
tal orientation. Their results could be represented as
5x 10875 < Rg' < 10975 erg-s 'K 'em™2. This in-
dicated a transmission probability for thermal phonons
which was about 772, larger than predicted by the cap-
illary theory of Marchenko and Parshin (1980b) (about
37?).

Similarly, (Puech and Castaing, 1982; Puech et al.,
1982) found that Marchenko’s capillary effect was not
sufficient to explain their experimental measurements on
the Kapitza resistance, so that the consideration of a sur-
face inertia was necessary. For their final fit shown in
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FIG. 48 . The setup used by Wolf et al. (1983b) to measure
the Onsager cross coefficient B and the Kapitza resistance Rx
at the surface of *He crystals. A heat current is applied at the
bottom of a transparent box. It flows through the left side
which is open; on the contrary, the right side is closed by a
superleak which ensures thermodynamic equilibrium but does
not allow any heat flow. The double horizontal line across
the whole box is the liquid-solid interface outside the box;
in this case (Jg = 0.503 mW/cm? and T = 0.27 K) it was
about 2 mm below the levels inside the box. From the level
changes at the two sides of the box, both the pressure and
the temperature of the crystal were measured, and Rx and
B deduced.

Fig. 45, Edwards et al. (1990) considered both the re-
sults by Puech et al. (1982) and the later results by Wolf
et al. (1983b). The experiment by Wolf et al. was primar-
ily designed to measure the Onsager cross coefficient (see
below). Its results for the transmission probability were
summarized as 7 = 5.4T2 for the rough surfaces. They
found a somewhat larger value for a crystal surface close
to the [0001] direction. As shown in Fig. 45, they were
well interpreted in terms of the calculated surface inertia
(Edwards et al., 1990). In summary, the Kapitza resis-
tance of the liquid-solid interface in *He is anomalous in
the sense that its limiting behavior at low temperature is
proportional to T® instead of T for immobile surfaces.
The coefficient of the T° law is well understood as mainly
due to the limitation of the mobility by the surface iner-
tia.

6. The Onsager cross coefficient

Wolf et al. (1983b) designed an experiment to measure
the Onsager cross coeflicient B by measuring the differ-
ence in chemical potential o which was induced across
the liquid-solid interface of “He by a heat current flow-
ing through it. For this, they had to know the changes
in pressure and temperature on both sides of the inter-
face. This was obtained by looking at level changes of
the interfaces in a transparent box with two sides (see
Fig. 48). The heat current was generated at the bottom



of the solid. It flowed up through the left side into the
liquid. The right side was closed by a porous plug which
allowed a superfluid current to flow, consequently ther-
modynamic equilibrium to be reached, but no heat. The
height changes were related to the changes in pressure
from the hydrostatic equilibrium in the liquid. The level
on the right was different from the left because of a heat
current flowing only through the left side. Various cor-
rections were considered such as a fountain pressure, and
a limited thermal conductivity of the bulk phases.

From the difference in temperature, the Kapitza re-
sistance Rk was measured, as discussed above. From
dimensional considerations, Bowley and Edwards (1983)
expected the quantity BpccrT to be of the order of one.
They predicted a slight dependence on the mobility of
the interface, and it was important to know if phonons
were ballistic in both the liquid and the solid, or only in
the liquid. For ballistic phonons on both sides, they pre-
dicted BpccerT = -1.6 if the surface was immobile and
-1.5 if it was infinitely mobile; if phonons were ballistic
in the liquid only, they predicted a smaller coefficient,
respectively equal to -0.7 and -0.6 in the two above situ-
ations.

Wolf’s experimental result was -1.1 + 0.4 in the tem-
perature interval from 0.2 to 0.6 K, where the crystal
phonons should have been in a hydrodynamic regime.
This was considered as a qualitative agreement with the
predictions. A more precise analysis would be useful but
no other experimental measurement has been attempted.

7. Mobility of vicinal surfaces

When studying crystallization waves in *He at vicinal
surfaces, Rolley et al. (1995b) measured their damping
and obtained the mobility of vicinal surfaces as a func-
tion of temperature and the tilt angle. Their results are
shown in Fig. 49. This figure shows that the proximity
of the c-facet has a strong influence on the growth rate.
Furthermore, this influence extends on a much larger an-
gular domain than for the surface stiffness, 15 degrees
at least compared to about 2.5 degrees. For the inter-
mediate orientations (2 < ¢ < 8 degrees), the tempera-
ture dependence was also found to be closer to T'® than
T*. Andreeva et al. had found qualitatively similar re-
sults in 1987-92. This was surprising because Nozieres
and Uwaha (1987) had predicted a T° variation for the
stepped surfaces.

In their analysis, Rolley et al. (1995b) explained all
these results by considering the crossover from the co-
herent to incoherent scattering of phonons by steps. This
depends on a comparison between the step density n, and
the phonon wavevector gp,. Phonons are scattered inco-
herently, that is independently by the individual steps if
their wavelength is smaller than the typical spacing be-
tween steps, equivalently if the ratio ns/qpp is less than
1. A typical phonon wavevector is gpp, = 2.7kgT /hc with
¢ ~ 400m/s, a typical sound velocity. Rolley et al. nor-
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FIG. 49 . The growth resistance of vicinal surfaces of “He

crystals as a function of temperature and orientation, as mea-
sured by Rolley et al. (1995b); the angles measure a tilt with
respect to the c-facet.
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FIG. 50 . Once the growth resistance of vicinal surfaces of
*He crystals is normalized by the one of rough surfaces, and
plotted against the product ns/gpn of the step density by
the phonon wavevector, all measurements collapse on a single
curve (Rolley et al., 1995b).

malized the mobility k of the vicinal surface by the typ-
ical mobility of a rough surface ky,ug, and plotted this
normalized mobility as a function of the quantity n,/gpp.
Figure 50 shows that all their results collapsed on a uni-
versal curve, in strong support of their starting idea.
Nozieres and Uwaha (1987) had calculated k in the in-
coherent regime, and found a 7 law. In this incoherent
regime the growth resistance is larger than in the coher-
ent regime, because there is an additional channel for
a momentum exchange: in addition to the perpendicular
momentum, the parallel component is not conserved dur-
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FIG. 51 . A sketch by Rolley et al. (1995b) of the temper-
ature dependence of the growth resistance of *He crystals,
for a vicinal surface tilted by 2 degrees with respect to the
c-facet. In the crossover, which corresponds to the phonon
wavelength being comparable to the interstep distance, the
growth resistance increases faster than T* (coherent scatter-
ing for rough surfaces or stepped surfaces at low temperature)
and T (incoherent scattering for stepped surfaces at higher
temperature)

ing the collision. Nozieres and Uwaha also calculated an
expression for the crossover to the coherent regime which
is T* as for rough surfaces, where the average distance
between steps is always smaller than the typical phonon
wavelength. Rolley et al. (1995b) simplified Nozieres’
expression and found very good agreement with all their
experimental results. At low temperature, the phonon
wavelength is larger than the interstep distance, so that
the scattering is coherent as for rough surfaces (7). As
T increases, incoherent scattering starts and the growth
resistance increases even faster before reaching a T be-
havior (see Fig. 51). The crossover angle depends on
temperature of course, and it is larger than the crossover
angle for the stiffness component v,, because it is re-
lated to a different criterion, namely n, /gy, =~ 1 instead
of /3w ~ 1.

8. Effect of ®He impurities

Despite several attempts to understand the effect of
3He impurities on the surface properties of *He crystals,
this subject looks far from being completely understood.
This is probably because *He impurities can affect both
the static and dynamic properties, and in many differ-
ent ways which depend on both the temperature and the
concentration of impurities.

Early visual observations by Landau et al. (1980)
showed that 3He impurities changed crystal shapes. The
same Haifa group later claimed that the roughening tem-
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perature was lowered by 20% when about 1 ppm of *He
was added (Carmi et al., 1985, 1989). They attributed
this effect to a decrease of the surface tension value by
15% (at 1 K), which was caused by *He adsorption but
which was independent of the ®He concentration in the
range from 0.8 to 150 ppm. They estimated the binding
energy of He atoms to be about 10 K, but this looks
rather large compared to 2.9 K, the theoretical estimate
by (Treiner, 1993) of the binding energy on a solid sub-
strate.

A more direct estimate of the binding energy was found
by (Wang and Agnolet, 1992b), who measured the sur-
face stiffness of *He crystals around 1 K for 3He concen-
trations ranging from 4.5 to 50 ppb. They estimated the
binding energy to be 3.4 K. Further evidence of the ex-
istence of bound states for He atoms at the liquid-solid
interface of “He was obtained by (Rolley et al., 1995a),
who compared the normal purity “He containing 130 ppb
of 3He with ultrapure *He containing only 0.4 ppb. They
found a change in the surface energy do =~ —15 x 1073
erg/cm? at 0.2 K, and nearly no change above 0.4 K.
They also found that the step energy was lowered from
B/d = 14 £+ 0.5 erg/cm? in an ultrapure “He to 11 &+ 1
erg/cm? in a normal purity *He. In this experiment, most
3He impurities were probably bound to vortices in the
heat exchangers and the exact concentration in the bulk
liquid was not precisely known. Despite these difficulties,
they estimated the binding energy to be 4.3 K and the
presence of a step to increase locally the binding energy
by about 10 mK. They also estimated the maximum den-
sity of adsorbed impurities as 0.4 atomic layer. Clearly,
a more systematic study of these adsorption phenomena
is needed.

