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ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER

By PERSI DIACONIS,1 SUSAN HOLMES AND RADFORD M. NEAL?

Stanford University, Stanford University and INRA and University of Toronto

‘We analyze the convergenee to stationarity of a simple nonreversible

Markov chain that serves as a model for several nonreversible Markov

chain sampling methods that are used in practice. Our theoretical and

numerical results show that nonreversibility can indeed lead to improve-

ments over the diffusive behavior of simple Markov chain sampling

schemes. The analysis uses both probabilistic techniques and an explicit

diagonalization.

1. Introduction. Markov chain sampling methods are commonly used in
statistics [33, 32], computer science [31], statistical mechanics [3] and quan-
tum field theory [34, 23]. In all these fields, distributions are encountered that
are difficult to sample from directly, but for which a Markov chain that con-
verges to the distribution can easily be constructed. For many such methods
(e.g., the Metropolis algorithm [25, 13], and the Gibbs sampler [17, 16] with
a random scan) the Markov chain constructed is reversible. Some of these
methods explore the distribution by means of a diffusive random walk. We
use the term “diffusive” for processes like the ordinary random walk on a
d-dimensional lattice which require time of order T? to travel distance T.
Some other common methods, such as the Gibbs sampler with a systematic

scan, use a Markov chain that is not reversible, but have diffusive behavior et

resembling that of a related reversible chain [30]. cole normale
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Glossary:
o 'lifting move': required by global balance.
@ ‘resampling’: special lifting move good for irreducibility,
aperiodicity or for speed.
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1 w0 noml
T:0 T

@ Single particle on a path graph P,, not on a ring.

@ Phantom vertices 0 and n + 1 on P, illustrate the ‘rejections
— liftings’ mystery.

e NB: Lifting moves # resamplings
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URNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUN

Equation of State Calculations by Fast Computing Machines

Nicuoras MEeTrOPOLIS, ARIANNA W. RosenBLUTH, MaRsHALL N. RosENBLUTH, AND Avucusta H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

Epwarp TELLER,* Department of Physics, Universily of Chicago, Chicago, Illinois
(Received March 6, 1933)

or substances consisting of interacting individual molec
modthed Monte Carlo integration over configuration space
system have been obtained on the Los Alamos MANTAC and™i € cd he
to the free volume equation of state and to a four-term virial coeﬂi-:lent expanslon

ﬁneml method, suitable for fast computing machines, for lnvestlgatmg such propertles ag mnma

gid-sp ere

o Département
| de Physique

@ Ecole normale

supérieure



Metropolis et al (1953) (2/2)

1088 METROPOLIS, ROSENBLUTH, ROSENBLUTH, TELLER, AND TELLER

Our method in this respect is similar to the cell configurations with a probability exp(—E/kT) and
method except that our cells contain several hundred weight them evenly.
particles instead of one. One would think that such a This we do as follows: We place the N' pa:ncles inany
sample would be quite adequate for describing any one- a o c ice. Then
phase system. We do find, however, that in two-phase
systems the surface between the phases makes quite a
nerturhation. Also. statistical fluctnations mav he -

@ The ‘Sweep’ variant of any reversible single-particle-move
MCMC satisfies global balance (same for single spin flips)
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e Metropolis flows on P, (with ‘phantom’ vertices):

T — %min(ﬂ'i7 Tio1) — %min(ﬂ'i, Tit1)

% min(m;—1,7m;) % min(7;,miy1)
o ] =

3 min(mmi—1) —— 5 min(mizrm)

o Lifted-Metropolis flows on P, (with ‘phantom’ vertices):

- -
- smin(mi_1,m;) [, 5 min(m;,mivy) [
-1,4+1) | 2 z 1,41
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@ The ‘rejections — liftings’ idea works best for constant ;.
@ see Hildebrand (2004) for V-shaped. Hayes—Janes (2013) for
general case.

