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Exactly soluble noisy traveling-wave equation appearing in the problem of directed
polymers in a random medium
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We calculate exactly the velocity and diffusion constant of a microscopic stochastic moded\aflving
particles which can be described by a noisy traveling-wave equation with a noise ofNotfeOur model can
be viewed as the infinite range limit of a directed polymer in random medium Miftes in the transverse
direction. Despite some peculiarities of the traveling-wave equations in the absence of noise, our exact solution
allows us to test the validity of a simple cutoff approximation and to show that, in the weak noise limit, the
position of the front can be completely described by the effect of the noise on the first particle.
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Traveling-wave equations such as the Fisher- Other types of noise have also been considered; for in-

Kolmogorov-Petrovsky-Piscouna¥KPP) equation[1-3], stance, taking(u) «u in Eq. (2) would represent the fluctua-
tions of a control parameter due to some external noise
du= azxu +u-Uu?, 1) [19,20. We will not discuss these other types of noise in the

present work.

describe moving front§4] in a large number of problems in Here, we consider a microscopic model which can be
biology, chemistry, and genetics. In physics, it appears irviewed as the problem of directed polymers in a random
nonequilibrium statistical mechanics and in the theory of dis-medium [21] where we take the infinite range limit in the
ordered system§b,6]. In typical casesi,(x) represents the transverse direction. As explained below, this problem leads
concentration at positior and timet of some chemical spe- to a noisy traveling-wave equation and, for one specific
cies or of individuals carrying a certain gene. It is well es-choice of the disorder in the directed polymer problem, we
tablished[3,4,7] that equations of the FKPP type have a onecan solve the microscopic dynamics and calculate exactly the
parameter family of traveling-wave solutions witl{—=) velocity, diffusion constant, and all the higher cumulants of
=1 andu(«)=0 parametrized by their velocities and that the position of the front. This exact solution allows us to test
the decay of the initial condition determines the velocity ofseveral approximation schemes used recently to attack the
the front. For localized initial conditions, the velocity is the general problem of noisy fronts.
minimal velocity allowedv yi,=2. The microscopic model we consider here is defined as

When deriving traveling-wave equations such as @g. follows: at each time stepwe haveN particles on the real
from a given microscopic stochastic modg8s-13, one usu-  axis at positionsx(t), ... Xy(t). Given these positions at
ally gets a noisy version of Eql): time t, the new positions at time+1 are obtained by

du=Bu+u- 2+ e g, @ Xt D= maxhi® 5,0} ©

where the additional term is proportional to a functigiu) ~ Where thes;;(t) are independent random numbers generated
of the concentration and to a Gaussian ngiéet) white in  @ccording to a given distributiop(s). One can think of x(t)
time and possibly correlated in space. The amplitadep- @S P€ing the ground state energy “Of a dlrect?d polymer of
resents the ratio between the microscopic and the macr¢€ndtht ending at position in the “transverse” direction.
scopic scales. Internal fluctuations due to the finite numbefNen EA.(3) describes the infinite range case in the trans-
of interacting particles givé11,12,14,15 g(u) = V/m_ verse dll’eCtI.OI’ll as the d!re_cted polymer may jump at any step
Although it is now establishefiL1] that the presence of the {T0m any sitej to any sitei and gain a bond energysj(b).
noise term is sufficient8—10,16 to select a single velocity !t IS €asy to show that the points remain grouped and we
v, and that this selected velocity, tends slowly[9,10] in  Want to know the veloCitye,aerand the diffusionDeyac Of
the limit e— 0 to the minimal velocityv,;, allowed by Eq. this cloud of pomts(or, equal_ently, of its center of mass
(1), it is still a theoretical challengg4,10,12,17,1Bto pre- One can associate a traveling-wave equation to(&dy
dict how v ;,—v. vanishes withe or how specific properties considering the proportion(x) of particles on the right of:
of the noisy equation such as the diffusion consianof the