As for the influence of 3He impurities on the growth
resistance of He crystals, the situation is not completely
clear either. After the early estimate by (Castaing et al.,
1982), (Bowley and Edwards, 1983) calculated the con-
tribution to k~! of the scattering of *He atoms by the
moving interface. This was done in the case where *He
atoms are ballistic, either forming a degenerate or a non-
degenerate Fermi gas. The crystallization wave exper-
iments by (Wang and Agnolet, 1992b, 1994) showed a
large increase in the growth resistance, increasing expo-
nentially in the region 0.2 < T' < 0.3 K for rather small
concentrations (12 to 158 ppb). These results seemed
much larger than the effect calculated by Bowley and
Edwards. It was rather attributed to the diffusion of *He
in a *He crystal. For this mechanism, (Kagan, 1986) had
calculated a growth resistance

- kT Xc

4t = e ToDe (69)
where X is the concentration of He impurities in a crys-
tal and D¢ their diffusion coefficient, w the frequency
of the waves and my the mass of a ‘He atom. From
the phase diagram of helium mixtures [see (Edwards and
Balibar, 1989)], X¢ was known to be related to the con-



centration Xy, in the liquid by

X 1.696 */*
X_(L’ =2 (T) exp (—1.36/T) , (70)
and good agreement was found with the data.

Another series of measurements was performed by
(Susuki et al., 1997) at higher temperature (around
0.8 K) and with higher concentrations (5 and 10 ppm).
Susuki et al. found that the growth resistance was larger
by a factor of about 2 or 3 than in pure *He, with no
strong dependence on the concentration and the tem-
perature variation, similarly to the resistance due to the
roton scattering. Their results contradicted predictions
by (Burmistrov and Dubovskii, 1993) who claimed that
the additional dissipation was due to the flow of 3He in
the liquid, in front of the moving interface, so that the
growth velocity should strongly depend on ®He concen-
tration and should be a non-linear function of ju. In-
stead, Susuki et al. proposed that the additional resis-
tance was due to the flow of heat in the solid, so that an
effective growth resistance was measured to be equal to

kops = kg + (T'SL)? .

pc Rk

- (71)
This equation is similar to Eq. (63) but it contains the
liquid entropy instead of the crystal entropy. Susuki et
al. justified this by claiming that, in the presence of 10
ppm 2He impurities, the thermal conductivity of the su-
perfluid *He was so much reduced that the heat could
flow more easily in the crystal. This is another inter-
esting effect which would probably deserve some more
systematic study.

Eventually, the effect of 2He impurities on the Kapitza
resistance was also investigated. (Graf et al., 1984,
1985) studied mixtures with concentrations X3 = 1.1 x
1074,1.9 x 107%,4.7 x 1074, and 15 x 10~%. By care-
fully fitting the time evolution of the temperature of the
crystal and of the liquid, after a heat pulse was applied
in the crystal, they could measure three different quan-
tities, namely the heat conduction o¢r from the crystal
to the phonons in the liquid “He, the conduction o¢3 to
the 3He impurities, and the coupling I'z3 between the
3He and the phonons in the liquid *He. Their results
confirmed their prediction of a direct coupling of crystal
phonons with ®He impurities. They explained that, if
the surface is rough, and consequently mobile, a phonon
incident from the crystal side produces a large motion of
the interface which acts a piston on the *He atoms and
directly transfers energy to them. Within this model,
they estimated the additional thermal conductivity as

003 = 9.4 x 10°T7/2X;3 - erg - s tem 2K . (72)
With no adjustable parameter, this agreed with their ex-
perimental results. If, due to impurities, the liquid-solid
interface had been smooth instead of rough, their theory
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predicted that oc3 had the same temperature variation
but with a magnitude of 100 times smaller. They also ver-
ified that oy varied proportionally to T, as expected
for rough surfaces.

The few examples above demonstrate the rich variety
of phenomena which appear in the presence of impuri-
ties, and also the lack of a complete understanding of the
whole field.

9. High frequency and high speed limitations

In deriving the crystallization waves spectrum (see
Section IV.A), the compressibility of the liquid was ne-
glected, as well as the elastic properties of the crystal.
However, a second type of wave can propagate at the
liquid-solid interface; this is an elastic Rayleigh wave
with no mass transfer between the liquid and solid and
in which the restoring force is provided by the elasticity
of the solid. In the long-wave limit, when one can ne-
glect the capillary effects, the spectrum of these waves
is exactly as if the solid was in contact with vacuum
(Marchenko and Parshin, 1980b). Indeed, as it was men-
tioned above, due to the very high mobility of the inter-
face, the crystal oscillates at a constant chemical poten-
tial at the interface, hence at a constant pressure, exactly
as if it was a crystal-vacuum interface. Capillary effects
lead to a velocity dispersion but not to damping, since the
sound velocity in liquid helium is larger than the veloc-
ity of transverse waves in solid helium. In contrast, the
velocity of surface acoustic waves on the helium facets
(without melting) essentially depends on the properties
of the liquid even in the long-wave limit.

Uwaha and Baym (1982) calculated the spectrum and
damping of surface waves at higher frequencies, when the
two types of waves become coupled since their velocities
are comparable. This happens when the wavevector ¢
exceeds 10% em™! (still much less than the atomic wave
vectors). For even shorter wavelengths the spectrum of
these mixed waves tends to the linear one with the veloc-
ity slightly below the velocity of Rayleigh waves without
melting. The damping due to the growth resistance de-
creases with increasing ¢. An interesting feature of these
oscillations is that in the limit of large g the surface ten-
sion term dominates in the boundary conditions. As a
result, the elastic displacement of the surface and the dis-
placement due to crystallization almost compensate each
other, and the total displacement of the surface becomes
small compared to those in the liquid and solid.

In these calculations, as well as in calculations of the
anomalous Kapitza resistance (Marchenko and Parshin,
1980b; Maris and Huber, 1982; Puech and Castaing,
1982) it was assumed that the processes of crystalliza-
tion and melting remain practically dissipationless even
at very high frequencies, up tow ~ 101°...10 rad/s. This
arises an important question on possible high speed and
frequency limitations of the very concept of nondissipa-
tive crystallization. According to Andreev and Parshin



(1978), such a limit is due to the finite probability of
quantum tunnelling of an individual helium atom across
the liquid-solid interface,  ~ 10''...10"%rad/s. As we
have seen, experimental data on the Kapitza resistance
in *He agree well with the theory at temperatures up
to 1 K at least and thus confirm that 2 is high com-
pared to the characteristic frequency of thermal phonons
at 1 K. Moreover, the analysis made by Edwards et al.
(1990) showed that the best fit is obtained on the basis
of the concept of very light quantum kinks: the width of
their energy band is estimated to be 30 K! This value ex-
ceeds even the Debye temperature, which means that the
concept of nondissipative crystallization has no specific
frequency limitations in application to real helium.

As for the high growth speed limitations, the situa-
tion is different. Graf and Maris (1987) measured the
transmission of high-amplitude sound waves across the
rough superfluid-solid interface of *He at temperatures
from 0.1 to 1 K. They used these results to determine
the growth coefficient k£ as a function of the growth ve-
locity v. They found that k decreases rapidly as v ap-
proaches the characteristic (“critical”) velocity v, which
was found varying from 1600 to 5100 cm/s for different
samples. This value is surprisingly low, by about one or-
der of magnitude lower than the sound velocity. In terms
of the above discussed (2, this result would mean that
Q ~ v./a ~ 10'rad/s; the width of the kink’s energy
band would be much smaller than 60 K.

Edwards et al. (1990) suggested the following mech-
anism for the decrease of the growth coefficient at high
growth velocities: the kinks are accelerated by the driv-
ing force, so that their energy and density at the crystal
surface deviate from the equilibrium values. This ten-
dency is counteracted by thermal fluctuations and heat
exchange with the surroundings, which results in addi-
tional dissipation, hence in a decrease of the growth co-
efficient. The following simple argument shows that this
mechanism may be really important in the experiments
by Graf and Maris, who used 2.15 MHz acoustic waves
with pressure amplitudes up to 0.4 bar. Let us estimate
the change in the momentum of an individual kink dq
as a subject to a driving force f = a®(pc — pr)/prLdP:
dq ~ f/w =3 x 10~8g-cm/s. This is much higher than
the atomic momentum ¢ ~ wh/a = 10~g-cm/s, which
demonstrates that the crystal surface should be very far
from equilibrium unless an effective relaxation mecha-
nism intervenes.

