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We calculate exactly the velocity and diffusion constant of a microscopic stochastic model ofN evolving
particles which can be described by a noisy traveling-wave equation with a noise of orderN−1/2. Our model can
be viewed as the infinite range limit of a directed polymer in random medium withN sites in the transverse
direction. Despite some peculiarities of the traveling-wave equations in the absence of noise, our exact solution
allows us to test the validity of a simple cutoff approximation and to show that, in the weak noise limit, the
position of the front can be completely described by the effect of the noise on the first particle.
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Traveling-wave equations such as the Fisher-
Kolmogorov-Petrovsky-Piscounov(FKPP) equation[1–3],

]tu = ]x
2u + u − u2, s1d

describe moving fronts[4] in a large number of problems in
biology, chemistry, and genetics. In physics, it appears in
nonequilibrium statistical mechanics and in the theory of dis-
ordered systems[5,6]. In typical cases,utsxd represents the
concentration at positionx and timet of some chemical spe-
cies or of individuals carrying a certain gene. It is well es-
tablished[3,4,7] that equations of the FKPP type have a one
parameter family of traveling-wave solutions withus−`d
=1 andus`d=0 parametrized by their velocitiesv, and that
the decay of the initial condition determines the velocity of
the front. For localized initial conditions, the velocity is the
minimal velocity allowedvmin=2.

When deriving traveling-wave equations such as Eq.(1)
from a given microscopic stochastic models[8–13], one usu-
ally gets a noisy version of Eq.(1):

]tu = ]x
2u + u − u2 + Îe gsudjsx,td, s2d

where the additional term is proportional to a functiongsud
of the concentration and to a Gaussian noisejsx,td white in
time and possibly correlated in space. The amplitudee rep-
resents the ratio between the microscopic and the macro-
scopic scales. Internal fluctuations due to the finite number
of interacting particles give[11,12,14,15] gsud~Îus1−ud.
Although it is now established[11] that the presence of the
noise term is sufficient[8–10,16] to select a single velocity
ve, and that this selected velocityve tends slowly[9,10] in
the limit e→0 to the minimal velocityvmin allowed by Eq.
(1), it is still a theoretical challenge[4,10,12,17,18] to pre-
dict how vmin−ve vanishes withe or how specific properties
of the noisy equation such as the diffusion constantDe of the
front position behave in the small noise limit.

Other types of noise have also been considered; for in-
stance, takinggsud~u in Eq. (2) would represent the fluctua-
tions of a control parameter due to some external noise
[19,20]. We will not discuss these other types of noise in the
present work.

Here, we consider a microscopic model which can be
viewed as the problem of directed polymers in a random
medium [21] where we take the infinite range limit in the
transverse direction. As explained below, this problem leads
to a noisy traveling-wave equation and, for one specific
choice of the disorder in the directed polymer problem, we
can solve the microscopic dynamics and calculate exactly the
velocity, diffusion constant, and all the higher cumulants of
the position of the front. This exact solution allows us to test
several approximation schemes used recently to attack the
general problem of noisy fronts.

The microscopic model we consider here is defined as
follows: at each time stept we haveN particles on the real
axis at positionsx1std , . . . ,xNstd. Given these positions at
time t, the new positions at timet+1 are obtained by

xist + 1d = max
1ø jøN

fxjstd + si,jstdg, s3d

where thesi,jstd are independent random numbers generated
according to a given distributionrssd. One can think of −xistd
as being the ground state energy of a directed polymer of
length t ending at positioni in the “transverse” direction.
Then Eq.(3) describes the infinite range case in the trans-
verse direction as the directed polymer may jump at any step
t from any sitej to any sitei and gain a bond energy −si,jstd.
It is easy to show that the points remain grouped and we
want to know the velocityvexact and the diffusionDexact of
this cloud of points(or, equivalently, of its center of mass).

One can associate a traveling-wave equation to Eq.(3) by
considering the proportionutsxd of particles on the right ofx:

utsxd =
1

N
o

1øiøN

u„xistd − x…, s4d

whereuszd is the Heaviside function. Clearly,utsxd is a de-
creasing function withuts−`d=1 anduts`d=0, so thatutsxd
has the shape of a front.
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For a given front configurationutsxd, the random variables
hxist+1dj are uncorrelated and the probability to be on the
right of x is given by

Probfxist + 1d . xg = 1 − p
1ø jøN

m„x − xjstd…, s5d

wheremssd is the probability thatsijstd,s:

mssd =E
−`

s

rss8dds8. s6d

For a givenutsxd, the probability (5) is simply the front
kut+1sxdl at timet+1 averagedover one time step. One could
rewrite Eq.(5) using only the front variableutsxd:

kut+1sxdl = 1 − expF− NE utsyd
m8sx − yd
msx − yd

dyG , s7d

but one needs to be careful whenm vanishes and use the
following prescription: Whenmsx−yd=0, then utsydm8sx
−yd /msx−yd should be set to 0 ifutsyd=0 and to +̀ if
utsydÞ0.

