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Introduction

General information:
e Starting time: 12 November 2018, 10:45 AM.
e Finishing time: 12 November 2018, 12:45 PM.
e Closed-books exam (no books, scripts, calculators, smart phones, computers, etc.).
e Use only paper provided by ENS.
e Do not hesitate to ask questions.
e Do not forget to write your name onto the cover sheet.
e Please transfer your answers from the green scratch paper (brouillon) to the white exam paper.
e Please leave the scratch paper at your desk.

e Do not forget to sign the register (“feuille d’émargement”).



I. EXPONENTIAL AND BERNOULLI DISTRIBUTIONS

In this problem, we study inequalities for probability distributions. We will illustrate the approximate nature of
the Chebychev inequality, and also the importance of the Hoeffding inequality, in direct relation to the first part of
our lecture course.

A. Useful formulas

Before starting, we recall the following (ux: mean value, Vary: Variance, ox: standard deviation):

Chebychev The Chebychev inequality considers a random variable X. It states:

Var(X
P(X — x| > ) < 250 )
Hoeffding Hoeffding’s inequality considers random variables X;,7 = 1, ..., n with zero expectation and a; < X; < b;.
For every t > 0, Hoeffding’s inequality states:
n n
P(Z Xi > ¢€) < exp(—te) HeXP [t%(b; — a:)?/8] . (2)
i=1 i=1

Exponential distribution The distribution Exponential(8) is defined through the probability density w(z) =
1/Bexp (—z/B) (for x > 0).

Bernoulli distribution The distribution Bernoulli(f) takes on the value 1 with probability 6 and the value 0 with
probability 1 — 6.

B. Problems

1. Consider a random variable X ~ Exponential(8). What is its mean value py, its variance Vary, and its
standard deviation ox?

e We first note that the distribution is normalized, because of

= dr exp (—z/B) =1
B Jo

e The mean value of this distibution is ux = [, because of

1 / dr xexp (—z/B) =0
B Jo

o The variance of this distribution is Varyx = 8% because Varx = <ZL‘2> — M%{ and

1 [ )
3 / dr 2° exp (—x/f3) = 25°
B Jo

e The standard distribution of this distribution is cx =/ Varx = .

2. What is the tail probability P(|X — ux| > kox) (with & > 1) for X ~ Exponential(8)? Compare this tail
probability to the bound you obtain from the Chebychev inequality.

The tail probability is exp (—k). Chebychev gives 1/k?. The two functins are the same for k = 2W(1/2) =
0.703467.., where W is the Product Log (the Lambert W function) (but our derivation does not apply to
this case). For all k > 1, the Chebychev bound is not tight.



3. Find a simplified expression of Hoeffding’s inequality, for the special case where the random variables X; are i.i.d
Bernoulli distributed, and for the sample mean X,, = 1/n S, X, that is, formulate Hoeffding’s inequality for
P(|X,, — 0| > ¢€) (for any € > 0) for Bernoulli-distributed random variables. Hint: Remember that Hoeffding’s
inequality, in its original formulation, is for random variables of zero mean.

One finds P(|X,, — 0| > ¢) < 2e~2ne’

4. For the Bernoulli variables X1, ..., X,, as above, compare the bound from Hoeffding’s inequality to the bound
one obtains from Chebychev’s inequality. Under which condition, precisely, is Hoeffding’s inequality stricter
than Chebychev’s inequality (hint: don’t say “large n”, be more precise!).

We note that Hoeffding inequality is for the sum of random wvariables, not for the mean value. However, the
1/n is innocuous:

P (i ZX > ,1f> < exp (fif) HCXP [£%(bi — ai)/8] . ®)

i=1

leads for e/n — e and Bernoulli variables, for which b; —a; =1, to the probability:

P (i ZXi > e) < exp (—te) exp [nt®/8] . (4)

1=1

The rhs is exp (fte + nt2/8). We find the best value of t by deriving. This gives (n/4)t = € and for the
r.h.s. exponentiall the term —2¢%/n. Therefore, we find that the tail probability from Hoeffding’s inequality
is exp (—2ne?), that is, exponential in ne*. Chebychev gives 6(1 — 0)/(ne?). We need n ~ 1/€* in both
cases, but for n > 1/€2, Hoeffding is much sharper.