~

Of course, for a complete understanding of all pro-
cesses involved in the very fast growth of helium crystals,
more experiments are needed, in particular a systematic
studies at different surface orientations, including vicinal
surfaces. Note also that the maximum growth velocity
reached by Graf and Maris (1987), about 10 m/s, was ex-
ceeded in the experiments by (Balibar et al., 2003): using
high intensity ultrasound waves with a pressure ampli-
tude up to 20 bar, they observed small crystals growing
with 100 m/s, at a significant fraction of the sound ve-
locity.
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FIG. 52 .

A ®He crystal relaxing towards its equilibrium
shape (Graner et al., 1989). The time delay between the two

photographs is 10 s.
320 mK.

The temperature is close to Tpin =

D. The case of *He
1. High temperatures

The growth dynamics of 3He crystals is very different
from that of *He. At high temperature, i.e., above the
superfluid transition temperature 7, = 2.5 mK, liquid
3He is a viscous Fermi liquid with a low thermal conduc-
tivity. Furthermore, the latent heat of crystallization is
large, so that the growth dynamics is limited by a large
bulk resistance, as in classical systems. The surface re-
sistance could only be measured near T,;, = 320 mK,
the minimum of the melting curve, where the latent heat
vanishes. As we shall see, this surface resistance is much
larger in 3He than in “He, because the excitations in the
liquid are Fermi quasiparticles with a large momentum
instead of phonons or rotons.

A rough theoretical estimate of the intrinsic growth co-
efficient k was first given by Andreev and Parshin (1978).
Assuming that the dissipation comes from the collisions
of Fermi quasiparticles in the liquid with the moving in-
terface, they obtained k¥ ~ mg3/pr, the mass of a 3He
atom divided by the Fermi momentum. They had as-
sumed that the correlation time of the surface fluctua-
tions is short compared to the average duration of an
individual collision. However, both times should be com-
parable to the inverse exchange frequency in the liquid
and this assumption is not well justified. In the oppo-
site situation, the quasiparticles should interact with the
crystal lattice rather than with the moving interface; with
this assumption, Puech et al. (1986a) obtained

k = (37,/4)(ms/pr)lpcpL/(pc — pr)?],

where 7, is the sticking probability of quasiparticles on
the crystal surface. Due to its large density factor, this
equation predicts that the mobility is larger by about two
orders of magnitude than first predicted by Andreev and
Parshin (1978).

Accurate measurements were performed by Graner et

(73)
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FIG. 53 . Inverse mobility of the liquid-solid interface of *He
near the melting curve minimum at 320 mK (Graner et al.,
1989). The solid line is a fit with Eq. (74).

al. (1989); they confirmed Puech’s model and gave some
information on the other kinetic coefficients. Graner et
al. recorded the shape relaxation of crystals near Ty,;y,.
The crystals evolved at a constant volume so that no heat
had to flow in or out of the cell, even at temperatures
slightly away from T},;,, where the latent heat was not
strictly zero. Heat had to be transferred from the melt-
ing top of the crystal to its growing sides (see Fig. 52).
In their analysis, they followed Puech et al. (1986a) and
assumed that most of this latent heat was liberated on
the liquid side, which meant —B/C =~ T'S¢. This was
justified by Puech et al. (1986a) and Graner et al. (1990)
by explaining that quasiparticles sticking to the solid ex-
change energy more easily with other quasiparticles in the
liquid than with phonons in the solid which have rather
long wavelengths. Furthermore, since Z¢ € Rx < Zp,
they assumed that the latent heat L = T'(Sp,—S¢) mainly
flowed through the interface and through the crystal, so
that the effective growth resistance was
L*.
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=k +
A fit with their experimental measurements (see Fig. 53)

lead (Balibar et al., 1991b; Graner et al., 1989, 1990) to
the values

kr =0.18+£0.04s/m, (75)
which agreed with Eq. (73) if the sticking coefficient 75
was about 0.1 at 320 mK, and
Ri(T =320 mK) = 1.3+ 0.3cm? - K/W . (76)
Puech et al. (1986a) presented qualitative arguments
to predict that the sticking probability 7, should be pro-
portional to 7' in the low temperature limit. This would
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be interesting to study. As for Ry, Graner et al. (1990)
proposed that its relatively small value arises from the
coupling between transverse phonons in the crystal and
transverse zero sound in the Fermi liquid. Using a more
direct method, (Amrit and Bossy, 1990) measured the
Kapitza resistance in a much wider temperature domain
(50 < T' < 200 mK); they found that

RiT? =0.03cm? -K*/W (77)

in a good agreement with both the measurements
(Graner et al., 1989) and the theoretical estimate (Graner
et al., 1990). They also performed careful pressure mea-
surements during melting of a crystal in a tube and ob-
tained & = 0.18 £ 0.02 s/cm, confirming Graner’s results
(Amrit and Bossy, 1993).

In their discussion of the whole picture, (Balibar et al.,
1991b) insisted on the difference between *He and *He.
In 3He, because of the low thermal conductivity of the
liquid, an isothermal experiment is very hard to achieve,
except when the latent heat is zero or at millikelvin tem-
peratures where liquid ®He is superfluid. Furthermore,
the adiabatic coefficient kg is very different from k7, from
the isothermal one, because the quantity (1 — B2/AC) is
very small (= 3 x 10™* at 320 mK). On the contrary, in
‘He, B2/AC < 1 so that k7 ~ kg. In practice, the typ-
ical relaxation time of 3He crystals near 320 mK is com-
parable to that of “He crystals at 1.2 K, but at 0.1 K, it
is about three days in 3He and 3 us for rough surfaces in
“He. This difference is only due to thermal effects. One
can estimate the effect of viscosity in liquid *He as

Vv pC = PLs
1k~ = (FC—FL
[k~ &( )

e ; (78)

where R is the crystal size and v the kinematic viscosity
of the liquid. It is small in the hydrodynamic regime,
where the mean free path of the Fermi quasiparticles is
small compared with the crystal size.

2. Low temperatures

Below T, liquid ®He becomes superfluid, but this tran-
sition does not result in an immediate change of the
growth kinetics: due to the extremely high viscosity of
the normal component, the superfluid convection does
not help in the heat transfer, the heat conductivity of
the solid is very low, but the latent heat is still very large
until the temperature is less than the magnetic ordering
temperature T. As shown in Fig. 54 the mobility of
rough surfaces increases very fast below T . This figure
shows data obtained by different authors at temperatures
down to 0.55 mK (Akimoto et al., 1998; Kawaguchi et al.,
2002; Nomura et al., 1994; Tsepelin et al., 2002b). It is
likely that, even at the lowest temperature, the bulk dissi-
pation still dominates the growth resistance (Jochemsen,
2002).

In all these experiments there is a net crystal growth
so that some latent heat has to be evacuated through
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FIG. 54 . The measurements on the growth rates of *He crys-
tals below T, the antiferromagnetic transition temperature
of bulk solid *He. The solid line shows the T” dependence.

sintered silver heat exchangers (“sinter”) to the thermal
bath. Furthermore, the Kapitza resistance R is small
compared to the liquid thermal impedance (Feng et al.,
1993), and it can be neglected even if all the latent heat is
liberated in the solid, as is expected from the arguments
similar to the ones used above (in the very low temper-
ature limit, one can neglect quasiparticles and magnons
in the liquid, and the only remaining degrees of freedom
are those of magnons in the solid). One can thus write

K=kt pTCZLL2 ,
where Zj, is the total impedance of the liquid including
the impedance of the sinter. In the temperature range
of Fig. 54, Z1, is roughly temperature-independent (Os-
heroff and Richardson, 1985; Vollhardt and Wélfle, 1990;
Wellard et al., 1982). Taking into account that L ~ T,
we obtain a temperature dependence for the second term
in Eq. (79) which is close to T7 (solid line in Fig. 54).
Note that rather large scatter of the data obtained by
different authors may be due to different magnitudes of
Zp, in their experimental cells. As for the first term in
this equation, the intrinsic growth resistance, it is ex-
pected to behave as T* and to be by about thousand
times smaller (see below).

As temperature is lowered below 0.4 mK, the mean free
path of Fermi quasiparticles in the liquid becomes much
larger than 1 cm, and the heat conductivity of the liquid
starts to decrease exponentially, in proportion to the heat
capacity of the liquid (Feng et al., 1993; Vollhardt and
Wolfle, 1990). The heat conduction across the liquid-
solid boundary decreases also exponentially; in contrast,
the (magnon) heat conductivity of the solid remains al-
most constant (Feng et al., 1993; Osheroff et al., 1991).
As a result, the crystal becomes thermally isolated from
the liquid during growth, its temperature is practically

(79)
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uniform and depends mainly on its thermal contact to
the walls. Accordingly, the growth rate of such a crystal
depends essentially on this thermal contact.