1
front position behave in the small noise limit. ux) == > 6(x(t) -x), (4)
1=<i=N

where 6(z) is the Heaviside function. Clearly(x) is a de-
*Electronic address: Eric.Brunet@Ips.ens.fr creasing function withu,(-<)=1 andu,(«)=0, so thatu,(x)
TElectronic address: Bernard.Derrida@Ips.ens.fr has the shape of a front.
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For a given front configuration,(x), the random variables (U1(X)) =1 —exd- B e, (13
{x(t+1)} are uncorrelated and the probability to be on the _ _
Proffx(t+1) >x]=1 _K,HgN px=x®), (5 B.=N f Cudx= S e, (14)
1<i<N
where u(s) is the probability that;(t) <s:
s P Z 50 This definition and Eq¢13) imply that, givenB,,
M(S):f p(s')ds'. (6) (Byay) =%, (15)

which means that the distribution of the random varidhle
decays slowly.

The main advantage of the Gumbel distributid®) is
that the maximum of several Gumbel variables is itself dis-
tributed according to a Gumbel distribution. Therefore, for
fixed x;(t) in Eq. (3), having thes; ;(t) distributed according
to the Gumbel distributioii12) implies thatx;,(t) is itself a
Gumbel variable.

The Gumbel distribution is simple becauBgin Eq. (14)

For a givenu(x), the probability (5) is simply the front
(u1(x)) at timet+1 averageaver one time ste@ne could
rewrite Eq.(5) using only the front variablei(x):

K (X=y)

a(x=y) dy}’ "

but one needs to be careful whenvanishes and use the

following prescription: Whenu(x-y)=0, then u,(y)u'(x

—y)/ u(x—y) should be set to 0 iu(y)=0 and to #c if s the only information needed to construct the frapt(x)

ui(y) # 0. at timet+1. If one defines the positioX, of the front at time
The random positiong(t+1) can be generated by solving t by X,=InB,, then the displacements

(Us1(X))=2z, where z;,...,zy are N independent random

(U (¥)) =1 - ex;{— N f ui(y)

numbers uniformly chosen between 0 and 1 and the fluctu- AX = Xie1 = X = InByyy — INBy (16)
ating frontu,.(x) is finally given by are uncorrelated random variables given by
1
()= 1 2 0(Ua(0) = 2). ® [ B S w
e e T Ty ]

From Eg. (8), one can calculate how the fluctuations of

U1(x) are correlated. Writing where they;(t+1) =Bexd —x;(t+1)] are independent and, us-

ing Egs.(5), (7), and(13), distributed according to

1
Ups1(X) = (Upeg (X)) + \,,—N N1(X), 9 p(y) = €7(y). (18)
one finds(7.1(X))=0 and forx<y As the AX; are independent, the cumulants of the posidon
are simplyt times those ofAX;, which can be calculated
(1) 72(Y)) = [1 = (U1 (X)) KU1 () - (10) from its generating function. The identity

Writing 7(x) = &(X)\{7?(x)), Eq.(9) becomes very similar to
Eg. (2) with g(u)=+u(1-u). So far, Egs.(7) and (8) and
their consequence Eq®) and(10) are exact, for arbitrariX.

From Eqg.(8) one can also calculate higher correlations of . .
M+1(X) ;n((j ;hOW that, for larg#), the 7 bgecome Gaussian. and the fact that thei(t) are independently distributed ac-

For example, one can check that, up to terms of ordéy, 1/ cording to Eq.(18), lead to the following exact expression:

- A, _ifw 1 Jm
(e >_F(5) i duu‘*( i

IS & property For largeN, the integral ovewu is dominated by the neigh-
borhood ofu=0 where

—5AX, _ifx -1 X
(e >_F(§) i du ¥ Yexp(- ue)), (19)

(mmm3na) = (X ama) + (X 72ma) + (L maX 1273)

[we used the simplified notatiom, = 7.,1(X;)]. We should
notice that the Gaussian character of #g(x)
valid only for largeN and in regions where

N(1 = (u()) > 1 and Nui4(x)) > 1.