@ Appears impossible to generalize, but is not.
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Lifting Markov Chains to Speed up Mixing

Fang Chen Lészl6 Lovasz * Igor Pak
Department of Mathematics Department of Computer Science Department of Mathematics
Yale University Yale University Yale University
Abstract fchen@math.yale.edu lovasz@cs.yale.edu paki@math.yale.edu

There are several examples where the mixing time of a Markov
chain can be reduced substantially, often to about its square
root, by “lifting”, i.e., by splitting each state into several
states. In several examples of random walks on groups, the
lifted chain not only mixes better, but is easier to analyze,
We characterize the best mixing time achievable through
hﬂmg in terms of mulhtommodlt) flows. We show that the
the lifted chain
t most a factor

o T I
of an any state. We give an example showing that a gain of a
factor of log(1/m0)/ log log(1/m) is possible

1 Introduction

The estimation of the mixing time of finite Markov chains
(the time needed for the chain to become approximately
stationary) has emerged as a major issue in the design and
analysis of various algorithms for sampling, enumeration,
optimization, integration etc,
i) ‘ i aa waslmotivated by
the work of Diaconis. Holmes and Neall [5],
Substantially faster
than closely related rexer:xhle rlnam: V\,e view their exam-
plein a different way: we represent a given chain as the “pro-
jection” of another chain, and analyze how this improves the
mixing time. . L. . . . . . R département
"1, dePhysique
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2.4 Conductance and mixing

pd Sinclair [6],
Forreversible

0 AL W Let 1- }\z
be the ﬂgem alue gap, and deﬁne the ﬂ“faxm‘,wn time to be
L= —_rg Then

8
SL2gms (3)
and
(4)

For general chains, there does not seem to be a standard
way to define the eigenvalue gap, but similar bounds can be
proved for the set-time A.

Lemma 2.1 For every Markov chain,

1 20
— <A< = 5
7 A (%)
and 1 3000, 1
7 SH <353 logg (6)
The proofs of these lemmas are omitted. The connection P‘pm e
proots ) ' ’ UE Ecole normale
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between multicommodity flows and mixing, in one direction,
is established by the following lemma:
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3 Lifting and Collapsing

Let M and A7 be two finite Markov chains with underlying
sets ¥ and i:', respectively. We denote by 7, p ete. the
stationary distributions, transition probabilities etc. in M.

We say that M is a eollapsing of ﬂ?, if there is a mapping
¥V — V such that

L (VA CH

i€ f=t{w)

for every v € V(G), and

s L T

igfol(w) e ftu)

for every pair v, u € V(G). We also say that M is a lifting of
M. For the random walk on an undirected graph, collapsing
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Required: Mapping from Q (lifted sample space) to Q that
preserves stationary probability distribution.

Required: Lifted transition matrix P that preserves flow.
Optional: Q = Q x £ (with £: set of lifting variables).
Optional:

#(u,0)  7(v,0)

n(u) — w(v)

There are many liftings P for a given lifted sample space €.

YuveQVoelLl.

(1)

¥
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Conductance = bottleneck ratio = Cheeger constant.
Conductance lower bounds miraculous.
Inequalities apply only to finite Markov chains.

In event-driven algorithms, mixing and correlation times may
not reflect computational effort.
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1 Stat Phys (2016) 165:1051-1085 ® CuossMark
DOI 10.1007/510955-016-1665-y

TASEP on a Ring in Sub-relaxation Time Scale

Jinho Baik! - Zhipeng Liu?

Abstract Interacting particle systems in the KPZ universality class on a ring of size L
with O(L) number of particles are expected to change from KPZ dynamics to equilibrium
dynamics at the so-called relaxation time scale r = O(L*/2). In particular the system size
is expected to have little effect to the particle fluctuations in the sub-relaxation time scale
| « t < L*/*. We prove that this is indeed the case for the totally asymmetric simple
exclusion process (TASEP) with two types of initial conditions. For flat initial condition, we
show that the particle fluctuations are given by the Airy; process as in the infinite TASEP
with flat initial condition. On the other hand, the TASEP on a ring with step initial condition
is equivalent to the periodic TASEP with a certain shock initial condition. We compute
the fluctuations explicitly both away from and near the shocks for the infinite TASEP with
same initial condition, and then show that the periodic TASEP has same fluctuations in the
sub-relaxation time scale.
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TASEP on a Ring

Jinho Baik! - Zhipeng Liu?