A different behavior is expected when the crystal
changes shape at a constant volume. In this case the to-
tal enthalpy of the crystal remains constant, hence there
is no need to evacuate any heat through the liquid or
the sinter. The growth dynamics is now controlled by
the thermal magnons in the crystal, and the situation
looks very similar to the case of “He in the phonon re-
gion; one only has to replace phonons by magnons [see
(Andreev, 1982; Bowley and Edwards, 1983) for such a
comparison]. Here too, one should distinguish the hy-
drodynamic regime from the ballistic one. In the hydro-
dynamic regime, when the magnon mean free path [, is
much smaller than the characteristic size R of the region,
where growth or melting takes place, one can write

chSéZC

A (80)

with Z¢ ~ R/kc is the thermal impedance of the crystal.
It has been found that /,,, ~ 1 pm at 0.4 mK and at lower
temperatures [, increases as T-25 or even faster (Os—
heroff et al., 1991). It means that at sufficiently low tem-
peratures one should expect thermal magnons to be bal-
listic and their interaction with the moving interface to
be responsible for the growth resistance. In this case the
resistance can be estimated [(Korshunov and Smirnov,
1982), see also (Andreev, 1996)] as

(

where the magnon velocity ¢, &~ 8 cm/s (Osheroff et al.,
1991; Osheroff and Yu, 1980).

1 1
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kBT>4 7 (81)
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3. Crystallization waves in *He

The possible observation of crystallization waves in
3He is a very interesting challenge. At temperatures low
enough below Ty thermal excitations disappear and one
expects crystallization waves to propagate with a small
damping, as in “He. It is interesting to estimate the tem-
perature range where it could happen. As for “He, the
quality factor of the waves is

& (o — pr)’?
q pcpL

=2

Q (82)

where g is the wavevector. Taking k from Eq. (81), and
v = 0.06 erg/cm? from Rolley et al. (1989), one sees that
for wavelengths of the order of 1 mm or shorter, ¢ > 102
em™!, Q> 1at T < 0.2 mK.

As in the case of *He, there is a very weak, temper-
ature independent damping of crystallization waves in



3He caused by their instability to the decay of one quan-
tum into two quanta with lower energies (Andreev and
Parshin, 1978; Saam, 1973). Another damping mech-
anism is specific for 3He, namely the Cerenkov radia-
tion of magnons, whose velocity ¢, ~ 8 cm/s is always
smaller than the minimum phase velocity of crystalliza-
tion waves (60 cm/s). This damping is much smaller than
the one coming from the scattering of thermal magnons
[(Eq. (81)], except if the temperature is lower than 10 uK
(Korshunov and Smirnov, 1982).

In zero external magnetic field, the spin supercurrents
which accompany the propagating crystallization wave
(Korshunov and Smirnov, 1982; Marchenko, 1981b) are
too small to produce any measurable effect on the disper-
sion relation. However, as has been shown by (Andreev,
1993), the situation changes in a non-zero field. In *He,
the kinetic energy of the wave is due to the mass flow,
which is by itself a consequence of mass conservation.
Here, the spin conservation during phase transformation
and the large difference in the magnetic susceptibilities
xc and x; imply that spin currents are generated by
growth or melting. Thus, a magnetic contribution has to
be added to the usual kinetic energy. The new magnetic
terms being proportional to the square of the velocity of
the interface, they constitute a magnetic kinetic energy.
The dispersion relation can be written in the usual form

2
2 Y4
w” = 83
M(g) (83)
with the effective mass
H\? | (pc - pr)?
M(q) = prdm | — | + <21 84
@ =pud () + L (54)
where
2
XLCmL
dm = 85
" XCCmC’Qc + chmLQL ( )
and
c
Hy = XLCL\/PLXL : (86)

In Equation (85) Q¢ is the antiferromagnetic resonance
frequency in the solid and Qj is the frequency of the
longitudinal NMR in ®*He-B; both frequencies are of the
order of 10°Hz; Hy is of the order of the exchange field
in the solid (~ 1 Tesla). The length d,, is a few times
smaller than the dipole length in the liquid, Ip ~ 10~°
cm.

This result was obtained for magnetic fields less than
0.4 T, i.e., for a u2d2 phase of the crystal (and with su-
perfluid *He-B). Numerically, the magnetic contribution
dominates the effective mass M when H > Ho(pc —
pr)/pr- In this case the crystallization waves have a lin-
ear dispersion relation with a velocity

_H [ 7
H pLdm.

(87)

43

It is important to note that the spin supercurrents do
not contribute to the energy dissipation, nor do the mass
currents. Therefore the damping should depend on the
growth coefficient given by Eq. (81). Since the Q-factor
increases proportionally to /M, working with non-zero
field should allow to observe crystallization waves in >He
at temperatures slightly higher than in zero field. The
whole issue is a quite remarkable and exciting challenge.

V. DYNAMICS OF SMOOTH SURFACES
A. Basic growth mechanisms

Contrary to rough surfaces, smooth surfaces grow layer
by layer; it means that the growth is due to the trans-
verse displacement of steps and it usually implies that the
velocity v is a non-linear function of the driving force dpu.
Either these steps are nucleated, or screw dislocations
emerge on the facet so that steps are already present.
These two different growth mechanisms are well known
in the physics of classical crystals, and both have been
observed in helium. As we shall see, a few other growth
modes have been observed in helium, whose physical ori-
gins are not yet clear.

1. 2D nucleation

In order to nucleate a new terrace on a dislocation-free
facet, a step needs to be created. The free energy of a
terrace with a radius R is

F(R) = 27RB — nR*dpcdp . (88)
The maximum free energy is reached for the critical ra-
dius

B
R, = . 89
dpcdp (89)
It is the nucleation barrier
B3>
= 90
dpcdp (60)

for the nucleation of terraces. In their experimental
study, Wolf et al. (1985) distinguished three different
regimes. At high temperature and with a large driv-
ing force, terraces should nucleate everywhere at a high
rate so that the surface is covered by terraces, this is the
“dynamic roughening”. At very low temperature, and
with a moderate driving force, the nucleation probability
should be small and the completion of each layer results
from the growth of terraces nucleated one by one. In
this case, the growth rate should be simply proportional
to exp —(E/T) with E given by the above equation. In
practice, this mechanism is difficult to observe because,
at low temperature, it is dominated by spiral growth from



Frank-Read pairs of dislocations. There is a small tem-
perature domain in the vicinity of T, where terraces nu-
cleate simultaneously at different places and have time to
grow on the surface.

One thus has to consider the coalescence of terraces.
There is a characteristic time in this process, which is
a/v, the time for the completion of one layer if the growth
velocity is v. The density of terraces is the product of
this time 7 by the nucleation rate I', so that the aver-
age distance between terraces is 1/(I'7)'/2. Furthermore,
within a time 7 the terraces grow by an amount vstep7.
Coalescence occurs for

UstepT = 1/(D1)Y/2 (91)
and we find 7 to be proportional to the cubic root of I". As
a consequence, the Arrhenius factor in the growth veloc-
ity has to contain exp (—E/3T) instead of exp (—E/T).
This explains the factor “3” in Eq. (24). This growth
mode was apparently observed by Wolf et al. (1985) and
Gallet et al. (1987) who used this model to extract the
step free energy of the c-facets in *He between 1.1 and
1.2 K.

In the limit of zero temperature, Eq. (24) predicts
that the growth rate vanishes exponentially, but there
is a non-zero probability of nucleation by quantum tun-
nelling in a system like *He where dissipation can be
neglected. The probability of quantum nucleation under
the barrier E(du) has been calculated by (Andreev, 1982;
Uwaha, 1983). In the quasi-classical approximation the
tunnelling exponent depends on both the potential bar-
rier and the kinetic energy of the system. The latter is
due to the motion of the liquid which accompanies the
formation of the nucleus. One finds

55/2

B———M 2
hdpo 0| %2)

FQ ~ exp |—

where B is a number of the order of unity. In principle,
this process could be observed at an overpressure dp ~ 1
bar in the case of the (0001) facets in *He. Note that the
quantum growth rate depends on du even more strongly
than in the case of classical one.

2. Spiral growth

The spiral growth from Frank-Read sources was intro-
duced by Burton et al. (1951) and has been reviewed
by (Chernov, 1984). Figure 55 shows the main features
of this phenomenon. It is important to realize that the
growth rate of crystals does not depend on the number
of sources; it is typically determined by the activity of
a single source. As explained by Burton et al. (1951),
this is a consequence of the no-crossing condition for
steps (see Fig. 30). Furthermore, the average distance
between moving steps is usually very large compared to
their height; thus, the step velocity is much larger than
the growth velocity of the facet itself. Since the step
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FIG. 55 . Spiral growth of a crystal induced by screw dislo-
cations. Growth of a single dislocation under a small excess
pressure (a) and of a Frank-Read source (b). At higher growth
rates the dislocation winds around itself to produce a spiral as
shown for a screw dislocation (c) and for a Frank-Read source
(d). From Ruutu et al. (1998).

mobility is comparable to the mobility of rough surfaces,
a facet grows much slowlier than a rough surface (under
the same conditions). This in turn explains why the exis-
tence of facets is revealed by a slow growth (see Fig. 20).
As a result, in the spiral growth regime, bulk dissipation
is usually negligible and the growth is governed by the
step dynamics only.

