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ference between the two is of more than semantic interest: in the list
generated by Alg. 5.3 (enumerate-ising), we were able to pick out any
information we wanted, for example the number of configurations of en-
ergy E and magnetization M , that is, the density of states N (E, M).
In this subsection we discuss an alternative enumeration for the Ising
model. It does not list the spin configurations, but rather all the loop
configurations which appear in the high-temperature expansion of the
Ising model. This program will then turn, in Subsection 5.1.4, into an
enumeration of the second kind (Kac and Ward, 1954). It counts con-
figurations and obtains Z(β) for a two-dimensional Ising system of any
size (Kaufman, 1949), and even for the infinite system (Onsager, 1944).
However, it then counts without listing. For example, it finds the number
N (E) of configurations with energy E but does not tell us how many of
them have a magnetization M .

Van der Waerden, in 1941, noticed that the Ising-model partition func-
tion,

Z =
∑

σ

exp
(
Jβ
∑
〈k,l〉

σkσl

)
=
∑

σ

∏
〈k,l〉

eJβσkσl ,
(5.7)

allows each term eJβσkσl to be expanded and rearranged into just two
terms, one independent of the spins and the other proportional to σkσl:

eβσkσl = 1 + βσkσl +
β2

2!
(σkσl)2︸ ︷︷ ︸

=1

+
β3

3!
(σkσl)3︸ ︷︷ ︸
=σkσl

+ · · · − · · ·

=
(

1 +
β2

2!
+

β4

4!
+ · · ·

)
︸ ︷︷ ︸

cosh β

−σkσl

(
β +

β3

3!
+

β5

5!
+ · · ·

)
︸ ︷︷ ︸

sinhβ

= (cosh β) (1 + σkσl tanh β) .

Inserted into eqn (5.7), with J = +1, this yields

Z(β) =
∑
σ

∏
〈k,l〉

((cosh β) (1 + σkσl tanh β)) . (5.8)

For concreteness, we continue with a 4×4 square lattice without periodic
boundary conditions (with J = 1). This lattice has 24 edges and 16
sites, so that, by virtue of eqn (5.8), its partition function Z4×4(β) is the
product of 24 parentheses, one for each edge:

Z4×4(β) =
∑

{σ1,...,σ16}
cosh24 β(

edge 1︷ ︸︸ ︷
1 + σ1σ2 tanh β)(

edge 2︷ ︸︸ ︷
1 + σ1σ5 tanh β)

× . . . (1 + σ14σ15 tanh β)(1 + σ15σ16 tanh β︸ ︷︷ ︸
edge 24

). (5.9)
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We multiply out this product: for each edge (parenthesis) k, we have a
choice between a “one” and a “tanh” term. This is much like the option
of a spin-up or a spin-down in the original Ising-model enumeration, and
can likewise be expressed through a binary variable nk:

nk =

{
0 (≡ edge k in eqn (5.9) contributes 1)
1 (≡ edge k contributes (σsk

σs′
k

tanh β))
,

where sk and s′k indicate the sites at the two ends of edge k. Edge
k = 1 has {s1, s

′
1} = {1, 2}, and edge k = 24 has, from eqn (5.9),

{s24, s
′
24} = {15, 16}. Each factored term can be identified by variables

{n1, . . . , n24} = {{0, 1}, . . . , {0, 1}}.

For {n1, . . . , n24} = {0, . . . , 0}, each parenthesis picks a “one”. Summed
over all spin configurations, this gives 216. Most choices of {n1, . . . , n24}
average to zero when summed over spin configurations because the same
term is generated with σk = +1 and σk = −1. Only choices leading to
spin products σ0

s , σ2
s , σ4

s at each lattice site s remain finite after summing
over all spin configurations. The edges of these terms form loop config-
urations, such as those shown for the 4 × 4 lattice in Fig. 5.8. The list
of all loop configurations may be generated by Alg. 5.5 (edge-ising), a
recycled version of the Gray code for 24 digits, coupled to an incremental
calculation of the number of spins on each site. The {o1, . . . , o16} count
the number of times the sites {1, . . . , 16} are present. The numbers in
this vector must all be even for a loop configuration, and for a nonzero
contribution to the sum in eqn (5.9).

Table 5.4 Numbers of loop configura-
tions in Fig. 5.8 with given numbers of
edges (the figure contains one configu-
ration with 0 edges, 9 with 4 edges, etc).
(From Alg. 5.5 (edge-ising)).