N
e‘y'<“’y>dy) . (20

(11

From now on, we will limit our discussion to the case
wherep(s) is a Gumbel distribution: 0

p(s) =exp—s—¢€79). (12

In that case, the full analysis of the problem becomes easyhereyz=-I""(1)=~/¢" du €"In uis the Euler gamma con-
and we can calculate exactly the statistical properties of thetant. Any term of higher order in would give a correction

eV Wdy=1+uln u+ 2y - Hu+O(uln u),

(21)

front in the largeN limit. From Egs.(6) and (12), one has
u'(s)/ w(s)=e and Eq.(7) becomes

1/N to the final result. Using Eq21) into Eq. (20), one
obtains, for largeN,
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In(e™®Xy=- (L +In L)
I'"@a+5)
r@a+yo

1

—éInL+1—2 -
L E L

)

(22)

whereL=In N. This leads to the following exact expressions

for the velocity and of the diffusion constant of the front
described by Eq9.7)«10) whenp(s) is given by Eq.(12):

X InL

iim S o e Db I,
Veae= liM == =L +1n 0
—00

L

A2

Expanding Eq(22) in powers ofé gives also all the higher
cumulants of the position of the front.

0B =X _ 7

t 3L 23

Dexact:

—00
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)\ — et
= (Uea(Au) = 1 - % (26)
By eliminating Ai;1, one gets
” 1-e¢
Bui=BN J >—du. (27)
In(NIN-y) U
Using veyof=IN(Bis1/By), we get, for large.=In N,
1-y-Inx 1
Ueutof =L + 1IN L+7E—+o<[). (28)

Comparing Eqs(28) and(23), we see thab s gives cor-
rectly the leading orders ih with a discrepancyIn L)/L,
which is only slightly above what the cutoff approximation
may predict anyway, as there is no reason to choose any
particular value of\, and which is much better than the
mean-field velocity obtained from Eq4).

Armed with these exact results, one can test the quality of g far, all the approximations replaced the noisy dynam-

various approximation schemgk0,22.

ics by a deterministic equation. Thus they gave no prediction

Afirst approximation is to neglect the noise and to write asy; the diffusion constant. We will now examine approxima-

deterministic traveling-wave equation for the front. How-
ever, if one replacesu. (X)) by u.4(x) in Eq. (13), one
obtains a meaningless front equation: starting wig(x)
=6(-x), one findsu,(x)=1 for all x. Equation(13) is mean-
ingful only in the presence of noise.

tions in which the system remains noisy.

Afirst possibility is to consider that the evolution is given
by Egs.(9), (10), (13), and(14) where the noise term in Eq.
(9) is exactly Gaussian, even outside the validity ra(gb.

In this case,B.,; is Gaussian but withB;,;)=> [see Eg.

Another way of removing the noise is to assume that for(15)]. The noisy front equatio(®) becomes meaningless af-

each position(t+1) in Eqg. (5), all thex;(t) are uncorrelated
random variables chosen independently for eiaabcording
to the distribution Ju,(x)/dx. This leads to the following

ter a single time step. So, one cannot ignore that the noise is
not Gaussian near the rightmost patrticle.
The next approximation one can try is to put a cutoff into

deterministic equation of a front propagating into an unstablehe system as in E¢26), and to take into account the effect

state:

N
Usa(X) =1 - {1 _f dy w(y)p(x - Y)} . (24)

This equation is like Eql), a traveling wave equation, and
its velocity can be obtained using the usual metf#jdlook-
ing for solutions of the formu(x) =exp—y[x—v(y)t]} when
u(x)<<1, one obtains a function(vy). For initial conditions
which decay fast enough, the velocity i®meanfield
=min,(y). Whenp(s) is the Gumbel distribution, one gets
v(y)=[In N+In T'(1-y)]/y and, for largeN, the minimal ve-
locity IS vmeanfield Vexactt L +0(1/L). One could try to im-
prove this result by using the cutoff approximation
[10,17,22 in Eq. (24), but asv(y) depends or\, it is not
clear that the formulav =-m27%0"(y)/(2 In?N) of Ref.[10]

of all the fluctuations on the left of this cutoff. In other
words, at each time step, we determiyg, by Eq.(26), we
set U 1(X)=0 for x>A,,; and we use Eq(9) for x<A.,
with a Gaussiamoise 7,4(x) correlated as in Eq10). This
leads to a Gaussidsy,, characterized byB,,,) given by the
right hand side of Eq(25) and(27) and