If one relates the step mobility &k, to the step velocity
vs by vs = ksdp, and if one assumes that ks is isotropic,
then the asymptotic spacing between spiralling arms is

19 pr. B
L~— Pt 7 93

K pc — pr, dép (93)
where K is the number of elementary steps produced
by one dislocation [for the (0001) facet in ‘He, K =
2](Burton et al., 1951). The facet velocity v is v = vsd/L,
or

K (pc — pr)*d®

VR — ks (6p)? .
pipch ©p)

19 (94)

In helium, the step mobility has been the subject of
a number of theoretical (Andreev and Parshin, 1978;
Nozieres and Gallet, 1987; Parshin, 1998; Ruutu et al.,
1998) and experimental studies (Rolley et al., 1995b; Ru-
utu et al., 1996, 1998; Tsepelin et al., 1999).

When discussing the step motion in *He, Andreev and
Parshin (1978) first considered a T = 0 situation where
all thermal processes are frozen out. They suggested that
steps are rough, even in this limit, due to the existence
of zero-point quantum kinks. A classical step should be
smooth at T' = 0 because the creation of kinks or pairs
of kinks requires overcoming a finite energy barrier [see
(Nozieres, 1992)]. However, in *He, kinks can easily tun-
nel from site to site and consequently form quasiparticles



which are delocalized and have a finite bandwidth Ay.
Andreev and Parshin (1978) estimated that Ay =~ hQ) ~
1 to 10 K (€ is the tunnelling frequency in the interface).
They concluded that the bandwidth could be larger than
the energy exo of a localized kink, so that a finite density
of quantum kinks could exist at 7' = 0. As explained in
Section IV.C.3, this model was also used by (Edwards
et al., 1990, 1991) who found an even larger bandwidth,
about 30 K. It is generally accepted now that quantum
kinks can induce a quantum roughness of steps at T =
0. In their article, Andreev and Parshin further pro-
posed that, similarly, there should be a finite density of
zero point steps leading to quantum roughening of the
surface at 7' = 0. However, we have seen in Section
IT1.C.2 that this could not be true: at 7' = 0, the step
energy is always positive, whatever its quantum fluctu-
ations. Within their quantum solid-on-solid model, Tor-
danskii and Korshunov (1984) found that the step energy
B decays as exp (—ey/Ag/ero) and is always positive; ¢
is a number of the order of unity.

If quantum roughening of steps occurs in all direc-
tions, then their mobility should be roughly isotropic. If
the steps are smooth in some high symmetry directions,
then a large anisotropy of the step mobility could be ob-
served. No experiment has been attempted yet to verify
such ideas. At T # 0, the step mobility has to be lim-
ited by the interactions with thermal excitations, as seen
for rough surfaces. This was calculated by Noziéres and
Uwaha (1987) in the case of well separated steps. They
considered the dissipation from the scattering of phonons.
As already mentioned in Section IV.C.7, Nozieres and
Uwaha predicted a crossover from a T behavior for in-
coherent scattering to a T behavior for coherent scatter-
ing, i.e., in the case where the separation between steps
is less than the phonon wavelength. This crossover was
observed by Rolley et al. (1995b).

In the derivation of Eq. (91) all internal degrees of free-
dom of the step were ignored - the step was assumed to be
“cold”. At very low temperatures, it could be true only
in the limit of a small driving force du. At large du kinks
on the step get accelerated and can reach the maximum
possible velocity in the middle of the energy band before
they release the excess kinetic energy. This is nothing but
quantum localization by an external field, a phenomenon
which manifests itself in the quantum diffusion of vacan-
cies and impurities in solid helium (Andreev, 1982), in
the electrical conductivity of superlattices (Esaki, 1992),
and in other systems with narrow-band quasiparticles. In
the regime of localization, the rate of energy dissipation
W, = pcdvsdu does not depend on the driving force; it
is determined by the emission of phonons at collisions of
“hot” kinks with each other (Ruutu et al., 1998). Thus
vs ~1/6p, and

W,

he = Ao (65)

Ruutu et al. (1998) give the following rough estimate for
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FIG. 56 . Velocity of the c-facet as a function of the driv-
ing pressure Ap: T = 2 mK (empty circles), 20 mK (filled
circles), 50 mK (empty triangles, downwards), 100 mK (filled
rotated squares), 150 mK (empty rotated squares), and 200
mK (empty triangles, upwards). Solid lines are just to guide
the eyes. From Ruutu et al. (1998).
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The spiral growth of *He crystals has been studied by
Ruutu et al. (1996, 1998). Figure 56 shows the results of
Ruutu et al. (1998) for the c-facet between 2 and 200 mK.
The velocity of the c-facets increases very fast when the
temperature decreases. The quadratic dependence on the
pressure difference dp is expected in the regime of con-
stant mobility [Eq. (94)]; however, it is observed only
at high temperatures and low velocities. At low tem-
peratures the dependence is almost linear and becomes
even weaker at higher velocities. These results show that
the classical picture of the step motion fails under these
conditions where one should take into account non-linear
effects in the step dynamics.

First of all, the experiments by Ruutu et al. have
shown that, at low temperatures, the step velocities may
be very high: for instance, using v = 20 pm/s, ép = 4
pbar, and Eq. (93), one obtains a step velocity vs & 200
m/s, which is close to the sound velocity in helium. It
means that at all temperatures, at least down to 2 mK,
the density of kinks on the step is very high, of the order
of the atomic density; otherwise the kink velocity would
exceed the sound velocity, which is impossible. More-
over, one can estimate the lower limit for Ay by assum-
ing, as usual, that e, = —Ay cos(pa/h) + const. Then
vr = Aga/2hsin(pa/h), and A > 2hvg/a = 10 K (with
vp = 200 m/s). With such a large value of Ay, and con-
sidering that the density of kinks shows no tendency to
decrease down to 2 mK, it seems that for all step orien-
tations there is a high density of very mobile quantum
kinks.



Furthermore, at such high velocities, the step inertia
should be taken into account. As seen in Section IV.C.3,
the step inertia originates from the hydrodynamic flow
around it; the hydrodynamic mass of a step per unit
length can be written as (Kosevich and Kosevich, 1981)

R
IOg E )
where R is the characteristic large scale of the system; for
the spiral growth R ~ L. The kinetic energy may exceed
the step energy at rest 8: for example, at v, = 200 m/s,
it should be five times larger. When accounting for the
step inertia, the general form of the step motion equation
writes in the Euler variables as

Vs
)

Ovg Ovg
”“(U U)”’“(‘”“ NCk

ot on
where n is the normal of the step, r.(7) is the local radius
of curvature, and 8* = 8+ msv2/2 (Ruutu et al., 1998).
In addition to the usual quadratic growth, Eq. (98)
provides two new growth regimes: the “inertial” regime
at very low temperatures with a linear dependence

(pc — pr)*d?
TPL

(97)
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(98)

ped*dp
2m/2m B’

and the regime of localization at high driving forces,
where the growth rate saturates:
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In Figure 56 the low temperature inertial regime is
clearly seen. The step mass obtained from these data
my = (4...5) x 10718 g/cm agrees quite well with the
hydrodynamic mass given by Eq. (97). As for the regime
of localization, there is a tendency to saturation only at
the highest growth velocities, which allows to estimate
W, roughly as (1...3) x 1073, With this value of W}, one
obtains from Eq. (96) that Ay ~ 10 K (at nga = 1), in
agreement with previous estimates.

The quadratic regime with constant mobility can also
be seen in Fig. 56 at low velocities and higher tempera-
tures. The corresponding step mobility was obtained by
using Eq. (94); it is shown in Fig. 57 as a function of
temperature (circles). As one can see, the temperature
dependence of the measured mobility is very close to T3
between 20 and 200 mK, as predicted by Eq. (91). The
absolute values of ks also agree well with this estimate.
At lower temperatures, down to 2 mK, the mobility was
too high to be measured. Note that in these experi-
ments the spacing of the spiral arms was much larger
than the wavelength of thermal phonons, and therefore
the phonons were scattered incoherently from the steps.
Figure 57 shows a comparison with the effective mobil-
ity obtained by Rolley et al. (1995b) for a vicinal surface
tilted by 0.3 degrees (squares). The difference is proba-
bly due to the fact that, in Rolley’s situation, the phonon
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FIG. 57 . The step mobility as a function of temperature.
The results by Ruutu et al. (1998) (circles) follow the T2
law predicted by Eq. (91). Rolley et al. (1995b) mea-
sured a slightly larger mobility (squares) probably because
the phonon scattering was intermediate between coherent and
incoherent in their experiment.

scattering was intermediate between coherent and inco-
herent.