5. We have now seen two examples, where the Chebychev inequality gave a much worse bound for the tail probability
than either the exact tail probability itself, or than sharper inequalities. Does this mean that the Chebychev
inequality can be replaced by a better inequality without making additional assumptions? If not, give a counter-
example.

No, it is easy to show that the Chebychev inequality is sharp, if no additional assumption is made. An example
is the double §-peak distribution:

1.
m(x) = 50(—1) + 56(1) (5)
whose variance equal 1. Chebychev’s inequality yields
1
P(X|>0) < 5 (6)

In the limit € — 17, where the above probability is 1, this becomes sharp.



II. ICE-TYPE MODELS IN STATISTICAL MECHANICS, TRANSFER MATRIX

We will consider crystals with hydrogen bonding. The most familiar example is ice, where the oxygen atoms form a
lattice of coordination number four (i.e each oxygen has 4 oxygen neighbors), and between each adjacent pair of atoms
is an hydrogen ion. Each ion is located near one or other end of the bond in which it lies. Slater (1941) proposed (on
the basis of local electric neutrality) that the ions should satisfy the ice rule:

Ice rule: Two of the four hydrogens surrounding each oxygen are close to the oxygen, and two are removed from it.
This means that the partition function is given by

Z = Zexp(—g/k;BT) (7)

where the sum is now over all arrangements of the hydrogen ions that are allowed by the ice rule, and £ is the energy
of such arrangement.

The hydrogen—oxygen bonds between atoms form electric dipoles (see Fig. 1a), and they can conveniently be
represented by arrows placed on the bonds pointing toward the end occupied by the oxygen, as in Fig. 1b. Slater’s
ice rule is then equivalent to stating that at each site (or vertex) of the lattice there are two arrows in, and two arrows
out. There are just six such ways of arranging the arrows i.e there are six types of vertices, see Fig. 2.

Yet another way of representing the hydrogen—oxygen dipoles is to draw a line on an edge if the corresponding
arrow points down or to the left, otherwise to leave the edge empty, see Fig lc.
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FIG. 1: H3O Ice configuration with one “crystal” per lattice site (“Oxygen” ions are on the vertices of the lattice). a:
“Hydrogens” bond towards the closest Oxygen b: Representation in terms of arrows. c¢: Representation in terms of non-
crossing lines. A “row” of edges is shown in red.
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FIG. 2: The six vertex types (upper) and their line representations (lower).

1. Give a very simple (no calculation necessary) expression for the energy &£ of a configuration as a function of ¢;
(the energy of a vertex of type i) and of n; (the number of vertices i in the configuration).

E=3,ni€

2. From now on, we assume that ¢; = €9, €3 = €4 and €5 = €. Assume a lattice with M rows and N columns, and
impose periodic boundary conditions. Consider a row of N vertical edges (between two adjacent rows of sites,
see the red line in Fig. 1c). There are M such rows: label them r = 1,2, ..., M sequentially upwards. Let ¢,



denote the ’state’ of row r: i.e. the arrangement of lines on the N vertical edges. Since each edge may or may
not be occupied by a line, ¢, has 2V possible values.

Show that one can write the partition function as Z = Tr (VM ) State the (very basic) condition that a pair of
¢ and ¢’ may give a non-zero V (¢, ¢’) (no calculation necessary). State the (formal, non-explicit) expression of
V (¢, ") in terms of the ¢; and their multiplicities between the two neighboring rows (note that the lines ¢ and
¢’ may correspond to one or to more than one configuration of vertices, or to none at all). Give the expression
of Z as a function of Ay, .y, the largest eigenvalue of V', in the thermodynamic limit.

Z="3") VI(61,02)V (¢, 03)..V (dnr -1, 6a0)V (dar, ¢1) = Tr[VM]

¢i P2 bm

where V' in the 2V by 2N transfer matriz. The summation is over all the 2N possible value of each ¢.
Vg, ¢') = Zexp(fﬁ(mlel + ...+ mgeg))

where ¢ is the arrangement of lines on one Tow of vertical edges, and ¢’ is the arrangement on the row
above. The summation is over all allowed arrangements of lines on the intervening horizontal edges. These
arrangements must satisfy the ice rule at each vertex: If there is no such arrangement, then V(¢,¢') is
zero.