The random positionsxist+1d can be generated by solving
kut+1sxidl=zi, where z1, . . . ,zN are N independent random
numbers uniformly chosen between 0 and 1 and the fluctu-
ating frontut+1sxd is finally given by

ut+1sxd =
1

N
o

1øiøN

u„kut+1sxdl − zi…. s8d

From Eq. (8), one can calculate how the fluctuations of
ut+1sxd are correlated. Writing

ut+1sxd = kut+1sxdl +
1

ÎN
ht+1sxd, s9d

one findskht+1sxdl=0 and forxøy

kht+1sxdht+1sydl = f1 − kut+1sxdlgkut+1sydl. s10d

Writing hsxd=jsxdÎkh2sxdl, Eq. (9) becomes very similar to
Eq. (2) with gsud=Îus1−ud. So far, Eqs.(7) and (8) and
their consequence Eqs.(9) and(10) are exact, for arbitraryN.
From Eq. (8) one can also calculate higher correlations of
ht+1sxd and show that, for largeN, the h become Gaussian.
For example, one can check that, up to terms of order 1/N,

kh1h2h3h4l = kh1h2lkh3h4l + kh1h3lkh2h4l + kh1h4lkh2h3l

[we used the simplified notationhi ;ht+1sxid]. We should
notice that the Gaussian character of theht+1sxd is a property
valid only for largeN and in regions where

Ns1 − kut+1sxdld @ 1 and Nkut+1sxdl @ 1. s11d

From now on, we will limit our discussion to the case
whererssd is a Gumbel distribution:

rssd = exps− s− e−sd. s12d

In that case, the full analysis of the problem becomes easy
and we can calculate exactly the statistical properties of the
front in the largeN limit. From Eqs.(6) and (12), one has
m8ssd /mssd=e−s and Eq.(7) becomes

kut+1sxdl = 1 − expf− Bt e−xg, s13d

whereBt is defined by

Bt = NE ex utsxddx= o
1øiøN

existd. s14d

This definition and Eq.(13) imply that, givenBt,

kBt+1l = `, s15d

which means that the distribution of the random variableBt+1
decays slowly.

The main advantage of the Gumbel distribution(12) is
that the maximum of several Gumbel variables is itself dis-
tributed according to a Gumbel distribution. Therefore, for
fixed xjstd in Eq. (3), having thesi,jstd distributed according
to the Gumbel distribution(12) implies thatxi+1std is itself a
Gumbel variable.

The Gumbel distribution is simple becauseBt in Eq. (14)
is the only information needed to construct the frontut+1sxd
at timet+1. If one defines the positionXt of the front at time
t by Xt=lnBt, then the displacements

DXt = Xt+1 − Xt = lnBt+1 − lnBt s16d

are uncorrelated random variables given by

DXt = lnF 1

y1st + 1d
+ . . . +

1

yNst + 1dG , s17d

where theyist+1d=Btexpf−xist+1dg are independent and, us-
ing Eqs.(5), (7), and(13), distributed according to

psyd = e−yusyd. s18d

As theDXt are independent, the cumulants of the positionXt
are simply t times those ofDXt, which can be calculated
from its generating function. The identity

ke−dDXtl =
1

GsddE0

`

du ud−1kexps− ueDXtdl, s19d

and the fact that theyistd are independently distributed ac-
cording to Eq.(18), lead to the following exact expression:

ke−dDXtl =
1

GsddE0

`

du ud−1SE
0

`

e−y−su/yddyDN

. s20d

For largeN, the integral overu is dominated by the neigh-
borhood ofu=0 where

E
0

`

e−y−su/yddy= 1 +u ln u + s2gE − 1du + Osu2ln ud,

s21d

wheregE=−G8s1d=−e0
+` du e−uln u is the Euler gamma con-

stant. Any term of higher order inu would give a correction
1/N to the final result. Using Eq.(21) into Eq. (20), one
obtains, for largeN,
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lnke−dDXtl = − dsL + ln Ld