At low temperatures, where the effect of phonon scat-
tering is weak, the step mobility becomes very sensitive
to the presence of 3He impurities. There should be two
contributions to the dissipation: one from impurities dis-
solved in the bulk liquid and another one from impurities
absorbed on the interface (Parshin, 1998). Both contri-
butions depend on the way how the step is “seen” by
the ®He atoms, i.e., on the relation between the charac-
teristic wavelength of impurities and the effective width
of the step. In the interesting case of relatively short
wavelengths, the impurities can be considered as probe
particles for the step profile studies. The non-degenerate
3D gas gives a contribution

1 v2m3T
g w% : (101)
ks 7r§i

where m3 and ns are the effective mass and the concen-
tration of ®*He atoms in the liquid, respectively, and &;
plays a role of some kind of correlation length for the
step profile as seen by the impurity. This formula has
been checked by Tsepelin et al. (1999). The results of
Tsepelin et al. are shown in Fig. 58; they seem to agree
reasonably well with the above prediction, but the value
of & = 8 nm looks unexpectedly high.

One more non-linear effect in the step dynamics may
originate in the Cerenkov emission of various excitations
by a moving step (phonons and rotons in *He, Fermi
quasiparticles and magnons in *He, etc.). This hap-
pens when the step velocity exceeds the phase velocity
of excitations. If the intensity of this emission is suffi-
ciently strong, the step mobility drops down to a very
low value above some critical velocity v.. This may limit
the growth velocity more than the inertia if v, is rela-
tively low (if msv?/28 < 1) (Ruutu et al., 1998). In this
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FIG. 58 . Step mobilities y on the c-facets of “*He crystals

calculated from the measurements with different *He concen-
trations of 40 ppm (empty squares), 110 ppm (filled circles),
and 220 ppm (empty rotated squares). The dashed line rep-
resents the data taken with regular “He (0.1 ppm). The solid
lines denote theoretical curves. From Tsepelin et al. (1999).

case, the solution of Eq. (98) yields

v = ,OC"Ucd2

= 3B+ el (102)

o

As well as the radiation in the regime of localization,
the Cerenkov radiation is due to the coupling of the step
motion with other degrees of freedom in the bulk liquid
or solid, or in the interface itself. According to Ruutu et
al. (1998), this coupling is rather weak in the case of ‘He
rotons because the roton momentum is large. In contrast,
the radiation of phonons is expected to be strong, but the
corresponding critical velocity is too high, msv?/28 ~
5. Thus the observed linear dependence of the growth
velocity is most probably due to the inertia.

In order to avoid misunderstanding, we note here that
the Cerenkov emission is due to coherent motion of a
continuous step with respect to the liquid or solid. This
process is quite different from the emission of phonons
(and other quasiparticles) in the regime of localization,
when the step could be even at rest as a whole, but is
very hot with respect to its internal degrees of freedom.

3. Facet growth in He

In 3He the critical velocities should be much lower than
in *He. This is first because the magnon velocity vy, in
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the solid is low, and secondly because the pair-breaking
velocity vy is also low, approximately 7 cm/s (Feng et al.,
1993; Osheroff and Yu, 1980). The step-magnon coupling
is expected to be rather strong because the moving step
directly disturbs spins in the solid next to the interface.
Therefore at vs > vy, the step mobility should be signif-
icantly lowered by the emission of magnons. As for the
emission of quasiparticles in the liquid, this contribution
is expected to be relatively weak due to the large value
of the Fermi momentum, as in the case of rotons in *He
(Tsepelin et al., 2002a).

The facet growth in ®He has been studied by several
experimental groups (Akimoto et al., 1998; Feng, 1991;
Kawaguchi et al., 2002; Nomura et al., 1994; Tsepelin
et al., 2002a). In all measurements an almost linear de-
pendence of v(du) was observed for overpressures of the
order of a few mbar. This was interpreted as a spiral
growth with a step velocity limited by the magnon veloc-
ity. In all but one case (Tsepelin et al., 2002a) the crystal
orientation was unknown; thus there is some uncertainty
in the experimental data. Despite this uncertainty all
data agree quite well with each other. Using Eq. (102),
and neglecting the kinetic energy of steps, one can es-
timate the value of 8 for facets growing in this regime.
One finds a few times of 10710 erg/cm.

The most complete data have been obtained by Tse-
pelin et al. (2002a). They were able to measure the
growth velocities of ten different types of facets and to
calculate the corresponding values of § (see Fig. 59). Fig-
ure 59 shows that the dependence of # on the step height
d is approximately 8 o« d*. This was expected for vici-
nal facets with an elastic interaction between steps. The
somewhat surprising result is that the d* law extends
down to a very small interstep distance. This indicates
that the steps are narrow at low temperature in *He, i.e.,
that the coupling to the crystal lattice is strong. Strong
coupling is also indicated by the magnitude of the step
energy which is comparable to the surface energy vd, as
already discussed in Section III.D.2. There is no clear
interpretation to this surprising finding yet.

B. Unusual growth modes of “He facets

As explained above, a facet can grow only by 2D nu-
cleation in the absence of screw dislocations, and this
requires a typical overpressure of 1 bar. However, the
Helsinki group has found a burst-like growth mode oc-
curring on the c-facets of dislocation-free *He crystals,
when the overpressure was slowly increased up to some
fraction of a mbar. Each fast growth event was signalled
by about a 0.1 mbar drop of the overpressure (see Figure
60).

The nature of this burst-like growth mode is not clear
yet. One possibility is that, while the overpressure in-
creases, the facet touches the side wall (which is some-
what rough) at randomly distributed points. This could
happen at ép ~ pvy/l.0p, where I, is the scale of the
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FIG. 59 . Step free energies of different facets at 0.55 mK,
plotted versus corresponding step heights (Tsepelin et al.,
2002a).

L
300 .
g
2 200 |t i
g
o
o
100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 50 100 150
t(s
FIG. 60 . Burst-like growth of *He crystals (Ruutu et al.,
1996).

wall roughness. Then new terraces can be spontaneously
emitted from the contact region, where the threshold
for such emission is estimated to be pfB/L.0p, a quantity
much smaller than §p. The main problem is to explain
why the observed values of §p significantly increase with
temperature or in the presence of 3He impurities. Both
observations indicate that some dynamic process is in-
volved, where the energy dissipation is important. Here,
accounting for the surface oscillations caused by mechan-
ical vibrations of the cryostat could help. On the other
hand, this growth mode could be a manifestation of some
intrinsic property of the facet, not directly related to the
cell walls. Anyway, further experiments are needed to
clarify this issue, perhaps with a cell with very smooth
glass walls.

In the same series of experiments, a slow continuous
movement of the c-facet was found in between the fast
events. The facets grew with velocities of typically 0.5
nm/s, changing approximately linearly with the over-
pressure. Increasing the temperature or adding *He im-
purities slowed down the growth velocity. An interest-
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ing explanation of this growth mode was proposed by
Andreev and Melnikovsky (Andreev and Melnikovsky,
2001). They argued that the crystal could grow “from
the bottom”, due to a flux of vacancies. If so, the growth
velocity of a facet should depend on the crystal height.
They also predicted the existence of a maximum in the
temperature dependence of the growth velocity if these
vacancies are thermally activated, not if they are zero
point vacancies. It would be interesting to test these
predictions experimentally.

An anomalously fast growth mode was found for the
facets of “He crystals at high overpressures by (Tsym-
balenko, 2000, 2003). The *He crystals were nucleated on
a needle by applying an electrical pulse, without direct
contact to the cell wall. At low overpressures, the crys-
tals grew relatively slowly, apparently by the usual spiral
mechanism. Above some threshold pressure value which
increased from about 1 mbar at 0.2 K to 14 mbar at 0.78
K, the crystals grew much faster, with velocities up to 3.5
m/s; this value is comparable to the maximum growth ve-
locity found for rough surfaces by (Graf and Maris, 1987).
The value of this pressure threshold, its dependence on
temperature and the concentration of impurities are close
to those observed in Helsinki for the burst-like growth. It
means that these two observations might have the same
physical explanation (Tsymbalenko, 2003). Note, how-
ever, that in Tsymbalenko’s experiments the crystal is
touching only the needle, so that only one facet touches
the wall, in contrast with the experiments by Ruutu et
al.