# Edges # Configs

0 1
4 9
6 12
8 50

10 92
12 158
14 116
16 69
18 4
20 1

procedure edge-ising

input {(s1, s
′
1), . . . , (s24, s

′
24)}

{n1, . . . , n24} ← {0, . . . , 0}
{τ0, . . . , τ24} ← {1, . . . , 25}
{o1, . . . , o16} ← {0, . . . , 0}
output {n1, . . . , n24}
for i = 1, 224 − 1 do⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k ← gray-flip ({τ0, . . . , τ24})
nk ← mod (nk + 1, 2)
osk

← osk
+ 2 · nk − 1

os′
k
← os′

k
+ 2 · nk − 1

if ({o1, . . . , o16} all even) then{
output {n1, . . . , n24}

——

Algorithm 5.5 edge-ising. Gray-code enumeration of the loop config-
urations in Fig. 5.8. The edge k connects neighboring sites σk and σ′

k.

For the thermodynamics of the 4×4 Ising model, we only need to keep
track of the number of edges in each configuration, not the configurations
themselves. Table 5.4, which shows the number of loop configurations
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Fig. 5.8 The list of all 512 loop configurations for the 4× 4 Ising model
without periodic boundary conditions (from Alg. 5.5 (edge-ising)).
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for any given number of edges, thus yields the exact partition function
for the 4 × 4 lattice without periodic boundary conditions:

Z4×4(β) =
(
216 cosh24 β

) (
1 + 9 tanh4 β + 12 tanh6 β

+ · · · + 4 tanh18 β + 1 tanh20 β
)
. (5.10)

Partition functions obtained from this expression are easily checked
against the Gray-code enumeration.

5.1.4 Counting (not listing) loops in two
dimensions

Following Kac and Ward (1952), we now construct a matrix whose de-
terminant counts the number of loop configurations in Fig. 5.8. This is
possible because the determinant of a matrix U = (ukl) is defined by a
sum of permutations P (with signs and weights). Each permutation can
be written as a collection of cycles, a “cycle configuration”. Our task will
consist in choosing the elements ukl of the matrix U in such a way that
the signs and weights of each cycle configurations correspond to the loop
configurations in the two-dimensional Ising model. We shall finally arrive
at a computer program which implements the correspondence, and effec-
tively solves the enumeration problem for large two-dimensional lattices.
For simplicity, we restrict ourselves to square lattices without periodic
boundary conditions, and consider the definition of the determinant of
a matrix U ,

det U =
∑

permutations

(sign P )u1P1u2P2 . . . uNPN
.

We now represent P in terms of cycles. The sign of a permutation
P of N elements with n cycles is signP = (−1)N+n (see our detailed
discussion in Section 1.2.2). In the following, we shall consider only ma-
trices with even N , for which signP = (−1)# of cycles. The determinant
is thus

det U =
∑
cycle

configs

(−1)# of cycles uP1P2uP2P3 . . . uPM P1︸ ︷︷ ︸
weight of first cycle

uP ′
1P ′

2
. . .︸ ︷︷ ︸

other cycles

=
∑
cycle

configs

({
(−1)· weight of

first cycle

})
× · · · ×

({
(−1)· weight of

last cycle

})
.

It follows from this representation of a determinant in terms of cycle con-
figurations that we should choose the matrix elements ukl such that each
cycle corresponding to a loop on the lattice (for example (P1, . . . , PM ))
gets a negative sign (this means that the sign of uP1P2uP2P3 . . . uPM P1

should be negative). All cycles not corresponding to loops should get
zero weight.

We must also address the problem that cycles in the representation
of the determinant are directed. The cycle (P1, P2, . . . , PM−1, PM ) is
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different from the cycle (PM , PM−1, . . . , P2, P1), whereas the loop con-
figurations in Fig. 5.8 have no sense of direction.

For concreteness, we start with a 2×2 lattice without periodic bound-
ary conditions, for which the partition function is

Z2×2 =
(
24 cosh4 β

) (
1 + tanh4 β

)
. (5.11)

The prefactor in this expression (2N multiplied by one factor of cosh β
per edge) was already encountered in eqn (5.10). We can find naively
a 4 × 4 matrix Û2×2 whose determinant generates cycle configurations
which agree with the loop configurations. Although this matrix cannot
be generalized to larger lattices, it illustrates the problems which must
be overcome. This matrix is given by

Û2×2 =

⎡⎢⎢⎣
1 γ tanh β · ·
· 1 · γ tanh β

γ tanh β · 1 ·
· · γ tanh β 1

⎤⎥⎥⎦ .