3. Explain why if we have n lines on the first row then we have n lines in all other rows also. What can you say
about V (¢, ¢') if ¢ and ¢’ have different numbers of lines? What does this imply for the general structure of
the transfer matrix V7

If one starts by following a path upwards, or to the right, then one will always be traveling in one or other of
these two directions, never down or to the left. The cyclic boundary conditions ensure that a path never
ends. Suppose there are n such paths from the bottom of the lattice to the top. Fach path will go through a
row of vertical edges once and only once. It follows that if there are n lines on the bottom row of vertical
edges, then there are n lines on every row. It follow that from question 2 that V (¢, ') is zero unless ¢ and
@' contain the same number of lines.

Therefore the matriz V breaks up into N + 1 diagonal blocks, one between the state with no lines, another
between states with one line, and so on up to the state with N lines.

4. If we have n lines, we identify a state by specifying the positions {z1,...,z,} of the lines, ordered so that
1<z <..<zy, <N. Let X = {x1,...,2x} be such a specification, and let g(X) be the corresponding
element of the eigenvector g of V. Then the eigenvalues equation can be written as:

Ag(X) =D V(X,Y)g(Y) (8)

where V(X,Y) is the element of V between states X and Y.

Show that V(X,Y) = 3 @™ tmzymstmacms+ms where the summation is over the allowed arrangements of lines
on the intervening row of horizontal edges; and my, ..., mg are the numbers of intervening vertices of types 1, ...6.
Give the expression of a, b and c.

We define: w; = exp(—pe¢;) 1€ {1,...,6}. If we choose a = w1 = wa, b = w3 = wy and ¢ = w5 = wg, then
from 7?7 we directly have:

V(X, Y) _ 2 aml +ma bm3+m4 Cm; +mg

where X andY replace ¢ and ¢'. Again the sum is over the allowed arrangements of lines on the intervening
row of horizontal edges; and my, ..., mg are the numbers of intervening vertices of types 1, ..., 6.

5. We consider n = 0. What are the possible arrangements? Find the expression of V(X,Y") in the n = 0 sector.



If n = 0, then there are no vertical lines in the two successive rows. There are two possible arrangements of
lines on the intervening horizontal row of edges: either all the edges are empty, or they all contain a line.
In the first instance, all vertices are of type 1; in the second they are all of type 4. Therefore the n = 0
block of V' is a one-by-one matriz, with value

A=aV 4V

6. Consider the n = 1 sector. Show that, assuming g(z) = 2% , the eigenvalue equation can be written as

am—le—z 2 am—le—zc2

G 7 N pNp()r e 0,
(a — b2) +OTM(2)2" + (a — b2) ©)

Az = aVL(2)2® —
Find the expression of L(z) and M (z). The second and fourth term of the RHS are boundary terms. Find the
expressions of the eigenvectors and eigenvalues of the n = 1 block of V' (note that g(X) is now g(z) and use the
ansatz g(x) = 2” with z a complex number). Which symmetry could have predicted such a result?

Ifn =1, we can write g(X) as g(x), where x is the position of the vertical line in the row. This x can take the
values 1,...,; N, so this block of V is an N by N matriz, with elements V(x,y). If x is less than y, then all
horizontal edges between x and y must contain a line, and all others must be empty. If it is greater than y,
then the reverse is true. If x =y, then either all horizontal edges are empty, or they are all full. Counting
mi,...,mg for the various cases, the eigenvalue equation becomes

N
Ag(a) =albg(x) + Y aN TV g (y)
y=x+1
r—1
+ abN_lg(x) + Z aw—y—lchN+y—:x—1g(y)
y=1

(10)

We look for a solution of the form g(x) = z* where z is a complex number. Substituting this form for g(x)
into eq. (??7) and summing some elementary geometric series, the equation becomes:

am—le—mCQ am—le—mc2

A T _ NL T N+1 bN]V[ x
2" =a" L(2)z A=t z + (2)2" + A=t z
with L(z) = @HEVE gng [(z) = Looabe,
The second and fourth term differ only by a factor 2V, so their sum can be made to cancel by choosing

2N =1.

The remaining first and third terms on the RHS are ‘wanted terms’, in that they have the same form as
the LHS (constant times z*). Thus the equation is now satisfied if A = a™ L(z) + b~ M(z). There are N
solutions to zN =1 for the complex number z, these give the N expected eigenvectors of this block of the
matriz V. The corresponding eigenvalues are given by A = a™ L(z) + bY M(z). The solutions g(z) = 2°
and 2V =1 could have been predicted on translation-invariance grounds.