The two above examples show that the growth dy-
namics of helium crystals is not fully understood far
from equilibrium, and some important growth mecha-
nisms may be still missing from the theory. One possibil-
ity was suggested by Parshin and Tsymbalenko (Parshin
and Tsymbalenko, 2003). Using the weak coupling ap-
proximation, they considered the non-linear dynamics of
steps on a smooth superfluid-solid boundary, particularly
the collisions of steps with opposite signs. In addition to
the conventional annihilation of steps in such collisions,
they found that under certain conditions transmission
and reflection of steps could occur. The transmission of
steps is similar to the transmission of sine-Gordon kinks
and anti-kinks through each other; it becomes possible if
the step velocities exceed some threshold value, which is
estimated in the case of *He to be about 100 m/s. This
process results in a multiplication of preexisting steps
and gives thus a qualitatively new mechanism for the
facet growth in the absence of renewable sources such as
screw dislocations.

VI. INSTABILITIES AND OTHER PROPERTIES
A. A mechanical instability

If a non-hydrostatic stress is applied to a crystal, the
planar shape of its surface becomes unstable and peri-



FIG. 61 . Bodensohn et al. (1986) observed a formation of
parallel grooves at the surface of “He crystals after a rapid
quench in temperature at around 1 K. The distance between
grooves was approximately 27l, = 6.3 mm, the length of the
scale bar on the image (I, is the capillary length). This was
soon understood as a mechanical instability of the crystal sur-
face, due to the appearance of stresses after the rapid quench
in temperature (see text).
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FIG. 62 . Torii and Balibar (1992) have measured the amount
of melting which is produced when a uniaxial stress is applied
to a “He crystal in equilibrium with its superfluid phase; the
experimental results (various symbols) are close to the pre-
diction of Eq. (108) (solid line). An instability occurs at the
threshold strain u. indicated by arrows.

odic grooves appear on the surface. This instability was
first proposed by (Asaro and Tiller, 1972) as a possible
precursor of fracture and corrosion, and later indepen-
dently by (Grinfeld, 1986, 1993) who connected it to the
spontaneous formation of quantum dots during the het-
eroepitaxy of semiconducting materials. Its mechanism
was further investigated by (Nozieres, 1992) and by (Bal-
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ibar et al., 1991b), who explained that the deformation
of the crystal surface allows some release of the elastic
energy at an expense of the surface energy which is fa-
vorable if the applied stress exceeds a certain threshold.

Consider a liquid-solid interface at z = 0 and suppose
that a stress tensor o;; is applied, which induces a defor-
mation u;;. The stress would be called hydrostatic if its
tensor was diagonal, with 0,, = 0yy = 0., = —P(2).
Suppose that an extra stress o is applied in the z-
direction and that the crystal has fixed boundaries in
the y-direction; then the equilibrium conditions at the
interface are:

0., =—Pp , 04y =0y =0, (103)
Opg = 0zz +00 , Uyy =0, (104)
Ozz =0y =0, (105)
— 022
fe =9 _ sy, (106)
pc

where the chemical potential of the crystal had to be
generalized as ugff since the pressure in the crystal is
not defined.

The extra uniaxial stress o shifts the equilibrium pres-
sure in the liquid by an amount 6 Py, which obeys

eff _ (1—0p)og

i
¢ 2ch

pc

PL

and where op is the Poisson coeflicient and E the Young
modulus of the crystal. Due to the gravity acceleration
g, the crystal melts down by an amount

)
oh= LR
2Eg(pc — pL)

2
0o

(108)

A corrugation of the surface appears with a wavevector

Y
if the uniaxial stress og exceeds the threshold
«_ [ Eq*
= . 110
1-0% (110)

Well beyond this threshold, gravity becomes negligible
and all Fourier components of the surface deformation
are unstable up to a maximum wavevector

203
Im =T - (111)

In an early experiment, Bodensohn et al. (1986) no-
ticed the formation of grooves at the surface of a crystal
after rapid cooling above 1 K (see Fig. 61). Balibar et al.
(1991a) proposed that the origin of the instability was the
non-hydrostatic stress produced by cooling: above 1 K,



the melting pressure varies significantly with tempera-
ture so that cooling down a crystal in a box with fixed
boundaries should produce horizontal stresses. This hy-
pothesis was proved to be correct, and the mechanical
origin of the instability clearly was evidenced by (Thiel
et al., 1992) who showed that grooves appeared either
during cooling or warming, or after applying a horizontal
stress with a piezoelectric bimorph. At nearly the same
time, (Torii and Balibar, 1992) used piezoelectric cylin-
ders to apply calibrated strains to *He crystals. They
first verified Eq. (108) (see Fig. 62). They also verified
that an increasing number of grooves appears beyond the
threshold o* predicted by Eq. (109). However, no exper-
iment has accurately tested yet Eq. (111), which predicts
a wavelength 27/g,, in the nanometer range for strains
of a few percent (as found in semiconductor epitaxy).

Balibar et al. (1991a) also proposed that the crystal-
lization waves are modified in the vicinity of this insta-
bility but this has not yet been checked either. Torii
and Balibar (1992) and Thiel et al. (1992) observed that
the groove direction depends on both the crystal orien-
tation [the wavevector tends to be aligned perpendicular
to the (0001) planes and perpendicular to the uniaxial
stress]. These tendencies could be in conflict with some
interesting experimental situations but this has not been
investigated further.

B. Hydrodynamic instabilities

Several interface instabilities have been considered,
which originate from hydrodynamic phenomena. A first
one is the Kelvin-Helmholtz instability, which is related
to the generation of sea waves by wind: in the presence
of a tangential flow in the superfluid above a crystal sur-
face, crystallization waves are generated. Assuming that
the interface is horizontal, the critical velocity for this
instability is (Kagan, 1986; Parshin, 1985; Uwaha and
Nozieres, 1986):

.= (w)m. (112)

pi

Numerically, one finds v, = 4...5 cm/s, depending on
the surface orientation. Uwaha and Nozieres (1986) con-
sidered the combined effect of a flow and electric charges;
they showed that this critical velocity can be made arbi-
trarily small by letting the electrostatic force to approach
the critical threshold in the absence of flow. (Maksimov
and Tsymbalenko, 2002) recently reported on the obser-
vation of the Kelvin-Helmholtz instability of a crystal
surface; in their experiement, a jet of liquid helium was
produced by injecting electrons with a tungsten needle.
However, there could be another explanation for their ob-
servation: the flow is inhomogeneous and may produce
an inhomogeneous Bernoulli pressure, which could desta-
bilize the surface. It would be interesting to reproduce

50

their observations with a better control of all the relevant
parameters.

A Kelvin-Helmholtz instability has been predicted for
facets by (Andreev, 1994). He showed that in the pres-
ence of a superfluid flow parallel to the facet, the facet
becomes unstable against the formation of pairs of steps
aligned perpendicular to the superfluid velocity v,¢. As a
result, the surface stiffness becomes finite in the direction
of the superfluid flow, and the facet shape becomes cylin-
drical. The equilibrium density of steps was estimated as

nswexp<_ )

For the c-facet on “He crystals the exponent in
Eq. (113) is of the order of unity if v,y ~ 4 x 10%cm/s.
this is large, so that the experimental observation of this
type of Andreev’s instability looks difficult.
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pLavy;

(113)

Another type of hydrodynamical instability has been
considered by (van Saarlos and Weeks, 1995) for rough
surfaces. With usual fluids, it is well known that the
standing capillary waves can be excited parametrically,
by oscillating the fluid vertically; this is the “Faraday
instability” (Faraday, 1831). Van Saarloos and Weeks
suggested to excite standing crystallization waves at the
horizontal liquid-solid interface by shaking the whole cell.
At a given frequency, the instability threshold depends
only on the growth coefficient k and it is essentially the
same for modes with different wave vectors ¢ (in the low-
damping limit), thus providing an independent means to
measure k. Moreover, the growth resistance and the sur-
face stiffness being anisotropic, different patterns could
be observed, not only the usual one which has triangular
symmetry; van Saarlos proposed this experiment in order
to obtain more information on both the surface proper-
ties of *He crystals and the mechanisms of the pattern
selection in the Faraday instability.

Recently (Nomura et al., 2003) have studied the effect
of an acoustic radiation pressure (Rayleigh, 1902) on the
rough liquid-solid interface. When an acoustic wave was
applied from the liquid side, it always induced melting
of the crystal. When applied from the crystal side, melt-
ing was induced at high temperatures and crystallization
was induced at temperatures below the inversion temper-
ature, T;, which varied in the interval from 0.6 to 0.8 K,
depending on the surface orientation. The acoustic radi-
ation pressure theory (Borgnis, 1953) explains reasonably
well the experimental observations at low temperatures,
but additional melting mechanisms are needed to explain
the high temperature behavior, the origin of which is not
known yet. Herefore again, this interesting phenomenon
deserves further study.



FIG. 63 . A 3He dendrite growing at 100 mK with a tip
velocity of 30 pm/s. The cell width is 4 mm. Side branches
appear at a distance of about 50 times the tip radius from
this tip (Rolley et al., 1994a).

