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With solutions. NB: Exercise 3 was an exam question in the �nal exam of the 2015/16 course

(Dated: October 22, 2019)

In lecture 05 (physics in one dimension) we treated the one-dimensional hard-sphere model and

the one-dimensional Ising model. In this homework session, you will study variations on these two

themes.

I. "TRANSFER MATRIX" SOLUTION OF THE ONE-DIMENSIONAL HARD-SPHERE

MODEL

In lecture 5, we determined the partition function of the (distinguishable-particle) one-

dimensional hard-sphere model, using two transformations of variables. For spheres of radius σ,

the result obtained was

Zdist.

N,L =


(L− 2Nσ)N if L− 2Nσ ≥ 0

0 otherwise

(1)

(see also SMAC section 6.1, p. 270, note that we consider the distinguishable-particle partition

function. The indistinguishable is de�ned by Z indist.

N,L = Zdist.

N,L /N !). We also used a recursion-type

argument to obtain the same result for N = 3. In fact, we obtained:

Z indist.

3,L =

∫ L−3σ

3σ
dxZ1,x−σZ1,L−x−σ. (2)

• What is the interpretation of eq. (2) in physical terms (one sentence)?

A three-particle system is equivalent to two one particle systems, whose lengths add up to

the length of the three-particle system.

• Evaluate eq. (2), and check that the value of Z3,L it produces is compatible with what we

obtained by the transformation method (use mathematica or sage or Wolfram alpha, etc).
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Zindist3,L =

∫ L−3σ

3σ
dxZ1,x−σZ1,L−x−σ

=

∫ L−3σ

3σ
dx(x− σ − 2σ)(L− x− σ − 2σ)

=

∫ L−6σ

0
dxx(L− 6σ − x)

=
1

3!
(L− 6σ)3

• Generalize to arbitrary N , that is, express Z indist.

N+1,L through Z1,.. and Z
indist.

N−1,..., and evaluate

the corresponding one-dimensional integral (use mathematica or sage or Wolfram alpha, etc).

please indicate the command line you programmed).

ZindistN+1,L =

∫ L−3σ

(2N−1)σ
dxZindistN−1,x−σZ1,L−x−σ

II. DENSITY PROFILE OF THE ONE-DIMENSIONAL HARD-SPHERE MODEL

In lecture 5, we obtained the density pro�le π(x), the probability to have a disk of the one-

dimensional hard-sphere model at position x as follows:

π(x) =
{partition function, restricted to having one particle at x}

ZN,L

=
1

ZN,L

N−1∑
k=0

(
N − 1

k

)
Zk,x−σZN−1−k,L−x−σ, (3)

where all the partition functions are distinguishable (as in eq. (1)).

• What is the interpretation of eq. (3) in physical terms (one or two sentences)?

The probability of having one disk at position x is the sum of the probabilities of having k

particle to the left of it and N − k − 1 particles to the right of it.

• Write a computer program to evaluate eq. (2) (make sure to program both cases in eq. (1),

so that you can take the unrestricted sum over k for all x). Plot π(x) for di�erent densities,

for example for N = 15. Comment what you see. You can also use larger N , if you want to.
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FIG. 1: The density pro�le of the 1D hard-sphere system, with di�erent radius of the disks.

The density pro�le is in Fig. 1. When the radius is small (σ = 0.01), the PDF is almost

�at. There are two prohibited region, due to the non-trivial size of the spheres. At the

boundaries, the PDF is dominated by the �rst(last) particle in the system, and this is

why there are peaks. When the radius is larger, for example σ = 0.03, only 10% of the

system is empty and the free space for each sphere to move is smaller than the size of

the spheres. Thus, the spheres are stuck at where they are supposed to be and there are

peaks in the PDF. The full understanding of the structure is the object of the famous

Asakura�Oosawa theory of depletion, and it is non-trivial.

III. QUASI ONE-DIMENSIONAL JAMMED DISKS AND THEIR TRANSFER MATRIX

In lecture 5, we introduced the concept of a transfer matrix. In the present short exercise, you

will study the concept of a transfer matrix as a general tool to set up an iteration. We consider

hard disks of diameter σ in a closed channel with a piston that exerts in�nite pressure so that, at a

di�erence with what we considered in the lecture, all con�gurations are jammed (see �g. 1): Each

disk touches one of the walls, and each inner disk touches two other disks and it cannot make an
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in�nitesimal local move. The channel width is smaller than σ(1 +
√
3/4), so all disks are truly

jammed. Clearly, temperature plays no role in this problem.

NB Fibonacci sequence (F0 = 0, F1 = 1, F2 = 1, 2, 3, 5, 8, ....)

FIG. 2: A jammed (upper) and an unjammed (lower) con�guration. We may imagine a piston pushing from

the right side, with in�nite pressure. Notice the slight wedge shape of the piston and bottom (left) plate.