(In the following, zero entries in matrices are represented by dots.) The
matrix must satisfy

Z2×2 =
(
24 cosh4 β

)
det Û2×2,

and because of
det Û2×2 = 1 − γ4 tanh4 β,

we have to choose γ = ei�/4 = 4
√−1. The value of the determinant is

easily verified by expanding with respect to the first row, or by naively
going through all the 24 permutations of 4 elements (see Fig. 4.16 for
a list of them). Only two permutations have nonzero contributions: the
unit permutation ( 1234

1234 ), which has weight 1 and sign 1 (it has four
cycles), and the permutation, ( 2431

1234 ) = (1, 2, 4, 3), which has weight
γ4 tanh4 β = − tanh4 β. The sign of this permutation is −1, because
it consists of a single cycle.

The matrix Û2×2 cannot be generalized directly to larger lattices. This
is because it sets u21 equal to zero because u12 
= 0, and sets u13 = 0
because u31 
= 0; in short it sets ukl = 0 if ulk is nonzero (for k 
= l).
In this way, no cycles with hairpin turns are retained (which go from
site k to site l and immediately back to site k). It is also guaranteed
that between a permutation and its inverse (in our case, between the
permutation ( 1234

1234 ) and ( 2431
1234 )), at most one has nonzero weight. For

Table 5.5 Correspondence between
lattice sites and directions, and the in-
dices of the Kac–Ward matrix U

Site Direction Index

1

→
↑
←
↓

1
2
3
4

2

→
↑
←
↓

5
6
7
8

...
...

...

k

→
↑
←
↓

4k − 3
4k − 2
4k − 1

4k

larger lattices, this strategy is too restrictive. We cannot generate all
loop configurations from directed cycle configurations if the direction in
which the edges are gone through is fixed. We would thus have to allow
both weights ukl and ulk different from zero, but this would reintroduce
the hairpin problem. For larger N , there is no N × N matrix whose
determinant yields all the loop configurations.

Kac and Ward’s (1951) solution to this problem associates a matrix
index, not with each lattice site, but with each of the four directions
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on each lattice site (see Table 5.5), and a matrix element with each
pair of directions and lattice sites. Matrix elements are nonzero only for
neighboring sites, and only for special pairs of directions (see Fig. 5.9),
and hairpin turns can be suppressed.

For concreteness, we continue with the 2 × 2 lattice, and its 16 ×
16 matrix U2×2. We retain from the preliminary matrix Û2×2 that the
nonzero matrix element must essentially correspond to terms tanh β, but
that there are phase factors. This phase factor is 1 for a straight move
(case a in Fig. 5.9); it is ei�/4 for a left turn, and e−i�/4 for a right turn.

1 2

a

1 2

b

1 2

c

1
2

d

Fig. 5.9 Graphical representation of the matrix elements in the first row
of the Kac–Ward matrix U2×2 (see Table 5.6).

Table 5.6 The matrix elements of Fig. 5.9 that make up the first
row of the Kac–Ward matrix U2×2 (see eqn (5.12)).

Case Matrix element value type

a u1,5 ν = tanh β (straight move)
b u1,6 α = ei�/4 tanh β (left turn)
c u1,7 0 (hairpin turn)
d u1,8 α = e−i�/4 tanh β (right turn)

The nonzero elements in the first row of U2×2 are shown in Fig. 5.9,
and taken up in Table 5.6. We arrive at the matrix

U2×2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · ν α · α · · · · · · · ·
· 1 · · · · · · α ν α · · · · ·· · 1 · · · · · · · · · · · · ·· · · 1 · · · · · · · · · · · ·· · · · 1 · · · · · · · · · · ·
· · · · · 1 · · · · · · α ν α ·
· α ν α · · 1 · · · · · · · · ·· · · · · · · 1 · · · · · · · ·
· · · · · · · · 1 · · · ν α · α· · · · · · · · · 1 · · · · · ·· · · · · · · · · · 1 · · · · ·
α · α ν · · · · · · · 1 · · · ·· · · · · · · · · · · · 1 · · ·· · · · · · · · · · · · · 1 · ·
· · · · · · · · · α ν α · · 1 ·
· · · · α · α ν · · · · · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.12)

The matrix U2×2 contains four nonzero permutations, which we can
generate with a naive program (in each row of the matrix, we pick one
term out of {1, ν, α, α}, and then check that each column index appears
exactly once). We concentrate in the following on the nontrivial cycles
in each permutation (that are not part of the identity). The identity
permutation, P 1 = ( 1 ... 16

1 ... 16 ), one of the four nonzero permutations, has
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only trivial cycles. It is characterized by an empty nontrivial cycle con-
figuration c1. Other permutations with nonzero weights are

c2 ≡
⎛⎝ site 1 2 4 3

dir. → ↑ ← ↓
index 1 6 15 12

⎞⎠
and

c3 ≡
⎛⎝ site 1 3 4 2

dir. ↑ → ↓ ←
index 2 9 16 7

⎞⎠ .