−
d

L
Fln L + 1 − 2gE −

G8s1 + dd
Gs1 + dd G + oS1

L
D ,

s22d

whereL; ln N. This leads to the following exact expressions
for the velocity and of the diffusion constant of the front
described by Eqs.(7)–(10) whenrssd is given by Eq.(12):

vexact= lim
t→`

kXtl
t

= L + ln L +
ln L

L
+

1 − gE

L
+ oS1

L
D ,

Dexact= lim
t→`

kXt
2l − kXtl2

t
=

p2

3L
+ oS1

L
D . s23d

Expanding Eq.(22) in powers ofd gives also all the higher
cumulants of the position of the front.

Armed with these exact results, one can test the quality of
various approximation schemes[10,22].

A first approximation is to neglect the noise and to write a
deterministic traveling-wave equation for the front. How-
ever, if one replaceskut+1sxdl by ut+1sxd in Eq. (13), one
obtains a meaningless front equation: starting withu0sxd
=us−xd, one findsu2sxd=1 for all x. Equation(13) is mean-
ingful only in the presence of noise.

Another way of removing the noise is to assume that for
each positionxist+1d in Eq. (5), all thexjstd are uncorrelated
random variables chosen independently for eachi according
to the distribution −]utsxd /]x. This leads to the following
deterministic equation of a front propagating into an unstable
state:

ut+1sxd = 1 −F1 −E dy utsydrsx − ydGN

. s24d

This equation is like Eq.(1), a traveling wave equation, and
its velocity can be obtained using the usual method[4]: look-
ing for solutions of the formutsxd=exph−gfx−vsgdtgj when
utsxd!1, one obtains a functionvsgd. For initial conditions
which decay fast enough, the velocity isvmeanfield
=mingvsgd. Whenrssd is the Gumbel distribution, one gets
vsgd=fln N+ln Gs1−gdg /g and, for largeN, the minimal ve-
locity is vmeanfield=vexact+1+os1/Ld. One could try to im-
prove this result by using the cutoff approximation
[10,17,22] in Eq. (24), but asvsgd depends onN, it is not
clear that the formulaDv=−p2g2v9sgd / s2 ln2Nd of Ref. [10]
can be applied. Trying to apply it anyway, one obtains the
velocity vmeanfield−p2/2 which is not closer tovexact than
vmeanfield.

The cutoff approximation can also be applied directly on
the evolution equations(13) and (14) by setting ut+1sxd
=kut+1sxdl whenever kut+1sxdl.l /N and ut+1sxd=0 other-
wise, wherel is an arbitrary number of order 1. One can
then write a closed expression for the evolution ofBt:

Bt+1 = NE
−`

At+1

exs1 − e−Bte
−x

ddx, s25d

where the positionAt+1 of the cutoff is given by

l

N
= kut+1sAt+1dl = 1 −e−Bte

−At+1. s26d

By eliminatingAt+1, one gets

Bt+1 = Bt NE
lnsN/N−ld

` 1 − e−u

u2 du. s27d

Using vcutoff= lnsBt+1/Btd, we get, for largeL; ln N,

vcutoff = L + ln L +
1 − gE − ln l

L
+ oS1

L
D . s28d

Comparing Eqs.(28) and (23), we see thatvcutoff gives cor-
rectly the leading orders inL with a discrepancysln Ld /L,
which is only slightly above what the cutoff approximation
may predict anyway, as there is no reason to choose any
particular value ofl, and which is much better than the
mean-field velocity obtained from Eq.(24).

So far, all the approximations replaced the noisy dynam-
ics by a deterministic equation. Thus they gave no prediction
for the diffusion constant. We will now examine approxima-
tions in which the system remains noisy.

A first possibility is to consider that the evolution is given
by Eqs.(9), (10), (13), and(14) where the noise term in Eq.
(9) is exactly Gaussian, even outside the validity range(11).
In this case,Bt+1 is Gaussian but withkBt+1l=` [see Eq.
(15)]. The noisy front equation(9) becomes meaningless af-
ter a single time step. So, one cannot ignore that the noise is
not Gaussian near the rightmost particle.