• Sketch the longest jammed con�guration of N disks, and the shortest jammed con�guration

of N disks (shortest and longest are with respect to the length of the channel).

As shown in Fig. 3, for two neighbouring disks, the distance in the x direction is shorter

when the con�guration is 1 or 3. These con�gurations will be referred to as short bonds,

and con�guration 2, 4 will be referred to as long bonds. As shown in the Fig. 3, in the

shortest jammed con�guration, there are only short bonds. However, if there are more

than two long bonds in a row, the con�guration is no longer jammed. Thus, the longest

jammed con�guration has a short bond every long bond.

• Starting from the four jammed con�gurations with two disks (see Fig. 4), compute the num-

ber of jammed con�gurations with three disks (two bonds), and the number of jammed

con�gurations with four disks (three bonds) (Hint: this is analogous to the transfer matrix

calculation in lecture 5 for the open Ising chain (without periodic boundary conditions) that

used Z↑ and Z↓).

Two methods can be used to build the transfer matrix:

Method 1:

All the jammed con�gurations are divided into 4 classes: the con�gurations end with 1,
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FIG. 3: The longest and shortest jammed con�guration.

FIG. 4: The four jammed con�gurations with two disks (one bond). Notice again the slight wedge shape of

the piston and bottom (left) plate.

2, 3, and 4 (Fig. 2). The number of con�gurations in a N particle system in each class

could be written in a vector (nN,1, nN,2, nN,3, nN,4)
T . When adding a new particle in

the system, all of the jammed con�gurations could be found by adding a particle to the

existing jammed con�gurations. For a con�guration end with 1, adding a particle yields

con�gurations of N + 1 particles which ends with 3 or 4. For a con�guration which

ends with 2, adding a particle yields a con�guration which ends with 1. (There should

be another con�guration, however, it is not jammed.) Expressing these relation using

vector and matrix: 
nN+1,1

nN+1,2

nN+1,3

nN+1,4

 =


0 1 1 0

0 0 1 0

1 0 0 1

1 0 0 0




nN,1

nN,2

nN,3

nN,4


And the matrix here is the transfer matrix.

Method2:
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With all of the jammed con�gurations of the N-1 and N-particle system, the jammed

con�gurations of a N+1-particle system can always be found in two steps. Firstly, for

each of the con�gurations in a N-particle system, there is always a corresponding jammed

con�guration in a N+1-particle system. All the new con�gurations, which end with a

short bonds, can be found by adding particles which form short bonds at the end of the

N-particle systems. Thus, there are nN jammed con�guration in a N+1-particle system

which end with short bonds. (Here the number of jammed con�gurations in a N-particle

system is denoted by nN ). The rest of jammed con�gurations can be found by adding

a particle, which creates a long bound, at the end of the systems, which end with short

bonds. The number of jammed con�gurations, which end with short bonds, is exactly

nN−1. Thus, there is following relation:

nN+1 = nN + nN−1

Expressing this relation by matrix,

(
nN+1

nN

)
=

1 1

1 0

( nN
nN−1

)
(4)

This is also the recursive formula for the Fibonacci sequence.

For a one particle system, there are 2 jammed con�gurations. Thus,(
n2
n1

)
= 2

(
F3

F2

)
Since nN and FN have identical recursive formula,

nN = 2FN+1

Thus, n3 = 6 and n4 = 10. These result can also be validated explicitly by �nding out

all the jammed con�gurations.

• What is the total number of jammed con�gurations ofN disks, in terms of a famous sequence?

Starting from con�guration 1, 2, 3, and 4, the total number of jammed con�gurations in a

N-particle system is 2Fn+1.
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• Write down the transfer matrix for this simple problem, and interprete the above �ndings in

terms of the transfer matrix. What is the largest eigenvalue of this transfer matrix? Do you

know the name of this number?

The transfer matrix is 1 1

1 0


The eigenvalues are (1±

√
5)/2. The larger one is also known as golden ratio. For the

4× 4 transfer matrix, the largest eigenvalue is also (
√
5 + 1)/2.

• Use the transfer matrix to compute the number of jammed con�gurations of N disks, but

now starting from only a single con�guration to the left, namely the con�guration "1" of

Fig. 4.

The eigenvectors of the transfer matrix are (not normalized)

e± =

(1±
√
5

2

1

)
And, (

F1

F0

)
=

1√
5
(e+ − e−)

Thus,

(
FN

FN − 1

)
=

1√
5

(1 +
√
5

2

)N−1
e+ −

(
1−
√
5

2

)N−1
e−


and

FN =
1√
5

(1 +
√
5

2

)N
−

(
1−
√
5

2

)N
Adding one particle to con�guration 1 gives 3-particle systems which end with con�gu-

ration 3 and 4. And, due to the symmetry of the problem, the jammed con�guration,

produced by adding particles to con�guration 3 and 4 account for a half of the jammed

con�gurations. Thus, the number of jammed con�guration is FN .