Abstract Interacting particle systems in the KPZ universality class on a ring of size L
with O(L) number of particles are expected to change from KPZ dynamics to equilibrium
dynamics at the so-called relaxation time scale r = O(L*/2). In particular the system size

is expected to have little effect to the particle fluctuations in tl =
1 i 132 We prove that this is indeed the case for lhw
wmsmﬂ with two types of initial conditions. For fiat initial condition, we
show e particle fluctuations are given by the Airy; process as in the infinite TASEP
with flat initial condition. On the other hand, the TASEP on a ring with step initial condition
is equivalent to the periodic TASEP with a certain shock initial condition. We compute
the fluctuations explicitly both away from and near the shocks for the infinite TASEP with
same initial condition, and then show that the periodic TASEP has same fluctuations in the
sub-relaxation time scale.

n Sub-relaxation Time Scale
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Abstrac in the KPZ univessality class on a sing of size L
with O(. cted t Z d to
dynamics at the so- called relaxation time scalflr = O(L*/%)flIn particular the system size
is expected to have little effect to the particle = ion i
1 i 132 We prove that this is indeed the case for mw
wﬂasm) with two types of initial conditions. For fiat initial condition, we
show tha icle fluctuations are given by the Airy; process as jg nin 12
with flat initial condition. On the other hand, the TASEP on a ring witl
is equivalent to the periodic TASEP with a certain shock initial colth .
the fluctuations explicitly both away from and near the shocks for the mfmlte TASEP wﬂh

same initial condition, and then show that the periodic TASEP has same fluctuations in the
sub-relaxation time scale.
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Symmetric simple exclusion process (alias: ‘Local Metropolis')
QSSEP = 13 < xa,..., < xn} with x; € {1,...,n}. PBC.

P (transition matrix): nearest-neighbor, one per unit of time.
Mixing time: O (N3log N) (rigorous: Lacoin 2014).

Continuous versions exist.
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- 3/ e w
SSEP SSEP (SWEEP)

Particle-lifted SSEP (sweep)
(SSEP-Sweep _ ASSEP . A7 with A — {1,.... .
Mixing time: O (N3log N) (numerics: Kapfer, Krauth 2017).

OK, as any ‘particle lifting’ of a reversible Markov chain.
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SSEP SSEP (SWEEP) TASEP

Totally asymmetric simple exclusion process.
QTASEP — SSEP & D with D = {—1,+1}.
Displacement-lifted SSEP.
Lifted-sample-space halving applies.

Mixing time: O (N°/2) (Baik—Liu 2016)
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SSEP SSEP (SWEEP) TASEP TASEP(SWEEP)

o Particle-lifted TASEP (Sweep).
° QTASEP-Sweep — QSSEP o D % N.

o Lifted-sample-space halving applies.
@ Violates global balance (Kapfer—Krauth 2017).
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SSEP SSEP (SWEEP) TASEP TASEP(SWEEP) PL-TASEP

Particle-lifted TASEP.
Particle-lifted displacement-lifted SSEP.
QPL-TASEP _ SSEP o D « A/

Sample-space halving applies. Resampling essential.
Mixing time O (N2 log N) (Kapfer—Krauth 2017, rigorous:
Lei-Krauth 2018)

e The coupon-collector log can be eliminated, and O (N?)

mixing time reached. oL SR
L] teotenomae
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Conclusions

@ The 'particle-on-a-path-graph lifting’ (Diaconis—Holmes—Neal
2000) illustrates the ‘rejections — liftings’ miracle.
@ There's more to liftings than ‘momenta’.

@ Infinite speedups for N — oo can be carried over to
interactive-particle systems (TASEP and ECMC).
@ Must be super careful. Design principles would be useful.

e Conductance arguments must be extended for event-driven
continuous MCMC.
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