The next approximation one can try is to put a cutoff into
the system as in Eq.(26), and to take into account the effect
of all the fluctuations on the left of this cutoff. In other
words, at each time step, we determineAt+1 by Eq. (26), we
set ut+1sxd=0 for x.At+1 and we use Eq.(9) for x,At+1

with a Gaussiannoiseht+1sxd correlated as in Eq.(10). This
leads to a GaussianBt+1 characterized bykBt+1l given by the
right hand side of Eq.(25) and (27) and

kBt+1
2 l − kBt+1l2 = 2NE

−`

At+1

dys1 − e−Bte
−y

dey

3 E
−`

y

dx exe−Bte
−x

. s29d

For large N, one easily getskBt+1l.NBt ln N and kBt+1
2 l

−kBt+1l2.2N2Bt
2/l, giving for the diffusion constant of the

front positionXt

D .
kBt+1

2 l − kBt+1l2

kBt+1l2 .
2

lL2 . s30d

Compared to the exact result(23), this has the wrongL de-
pendence and also depends on the precise value of the cutoff
l. The velocityvcutoff−D /2 obtained in this case is also not a
better approximation than the cutoff velocity(28). We con-
clude that the effect of the noise at the left of the cutoff in the
present model is too small to explain the value of the exact
diffusion constant(23) and can therefore be neglected.

A last approximation is to keep as only source of noise the
stochastic positionxmax of the rightmost particle[22]: we
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choosexmax using the distribution of the exact front dynam-
ics and, on the left ofxmax, we use forut+1sxd the average
value of the frontgiven that the rightmost particle is on xmax.
In other words:

ut+1sxd = 50 if x . xmax,

1

N
+

N − 1

N
kut+1sxdl if x , xmax.

s31d

From Eq.(13), one gets

xmax= ln
NBt

q
with Probsqd = e−qusqd, s32d

and from Eq.(14),

Bt+1

Bt
=

N

q
+ sN − 1dE

q/N

+` 1 − e−u

u2 du. s33d

Notice that, in that approximation,kBt+1l=` due to the con-
tribution of small q or, equivalently, of largexmax. For q
small compared toN, one obtains

Bt+1

Bt
= NF1

q
+ ln N + 1 −gE − ln q + os1dG . s34d

Using the definition(16) of the displacementDXt and the
identity (19), one can compute from Eq.(34) the generating
function kexps−dDXtdl. Up to order 1/ lnN, one finds nearly
the same result as in the exact solution: one just needs to
replace 1−2gE in Eq. (22), by 2−2gE. This means that, up to
order 1/ lnN, the velocity of the front in this approximation
is shifted by the small amount 1/ lnN, and all the other cu-
mulants are the same as in the exact model.

In this work, we have shown how the problem of directed
polymers withN sites in 1+̀ dimension can be reduced to a
noisy traveling-wave equation(7) and (8). For one special
choice of the bond disorder(12), we could calculate exactly
the velocity and diffusion constant(23) of the front, and even

all the cumulants(22). The reason which makes this case
soluble is that, at each time step, the only information one
needs to keep about the past is a single variableBt given by
Eq. (14). This is similar to what was observed recently for
shocks in exclusion processes[23,24] where, in certain
cases, one can decouple the evolutions of the position of the
shock and of its shape. Comparing several approximation
schemes has shown that, in the present case, the cutoff ap-
proximation[10,12,17,25] gives a good estimate of the front
velocity, and that the full largeN fluctuations of the front can
be obtained by considering the effect of the noise on the
rightmost particle. The predominance of this rightmost par-
ticle might be related to some difficulties noticed in a previ-
ously studied growth model[26] where only the first cumu-
lants of the heights were considered.

The front described by Eqs.(7) and (8) is peculiar be-
causeN appears both in the noise term and the traveling-
wave equation itself and because neglecting the noise in Eq.
(7) leads to an ill defined traveling-wave equation. In the
mean field approximation, one obtains a FKPP-like front
equation(24) which still depends onN and its velocity di-
verges like lnN. These peculiarities make the problem con-
sidered here rather different from usual traveling-wave equa-
tions and does not allow us to use the present exact solution
to check the validity of the ln−2N shift of the velocity and of
the ln−3N dependence of the diffusion constant which have
been suggested by a number of numerical calculations
[22,27]. The approximations(cutoff or noise limited to the
rightmost particle) successfully tested here should, however,
be helpful to describe more standard front equations.

Of course, from both the points of view of the theory of
disordered systems and of the theory of noisy traveling-wave
equations, it would be interesting to attack the case of a
general distributionrssd. A starting point could be to try to
make a perturbation theory with the Gumbel distribution as a
zeroth order approximation. No need to say that obtaining
the ln−2N correction to the velocity would require a delicate
resummation of this perturbation theory.
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