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Abstract. The mechanical properties of crystals are strongly affected by dislocation mobility.
Impurities can bind to dislocations and interfere with their motion, causing changes in the
crystal’s shear modulus and mechanical dissipation. In 4He crystals, the only impurities are
3He atoms, and they can move through the crystal at arbitrarily low temperatures by quantum
tunneling. When dislocations in 4He vibrate at speeds v < 45 µm/sec, bound 3He impurities
move with the dislocations and exert a damping force B3v on them. In order to characterize
4He dislocation networks and determine the 3He binding energy, it is usually assumed that B3 is
proportional to the concentration of 3He bound to the dislocations. In this preliminary report,
we determine B3 in a crystal with 2.32 ppm 3He and compare with our previous measurements
of B3 in natural purity 4He crystals to verify the assumption of proportionality.

1. Introduction
Recent work[1, 2, 3, 4, 5] has demonstrated that the mechanical properties of hcp 4He crystals
can be understood in great detail by modeling their dislocations as elastic strings that vibrate
between pinning points[6]. At low dislocation speeds and low temperatures, 3He impurities bind
to the dislocations and move with them, damping their vibrations[3]. The binding energy EB

was determined from the frequency dependence of the peak dissipation temperature under the
assumption that the damping due to 3He is proportional to the concentration of 3He atoms
bound to the dislocations [3, 5, 7]. In order to test this assumption, we are measuring the 3He
damping coefficient as a function of the 3He concentration in the helium gas that we use to grow
our crystals. In this preliminary paper, we report the 3He damping coefficient for a crystal with
a 2.32 ppm bulk 3He concentration and compare with that of crystals made of natural purity
helium. We find a linear dependence on 3He concentration.

Dislocations in 4He crystals are strongly pinned where they intersect, forming a network
characterized by an average length LN between network nodes and a density Λ that is given
by the total dislocation length per unit volume of the crystal. In the absence of damping, the
dislocations vibrate elastically between pinning points in response to an oscillating stress. (No
effect of the lattice potential on dislocation vibrations has been detected in hcp 4He [1].) This
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results in a strain ϵdis that adds to the strain ϵel for the case of immobile dislocations [8]. The
additional strain ϵdis causes the shear modulus µ to decrease from the intrinsic value µel:

µ =
µel

1 + ϵdis/ϵel
. (1)

The magnitude of the softening (µel − µ)/µel is of order 1 with mobile dislocations, but it
is reduced by damping of dislocation motion by bound 3He impurities or thermal phonons.
We define a relaxation time τ = BL2

N/π2C, where B is the damping coefficient, C =
µelb

2 ln(R/r)/[4π(1 − ν)] = 2.3 × 10−12 N is the tension in the dislocation line, b = 0.367
nm is the Burgers vector, ν = 0.33 is Poisson’s ratio, R ≈ LN ≈ 100 µm is the typical spacing
between dislocations, and r ≈ 1 nm is the diameter of the dislocation core [9]. For the case of a
constant LN (i.e. no pinning by bound 3He), we have[5]

ϵdis

ϵel
= αΛL2

N

1 − iωτ

1 + (ωτ)2
(2)

where ω/2π is the driving frequency, α = 32 (1 − ν) /π4 ln (R/r) = 0.019. Equations 1
and 2 show that as B increases, µ increases to its intrinsic value µel and the dissipation
Q−1 =Im[µ] /Re[µ] passes through a maximum at ωτ =

√
1 + αΛL2

N [5]. We use Eqs. 1
and 2 along with measurements in the phonon damping regime to determine Λ and LN for a
given crystal [2], and then use Eqs. 1 and 2 along with measurements on the same crystal in
the 3He damping regime to determine the 3He damping coefficient.