Ats1 )
(Bf.») ~ (Bup)®=2N f dy(1 -eB”)ef

y —X
xf dx e B¢, (29

For large N, one easily getgB,,)=NB;In N and (B3,
—(By41)?=2N?BZ/\, giving for the diffusion constant of the
front positionX;

can be applied. Trying to apply it anyway, one obtains the

veloCity vmeanfiel™ /2 Which is not closer ta.y,g than

Umeanfield

_ (Bl -(Bu)® 2

D = .
<Bt+1>2 )\LZ

(30)

The cutoff approximation can also be applied directly on

the evolution equationg13) and (14) by setting u1(x)
=(U1(X)) whenever(u,1(X)) >N/N and u.1(x)=0 other-
wise, whereh\ is an arbitrary number of order 1. One can
then write a closed expression for the evolutiorBgf

Atr1 .
Bu =N J (1 - e B ) dy, (25)

where the positior,, of the cutoff is given by

Compared to the exact resy3), this has the wrond. de-
pendence and also depends on the precise value of the cutoff
\. The velocityv o~ D/2 obtained in this case is also not a
better approximation than the cutoff velocit#8). We con-
clude that the effect of the noise at the left of the cutoff in the
present model is too small to explain the value of the exact
diffusion constant23) and can therefore be neglected.

A last approximation is to keep as only source of noise the
stochastic positiorx,,, Of the rightmost particlg22]: we
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choosex,,, using the distribution of the exact front dynam- all the cumulantg22). The reason which makes this case

ics and, on the left ok, we use foru,4(x) the average soluble is that, at each time step, the only information one

value of the frongiven that the rightmost particle is on,x. ~ needs to keep about the past is a single varig8pigiven by

In other words: Eq. (14). This is similar to what was observed recently for
shocks in exclusion process¢23,24 where, in certain

0 if X > Xmax, cases, one can decouple the evolutions of the position of the
Up(¥) =71 N-1 (31) shock and of its shape. Comparing several approximation
—+ —— (U1 (X)) I X< Xmax schemes has shown that, in the present case, the cutoff ap-

N N proximation[10,12,17,2pgives a good estimate of the front

velocity, and that the full larg8l fluctuations of the front can
be obtained by considering the effect of the noise on the
rightmost particle. The predominance of this rightmost par-

From Eq.(13), one gets

Xmas= IN q with Prok(q) = e"l6(q), (32 ticle might be related to some difficulties noticed in a previ-
ously studied growth mod¢R6] where only the first cumu-
and from Eq.(14), lants of the heights were considered.
e q _gu The front described by Eq$7) and (8) is peculiar be-

Bt_ﬂ;ﬂ_,_(N_l)

B, g N 2 du. (339
g

causeN appears both in the noise term and the traveling-
wave equation itself and because neglecting the noise in Eq.
(7) leads to an ill defined traveling-wave equation. In the
mean field approximation, one obtains a FKPP-like front
equation(24) which still depends o\ and its velocity di-
verges like InN. These peculiarities make the problem con-
sidered here rather different from usual traveling-wave equa-
tions and does not allow us to use the present exact solution
to check the validity of the [F¥N shift of the velocity and of
the In"3N dependence of the diffusion constant which have
identity (19), one can compute from E¢34) the generating been suggested by a number of numerical calculations
function (exp(—6AX,)). Up to order 1/InN, one finds nearly [22,27. The approximationgcutoff or noise limited to the
the same result as in the exact solution: one just needs tightmost particlg¢ successfully tested here should, however,
replace 1-3¢ in Eq.(22), by 2-2y. This means that, up to be helpful to describe more standard front equations.
order 1/InN, the velocity of the front in this approximation Of course, from both the points of view of the theory of
is shifted by the small amount 1/N, and all the other cu- disordered systems and of the theory of noisy traveling-wave
mulants are the same as in the exact model. equations, it would be interesting to attack the case of a
In this work, we have shown how the problem of directedgeneral distributiorp(s). A starting point could be to try to
polymers withN sites in 1+° dimension can be reduced to a make a perturbation theory with the Gumbel distribution as a
noisy traveling-wave equatio¢v) and (8). For one special zeroth order approximation. No need to say that obtaining
choice of the bond disord€f2), we could calculate exactly the In2N correction to the velocity would require a delicate
the velocity and diffusion constati23) of the front, and even resummation of this perturbation theory.