Finally, the permutation c4 is put together from the permutations c2

and c3, so that we obtain

c1 ≡ 1,

c2 ≡ u1,6u6,15u15,12u12,1 = α4 = − tanh4 β,

c3 ≡ u2,9u9,16u16,7u7,2 = α4 = − tanh4 β,

c4 ≡ c2c3 = α4α4 = tanh8 β.

We thus arrive at

det U2×2 = 1 + 2 tanh4 β + tanh8 β =
(
1 + tanh4 β

)2︸ ︷︷ ︸
see eqn (5.11)

, (5.13)

and this is proportional to the square of the partition function in the
2 × 2 lattice (rather than the partition function itself).

The cycles in the expansion of the determinant are oriented: c2 runs
anticlockwise around the pad, and c3 clockwise. However, both types of
cycles may appear simultaneously, in the cycle c4. This is handled by
drawing two lattices, one for the clockwise, and one for the anticlockwise
cycles (see Fig. 5.10). The cycles {c1, . . . , c4} correspond to all the loop
configurations that can be drawn simultaneously in both lattices. It is
thus natural that the determinant in eqn (5.13) is related to the partition
function in two independent lattices, the square of the partition function
of the individual systems.

1 2

3 4

1′ 2′
3′ 4′

sites c1 c2 c3 c4

Fig. 5.10 Neighbor scheme and cycle
configurations in two independent 2×2
Ising models.

Before moving to larger lattices, we note that the matrix U2×2 can be
written in more compact form, as a matrix of matrices:

U2×2 =

⎡⎢⎢⎣
� u→ u↑ .

u← � · u↑
u↓ · � u→
· u↓ u← �

⎤⎥⎥⎦ (a 16 × 16 matrix,
see eqn (5.15)) , (5.14)

where � is the 4 × 4 unit matrix, and furthermore, the 4 × 4 matrices
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u→, u↑, u←, and u↓ are given by

u→ =

⎡⎢⎢⎣
ν α · α
· · · ·
· · · ·
· · · ·

⎤⎥⎥⎦ , u↑ =

⎡⎢⎢⎣
· · · ·
α ν α ·
· · · ·
· · · ·

⎤⎥⎥⎦ ,

u← =

⎡⎢⎢⎣
· · · ·
· · · ·
· α ν α
· · · ·

⎤⎥⎥⎦ , u↓ =

⎡⎢⎢⎣
· · · ·
· · · ·
· · · ·
α · α ν

⎤⎥⎥⎦ .

(5.15)

The difference between eqns (5.12) and (5.14) is purely notational.
The 2 × 2 lattice is less complex than larger lattices. For example,

one cannot draw loops in this lattice which sometimes turn left, and
sometimes right. (On the level of the 2 × 2 lattice it is unclear why left
turns come with a factor α and right turns with a factor α.) This is what
we shall study now, in a larger matrix. Cycle configurations will come
up that do not correspond to loop configurations. We shall see that they
sum up to zero.

Fig. 5.11 All 64 loop configurations for two uncoupled 4×2 Ising models
without periodic boundary conditions (a subset of Fig. 5.8).

For concreteness, we consider the 4×2 lattice (without periodic bound-
ary conditions), for which the Kac–Ward matrix can still be written
down conveniently. We understand by now that the matrix and the de-
terminant describe pairs of lattices, one for each sense of orientation, so
that the pair of 4× 2 lattices corresponds to a single 4× 4 lattice with a
central row of links eliminated. The 64 loop configurations for this case
are shown in Fig. 5.11. We obtain

U4×2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� u→ · · u↑ · · ·
u← � u→ · · u↑ · ·
· u← � u→ · · u↑ ·
· · u← � · · · u↑

u↓ · · · � u→ · ·
· u↓ · · u← � u→ ·
· · u↓ · · u← � u→
· · · u↓ · · u← �

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.16)

Written out explicitly, this gives a 32×32 complex matrix U4×2 = (uk,l)
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with elements