2. Experimental details
Our crystal growth and shear modulus measurement techniques have been explained in detail
in previous publications [1, 5]. Inside the measurement cell, two piezoelectric shear plates face
each other with a separation of 0.7 mm, forming a narrow gap that is filled with an oriented 4He
crystal (Fig. 1 inset). The orientation of the crystal is determined by photographing its growth
shape through the windows of the cryostat at constant temperature and pressure. Applying
a voltage V to one transducer produces a shear strain ϵ = V d15 in the 4He crystal, where
d15 = 95 pm/V below 1 K [1]. The resulting stress σ in the 4He is measured with the opposite
transducer. The shear modulus is then given by µ = σ/ϵ. The present measurements were of a
crystal with 2.32 ppm 3He concentration that was oriented so that its six-fold axis of symmetry
was nearly aligned with motion of the drive transducer, with spherical coordinates θ = 1.93
deg and ϕ = 52.1 deg, where θ is the polar coordinate measured relative to z and ϕ is the
azimuthal coordinate measured relative to x (coordinates defined in Fig. 1 inset). As a result,
the maximum shear modulus µel for this orientation was within 1 % of the intrinsic value at
melting pressure of the elastic coefficient c44 = 124 bar [1, 10]. The crystal was grown at 1.4 K
so that any small liquid droplets that could trap 3He solidified as the crystal was cooled below
1 K.

3. Results and discussion
We used high drive, high frequency measurements to determine LN and Λ for our crystal
(x3 = 2.32 ppm), as in [2]. Figure 1 shows the dissipation and shear modulus measured on
cooling at a driving frequency of ω/2π = 16 kHz and a rms driving strain ϵ = 2.3 × 10−6. The
shear modulus decreased monotonically while cooling because the high ϵ prevented 3He atoms
from binding to the dislocations, except at the very lowest temperatures where a small amount
of binding occurred. At the same time, this driving strain is low enough to prevent irreversible
deformation of the crystal. The overlap of the three different measurements in Fig. 1, which were
made on different days, demonstrates the high degree of reproducibility of the measurement.
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Figure 1. Solid curves: The dissipation
and shear modulus measured on cooling at
a driving frequency of ω/2π = 16 kHz
and a rms driving strain of 2.3 × 10−6.
The 3He concentration was 2.32 ppm. The
different colors correspond to measurements
on different days, which demonstrate excellent
reproducibility. The dashed line demonstrates
the linear dependence of Q−1 on ωT 3 in the
limit of low T , as predicted by Eq. 4, which
allows us to determine the average network
length LN = 158 µm and dislocation density
Λ = 4.1 × 105/cm2. Inset: The experimental
cell used for these measurements (see text).

Since 3He atoms were not binding to the dislocations in these high drive measurements,
thermal phonons made the only contribution to the dislocation damping. It was shown in [2]
that thermal phonons damp dislocations by the fluttering mechanism in this temperature range,
so that the damping coefficient is Bph = 14.4k3

BT 3/π2h̄2c3 ≈ 2.1 × 10−8 T 3 Pa s where c is the
sound speed [11, 12], and the relaxation time is τph = BphL

2
N/π2C. Substituting τph for τ in Eq.

2 and using Eq. 1 yields, at low temperatures where the phonon damping is small, a maximum
softening

∆µ

µel
≡ µel − µ

µel
=

αΛL2
N

1 + αΛL2
N

(3)

and a dissipation

Q−1 =
∆µ

µel
ωτph =

∆µ

µel

14.4k3
B

π4h̄2c3

L2
N

C
ωT 3. (4)

The dashed line in Fig. 1 shows that Q−1 has a linear dependence on ωT 3, as predicted by Eq.
4. Thus we substitute the maximum softening ∆µ/µel = 0.664 and the low temperature slope
Q−1/ωT 3 = 1.55 × 10−5 sec/K3 from Fig. 1 into Eqs. 3 and 4 to determine LN = 158 µm and
Λ = 4.1 × 105/cm2.

Having characterized the dislocation network, we can now determine the 3He damping
coefficient. We used measurements at low drive and low frequency, and thus low dislocation
speed, for this purpose. Figure 2 shows the temperature dependence of µ and Q−1 in this
limit, measured on cooling with the same crystal as in Fig. 1. The shear modulus increases
monotonically as the crystal is cooled because 3He atoms progressively bind to the dislocations
and damp their motion. Because the measurements in Fig. 2 are at low frequency, damping by
thermal phonons is now negligible. At the lowest temperatures, µ = µel. Near the midpoint of
the temperature variation of µ at each frequency, Q−1 reaches a maximum at a temperature Tp.