C. Dendrites
1. Helium crystals in zero magnetic field

In a number of situations, the growth of helium crystals
is governed by the diffusion of heat or mass in the two ad-
jacent bulk phases. Under sufficiently strong departure
from equilibrium, dendritic instabilities have been ob-
served and analyzed. Franck and Jung (1986) and Rolley
et al. (1994a) found some interesting differences between
helium dendrites and more classical ones.

(Franck and Jung, 1986) studied the dendritic growth
of pure *He crystals at high pressure (210 to 4200 bar)
and at high temperature (5.4 to 46 K). Under such condi-
tions, liquid *He is normal and solid *He is a hcp crystal
below 1120 bar (where the melting temperature is 15 K)
and a fcc one above. Franck and Jung found that the
growth velocity of crystals was larger than predicted and
also that the side branches appeared much further away
from the dendrite tip than in usual crystals. They tried
to make some quantitative comparison with existing the-
ories but had to estimate many unknown quantities.

Rolley et al. (1994a) studied the dendritic growth
of 3He crystals between 80 and 120 mK. Thanks to
many other experiments of the same group, most of the
relevant physical quantities were known, including the
anisotropy of the surface stiffness. They also found that
the side branching instability was weak, so that these
branches were often absent on dendrites with almost per-
fect parabolic shapes. On the fast growing shapes of crys-
tals they found the side branches appearing a distance =
50p; away from the tip; p; being the tip curvature radius
(see Fig. 63). This is ten times more than with usual
crystals. They attributed this difference to the fact that
the heat conductivity in the solid is much larger than in
the liquid, an anomalous situation, but they asked also
for further checks of their interpretation.
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Rolley et al. (1986) noticed another interesting differ-
ence with usual crystals: the latent heat was released
in the liquid under their experimental conditions and it
had to go through the interface, whose thermal resistance
Rk was large, before being conducted through the solid
whose thermal impedance was small. This allowed them
to understand their measurement of the stability crite-
rion of ®He dendrites, i.e., the selection of the dendrite
tip velocity. In the calculation of this criterion, Rolley et
al. (1994a) showed that the usual ratio of the heat con-
ductivities on both sides of the liquid-solid interface had
to be replaced by an expression involving the surface re-
sistance Rg. Once this was done, they found agreement
with their measurement on the product vip? (v being
the tip velocity).

2. Melting process of highly magnetized solid He

The growth or melting of a solid is accompanied by
mass and heat flows, which are due to the density and
entropy differences between the two phases in contact. If
the two phases have different magnetizations at equilib-
rium, there appears a magnetization flow. In the case
of 3He, where the solid has a much larger susceptibility
than the liquid, one can probe the magnetization flows
on both sides of the interface as well as the magnetization
transfer through the interface.

The melting of magnetized solid *He has been consid-
ered by (Castaing and Nozieres, 1979). They proposed
that when the solid is melted on a time scale shorter
than the spin-lattice relaxation time (about 1000 s at a
few tens of mK), then a magnetization boundary layer
builds up on the solid side of the interface. This bound-
ary layer is simply due to the increased magnetization
of the newly produced liquid, and that in turn enhances
the magnetization in the solid near the interface. Later
(Bonfait et al., 1984) have suggested that, in analogy
to the Mullins-Sekerka instability (Mullins and Sekerka,
1964), the buildup of this boundary layer would make
the liquid-solid interface unstable and this suggestion was
backed up by a calculation of (Puech et al., 1986b).

The situation, as analyzed by Puech et al., is sketched
in Fig. 64(a) and that kind of picture has been used in
several theoretical considerations (Kassner, 1996; Langer,
1980). The analysis of Puech et al. showed that when
a planar interface propagates with a constant speed in
the absence of magnetization gradients in the liquid, the
interface would be unstable with a typical growth time
for the most unstable modes of the order of 0.1 s.

Experimentally, the melting of highly polarized solid
3He has been studied by several groups (Bonfait et al.,
1984; Vermeulen et al., 1987). The most recent exper-
iments have been performed by the Leiden group who
found with their new type of optical cryostat (see Fig. 7)
that if the solid 3He was melted sufficiently rapidly in
an 8.9 T field and at 9 mK, the instability of the inter-
face occurred in several tens of seconds after melting was
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FIG. 64 . (a) Sketch of the magnetization profile of a planar
interface melting with a constant speed, analyzed by Puech
et al. (1986b). On the solid side, the magnetization profile
falls off exponentially and there is no gradient on the liquid
side. (b) Sketch of the buildup of the magnetization profiles
as concluded by Akimoto et al. (2000) at time ¢ = 0, when the
melting is started (black line) and at three successive times
during the initial melting phase. While the boundary layer
with increased magnetization is building up in the solid, a
stabilizing gradient is also building up in the liquid. The
magnetization of the bulk solid (at right) decreases due to the
increase in temperature during the rapid melting experiment.
Both pictures are drawn in a frame moving with the liquid-
solid interface. From Akimoto et al. (2000).

started. The solid formed many cellular dendrites, which
were directed parallel to the magnetic field (see Fig. 65).
No instability was observed during melting in low mag-
netic field nor with high initial temperature (about 100
mK) even in an 8.9 T field.

In their further rapid melting experiments, the Leiden
group applied a small magnetic field gradient and they
were able not only to image the liquid-solid interface but
also to measure the magnetization profile perpendicular
to the interface (Akimoto et al., 2000). These measure-
ments revealed the buildup of a magnetization gradient
on both the liquid and the solid side of the interface dur-
ing the first phase of the melting process [see Fig. 64(b)].
It was shown by Akimoto et al., who extended the sta-
bility analysis of Puech et al., that it is this gradient in
the liquid which stabilizes the interface during the initial
stage of melting. The interface becomes unstable only
when the magnetization gradient on the liquid side is
negligible, after what the instability develops in a short
time, as predicted by theory. These results agreed also
with numerical calculations performed by (Plomp et al.,
2001).
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FIG. 65 . A sequence of images during rapid melting of solid
3He in an 8.9 T magnetic field. The instability occurs at
about 45 s after the start of decompression of the cell: the
cellular dendrites with a size of 50...100 ym appear in a ver-
tical direction (Marchenkov et al., 1999).

VIl. CONCLUSION: OPEN QUESTIONS

In conclusion, let us insist on a few open problems or
unanswered questions which look interesting to us and
deserve further study:

(1) Roughening in *He. What is the roughening tem-
perature of the (110) facets on ®He crystals? Is it possible
that the coupling of the interface to the crystal lattice is
weak at high temperature and strong at low tempera-
ture? How do the superfluid transition and the magnetic
ordering transition affect surface properties like the step
energies of facets and the growth rate of crystals?

(2) Roughening in *He. New measurements on the step
energy near Tg; are necessary. If possible, independent
measurements of the correlation length £ should allow to
clarify some fundamental aspects of the renormalization
group theories. One would also like to know if more than
three roughening transitions can be observed in *He.

(3) Crystallization waves in *He. These waves are pre-
dicted to propagate below about 0.2 mK. To excite and
detect waves at such low temperatures is an exciting chal-
lenge. Of particular interest is the magnetic field depen-
dence of the kinetic energy of waves. In fact, the mag-
netic field dependence of the dynamics of rough surfaces
in ®He is unexplored experimentally.

(4) Fast dynamics of facets at very low temperature
in “He. The mechanisms of several different fast growth
modes have to be understood. Would it be possible that
facets are so mobile at low temperature that the Kapitza



resistance becomes anomalous on facets as well, not only
on rough surfaces? If so, could one observe non-linear
crystallization waves on facets?

(5) Could one observe the competition between the
crystal anisotropy and the stress anisotropy in the surface
instability of stressed crystals? And could one study the
crystallization waves near the instability threshold?

This list cannot be complete. It only gives some feeling
of the rich variety of problems which can be addressed
when studying the surface of helium crystals. Some of
them are of general interest, some others are particular
to helium and often surprising. Clearly, there is a lot
to see at the surface of these crystals, not only what
has been the matter of this review, but probably a lot
more. Keesom would certainly have admitted it with
great pleasure.
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Notations and Symbols

a
A B,C
Oo,L
Cc,CL

Ci, Ct

d
E
k

lattice constant

Onsager matrixc coefficients
indices for crystal and liquid
sound velocity in the crystal
and in the liquid

longitudinal and transverse sound
velocity in the crystal

step height

Young modulus

surface mobility or

growth coeflicient

Botzmann’s constant

step mobility

interface inertia or mass per
unit area

kink mass

wave vector

Kapitza resistance

roughening temperature

reduced temperature

strain

lattice potential per cell L x L
velocity

lattice potential per unit area
step width

acoustic impedance

surface tension or free energy per
unit area

step energy

surface stiffness

roton gap energy

interaction energy between steps
(per unit length)

elastic interaction between steps
entropic interaction between steps
difference in chemical potential
difference in pressure

difference in temperature

kink energy

Onsager cross coefficient
chemical potential (per unit mass)
wave frequency

correlation length

density

stress

Poisson coefficient

angles

velocity potential

wave angular frequency
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