U4×2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · ν α · α · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·
· 1 · · · · · · · ········· · · · · · · α ν α ········· · · · · · · · · · ········· · ·· · 1 · · · · · · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·· · · 1 · · · · · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·
· · · · 1 · · · ν α · α · · · · · · · ········· · · · · · · · · · ········· · ·
· · · · · 1 · · · ········· · · · · · · · · · ········· α ν α · · · · · · ········· · ·
· α ν α · · 1 · · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·· · · · · · · 1 · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·
· · · · · · · · 1 ········· · · ν α · α · · · ········· · · · · · · · · · ········· · ·
········· ········· ········· ········· ········· ········· ········· ········· ········· 1 ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· α ν α ········· ········· ········· ········· ·········
· · · · · α ν α · ········· 1 · · · · · · · · ········· · · · · · · · · · ········· · ·· · · · · · · · · ········· · 1 · · · · · · · ········· · · · · · · · · · ········· · ·· · · · · · · · · ········· · · 1 · · · · · · ········· · · · · · · · · · ········· · ·
· · · · · · · · · ········· · · · 1 · · · · · ········· · · · · · · · · α ν α ·
· · · · · · · · · α ν α · · 1 · · · · ········· · · · · · · · · · ········· · ·· · · · · · · · · ········· · · · · · 1 · · · ········· · · · · · · · · · ········· · ·
· · · · · · · · · ········· · · · · · · 1 · · ········· ν α · α · · · · · ········· · ·· · · · · · · · · ········· · · · · · · · 1 · ········· · · · · · · · · · ········· · ·· · · · · · · · · ········· · · · · · · · · 1 ········· · · · · · · · · · ········· · ·
α ········· α ν ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· 1 ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ·········
· · · · · · · · · ········· · · · · · · · · · ········· 1 · · · ν α · α · ········· · ·· · · · · · · · · ········· · · · · · · · · · ········· · 1 · · · · · · · ········· · ·
· · · · · · · · · ········· · · · · · · · α ν α · · 1 · · · · · · ········· · ·
· · · · α · α ν · ········· · · · · · · · · · ········· · · · 1 · · · · · ········· · ·
· · · · · · · · · ········· · · · · · · · · · ········· · · · · 1 · · · ν α · α· · · · · · · · · ········· · · · · · · · · · ········· · · · · · 1 · · · ········· · ·
· · · · · · · · · ········· · · · · · · · · · ········· · α ν α · · 1 · · ········· · ·
· · · · · · · · α ········· α ν · · · · · · · ········· · · · · · · · 1 · ········· · ·· · · · · · · · · ········· · · · · · · · · · ········· · · · · · · · · 1 ········· · ·········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· 1 ········· ·········
· · · · · · · · · ········· · · · · · · · · · ········· · · · · · α ν α · ········· 1 ·
· · · · · · · · · ········· · · α · α ν · · · ········· · · · · · · · · · ········· · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix is constructed according to the same rules as U2×2, earlier.

1 2 3 4

5 6 7 8

sites loop cycle c1

l l

llll

r r

cycle c2

l
l

r r

r

ll

r

Fig. 5.12 A loop in the 4 × 2 system, not present in Fig. 5.11. Weights
of c1 and c2 cancel.

The cycle c2 in Fig. 5.12 can be described by the following trajectory:

cycle c2 ≡
⎛⎝ site 1 2 3 7 8 4 3 2 6 5

dir. → → ↑ → ↓ ← ← ↑ ← ↓
index 1 5 10 25 32 15 11 6 23 20

⎞⎠ .

This cycle thus corresponds to the following product of matrix elements:{
weight of c2

}
: u1,5u5,10 . . . u23,20u20,1.

The cycle c2 makes four left and four right turns (so that the weight is
proportional to α4α4 ∝ +1) whereas the cycle c1 turns six times to the
left and twice to the right, with weight α6α2 ∝ −1, canceling c2.