The black circles in Fig. 3 show 1/Tp measured in the 2.32 ppm crystal at different driving
frequencies, including the measurements shown in Fig. 2. We can derive an expression for
the frequency dependence of Tp by initially assuming that the 3He damping coefficient B3

scales with some power n of xd, the concentration of bound 3He, i.e., B3 = B0x
n
d , where

xd = x3 exp (EB/T ) and x3 is the bulk 3He concentration. We will determine B0x
n
3 from

our fit (in previous work [7, 3, 5], it was assumed that n = 1). Equations 1 and 2 imply that
the dissipation attains a maximum value at the temperature Tp at which ωτ =

√
1 + αΛL2

N [5].
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Figure 2. The dissipation and shear modulus measured on cooling at an rms driving strain of
2.7 × 10−9 with the same crystal as in Fig. 1. The 3He concentration was 2.32 ppm.

Substituting τ = B3L
2
N/π2C, since phonon damping is negligible, implies

f = f∞ exp(−nEB/T ) (5)

where f = ω/2π and

f∞ =
πC

√
1 + αΛL2

N

2B0xn
3L2

N

(6)

The black solid line in Fig. 3 is a fit of Eq. 5 to the data from the 2.32 ppm crystal with best
fit values nEB =0.73 K and f∞ = 757 Hz. Using Eq. 6 with f∞ = 757 Hz and the values
LN = 158 µm and Λ = 4.1 × 105/cm2 determined above, we obtain B0x

n
3 = 3.3 × 10−7 kg/sec

m.

ε=2.7 x 10-9

Figure 3. The black circles show 1/Tp,
the inverse temperature of the Q−1 peak,
measured at different driving frequencies (Fig.
2). These measurements were made at low
driving strain ϵ = 2.7 × 10−9. The black
line is a fit of Eq. 5 to the data. The red
and blue data points are measurements at the
same driving strain on natural purity crystals
studied in [3, 5] and the red and blue lines are
corresponding fits of Eq. 5.

In order to determine the value of n, we use measurements on natural purity crystals from our
previous work and the analysis procedure given above. The natural purity crystal Y3 studied
by Haziot et al. [3] had LN = 88 µm and Λ = 5.5× 105/cm2. Fefferman et al. [5] reported that
natural purity crystal Z5 had LN = 96 µm and Λ = 7.9 × 105/cm2. The frequency dependence
of Tp for Y3 and Z5 and corresponding fits using Eq. 5 are shown in Figure 3. Using Eq. 6 we
find that the values of B0x

n
3 for crystals Y3 and Z5 are respectively 3.8 × 10−9 and 2.6 × 10−9

kg/sec m, so that the respective ratios to the value of B0x
n
3 at 2.32 ppm are 0.012 and 7.9×10−3.
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The concentration of 3He in the natural purity helium from our supplier was x3 = 3.6 × 10−8,
which is 0.016 times that of our 2.32 ppm sample. Our natural purity helium had much less 3He
than the natural purity helium of [13], in which x3 = 1.7 × 10−7 was measured, demonstrating
that x3 is far from universal. It may vary by two orders of magnitude depending on the origin
of the helium [14]. Under the assumption that x3 of our supplier’s helium has been constant
over the last three years (we intend to verify this), our results are much more consistent with a
linear dependence of the 3He damping coefficient on 3He concentration (n = 1) than with, e.g.,
a quadratic dependence. This implies that the slopes of the Arrhenius plots in [3, 5, 7] indeed
give the binding energy, EB = 0.7 K, as had been assumed in those works. Kim et al. [15] and
Iwasa [16] made the estimates EB = 0.4 and 0.2 K, respectively. These estimates would only be
consistent with the damping measurements in the present work and in [3, 5, 7] if n ≈ 2, but our
preliminary results imply that this is not the case.
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