Notice that, in that approximatiokB;,,)= due to the con-
tribution of smallq or, equivalently, of largex,a.. For g
small compared t?N, one obtains

B 1
f:N[aHnN+1—yE—Inq+o(1)}. (34)
t

Using the definition(16) of the displacemenfX; and the

[1] R. A. Fisher, Annals of Eugenicg, 355(1937).

[2] A. Kolmogorov, |. Petrovsky, and N. Piscounov, Bull. Univ.

Etat Moscou, A1, 1(1937.
[3] M. D. Bramson, Mem. Am. Math. Sod4 (1983.
[4] W. van Saarloos, Phys. Ref386, 29 (2003.
(3]
(6]

B. Derrida and H. Spohn, J. Stat. Phy&l, 817 (1988.
D. Carpentier and P. Le Doussal, Nucl. Phys.588 531

(2000.

[7] D. G. Aronson and H. F. Weinberger, Lect. Notes Madid6,

5 (1975.

[13] E. Moro, Phys. Rev. B68, 025102R) (2003.

[14] M. A. Karzazi, A. Lemarchand, and M. Mareschal, Phys. Rev.
E 54, 4888(1996.

[15] C. R. Doering, C. Mueller, and P. Smereka, Physice325,
243 (2003.

[16] J. Mai, I. M. Sokolov, and A. Blumen, Phys. Rev. Left7,
4462 (1996.

[17] D. A. Kessler, Z. Ner, and L. M. Sander, Phys. Re\6g& 107
(1998.

[18] D. Panja, Phys. Rep393 87 (2004).

[8] M. Bramson, P. Calderoni, A. D. Masi, P. Ferrari, J. Lebowitz, [19] J. Armero, J. Casademunt, L. Ramirez-Piscina, and J. M. San-

and R. H. Schonmann, J. Stat. Phyi&, 905(1986).

[9] A. R. Kerstein, J. Stat. Phys15, 921 (1986).

[10] E. Brunet and B. Derrida, Phys. Rev. 8, 2597(1997).

[11] C. Mueller and R. B. Sowers, J. Funct. AnaR8 439(1995.

[12] L. Pechenik and H. Levine, Phys. Rev.3®, 3893(1999.

cho, Phys. Rev. E58, 5494(1998.

[20] A. Rocco, U. Ebert, and W. van Saarloos, Phys. Re\6Z&
R13(2000.

[21] T. Halpin-Healy and Y.-C. Zhang, Phys. Re@54 215
(1995.

016106-4



EXACTLY SOLUBLE NOISY TRAVELING-WAVE ... PHYSICAL REVIEW E 70, 016106(2004)

[22] E. Brunet and B. Derrida, J. Stat. PhyE03 269(2001). [25] D. Panja and W. van Saarloos, Phys. Rev6E& 015206R)

[23] D. ben Avraham, Phys. Lett. 247, 53 (1998. (2002.

[24] K. Krebs, F. H. Jafarpour, and G. M. Schitz, New J. PHys. [26] M. Marsili and A. J. Bray, Phys. Rev. Let#6, 2750(1996.
145.1(2003. [27] E. Moro, Phys. Rev. E69, 060101R) (2004).

016106-5