A naive program easily generates all of the nontrivial cycles in U4×2

(in each row of the matrix, we pick one term out of {1, ν, α, α}, and then
check that each column index appears exactly once). This reproduces
the loop list, with 64 contributions, shown in Fig. 5.11. There are in
addition 80 more cycle configurations, which are either not present in
the figure, or are equivalent to cycle configurations already taken into
account. Some examples are the cycles c1 and c2 in Fig. 5.12. It was the
good fortune of Kac and Ward that they all add up to zero.
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procedure combinatorial-ising

input {u→, u↑, u←, u↓} (see eqn (5.15))
{U(j, j′)} ← {0, . . . , 0}
for k = 1, . . . , N do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for n = 1, . . . , 4 do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j ← 4 · (k − 1) + n
U(j, j) ← 1
for n′ = 1, . . . , 4 do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k′ ← Nbr(1, k)
if (k′ 
= 0) then{

j′ ← 4 · (k′ − 1) + n′

U(j, j′) ← u→(n, n′)
k′ ← Nbr(2, k)
if (k′ 
= 0) then{

j′ ← 4 · (k′ − 1) + n′

U(j, j′) ← u↑(n, n′)
k′ ← Nbr(3, k)
if (k′ 
= 0) then{

j′ ← 4 · (k′ − 1) + n′

U(j, j′) ← u←(n, n′)
k′ ← Nbr(4, k)
if (k′ 
= 0) then{

j′ ← 4 · (k′ − 1) + n′

U(j, j′) ← u↓(n, n′)
output {U(j, j′)}
——

Algorithm 5.6 combinatorial-ising. The 4N×4N matrix U , for which√
detU ∝ Z(β) (Ising model without periodic boundary conditions).

On larger than 4 × 2 lattices, there are more elaborate loops. They
can, for example, have crossings (see, for example, the loop in Fig. 5.13).
There, the cycle configurations c1 and c2 correspond to loops in the
generalization of Fig. 5.11 to larger lattices, whereas the cycles c3 and
c4 are superfluous. However, c3 makes six left turns and two right turns,
so that the overall weight is α4 = −1, whereas the cycle c4 makes three
left turns and three right turns, so that the weight is +1, the opposite
of that of c3. The weights of c3 and c4 thus cancel.

For larger lattices, it becomes difficult to establish that the sum of
cycle configurations in the determinant indeed agrees with the sum of
loop configurations of the high-temperature expansion, although rigor-
ous proofs exist to that effect. However, at our introductory level, it
is more rewarding to proceed heuristically. We can, for example, write
down the 144 × 144 matrix U6×6 of the 6 × 6 lattice for various tem-
peratures (using Alg. 5.6 (combinatorial-ising)), and evaluate the
determinant det U6×6 with a standard linear-algebra routine. Partition
functions thus obtained are equivalent to those resulting from Gray-code
enumeration, even though the determinant is evaluated in on the order
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Fig. 5.13 Loop and cycle configurations. The weights of c3 and c4 cancel.

of 1443 � 3×106 operations, while the Gray code goes over 235 � 3×1010

configurations. The point is that the determinant can be evaluated for
lattices that are much too large to go through the list of all configura-
tions.

The matrix UL×L for the L × L lattice contains the key to the ana-
lytic solution of the two-dimensional Ising model first obtained, in the
thermodynamic limit, by Onsager (1944). To recover Onsager’s solu-
tion, we would have to compute the determinant of U , not numerically
as we did, but analytically, as a product over all the eigenvalues. Ana-
lytic expressions for the partition functions for Ising models can also be
obtained for finite lattices with periodic boundary conditions. To adapt
for the changed boundary conditions, one needs four matrices, gener-
alizing the matrix U (compare with the analogous situation for dimers
in Chapter 6). Remarkably, evaluating Z(β) on a finite lattice reduces
to evaluating an explicit function (see Kaufman (1949) and Fisher and
Ferdinand (1969); see also Exerc. 5.9).

The analytic solutions of the Ising model have not been general-
ized to higher dimensions, where only Monte Carlo simulations, high-
temperature expansions, and renormalization-group calculations allow
to compute to high precision the properties of the phase transition. These
properties, as mentioned, are universal, that is, they are the same for a
wide class of systems, called the Ising universality class.

5.1.5 Density of states from thermodynamics

The direct and indirect enumeration algorithms in this chapter differ in
the role played by the density of states. In Alg. 5.3 (enumerate-ising),
it was appropriate to first compute N (E), and later determine par-
tition functions, internal energies, and specific heat capacities at any
temperature, in ∝ N operations. In contrast, the indirect enumerations
in Section 5.1.4 determine the partition function Z(β), not the density
of states. Computing Z(β) from N (E) is straightforward, but how to
recover N (E) from Z(β) requires some thought:

N (E)
Subsection 5.1.2−−−−−−−−−−→←−−−−−−−−−
this subsection

Z(β).

The mathematical problem of the present section is common to many
basic problems in statistical and solid state physics, and appears also in
the interpretation of experimental or Monte Carlo data. In the presence


