Tutorial 10, Statistical Mechanics: Concepts and applications 2019/20 ICFP Master (first year)

Botao Li, Valentina Ros, Victor Dagard, Werner Krauth
Tutorial exercises

I. THE ROUGHENING TRANSITION

1. The Chui-Weeks model Source: S. T. Chui and J. D. Weeks, Phys. Rev. B 23, 2438 (1981)
J. M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford, 1992), chapter 5

The model: Here we consider a version of the Chui-Weeks model, which describes solid-on-solid surface growth. The surface is parametrized by the height h_{i} above site i of the lattice, which we are going to assume to be discrete and non-negative $h_{i} \in \mathbb{N}$ (there is an impenetrable substrate). The Hamiltonian is given by

$$
\begin{equation*}
H=J \sum_{i=1}^{N}\left|h_{i}-h_{i+1}\right|-K \sum_{i=1}^{N} \delta_{h_{i} 0}, \tag{1}
\end{equation*}
$$

where the first term represents the contribution of surface tension to the total energy, and K parametrizes an energy binding the surface to the substrate. Assume a one dimensional model with periodic boundary conditions.
(a) Write down the transfer matrix of this model in terms of $\omega=e^{-\beta J}$ and $\kappa=e^{\beta K}$.
:

$$
\begin{equation*}
T_{s s^{\prime}}=\omega^{\left|s-s^{\prime}\right|}\left(\delta_{s 0} \kappa+1-\delta_{s 0}\right) \tag{2}
\end{equation*}
$$

$$
\text { for } s, s^{\prime} \geq 0
$$

(b) Consider a family of eigenvectors of the form

$$
\vec{v}^{t}=\left(\begin{array}{lll}
\Psi_{0} & \cos (q+\theta) & \cos (2 q+\theta) \tag{3}
\end{array} \ldots\right) .
$$

Find the corresponding eigenvalues.
: We have

$$
\begin{array}{r}
{[T \vec{v}]_{0}=\kappa\left(\Psi_{0}+\sum_{s=1}^{\infty} \omega^{s} \cos (s q+\theta)\right)=\kappa\left(\Psi_{0}+\operatorname{Re} \sum_{s=1}^{\infty} \omega^{s} e^{i s q+i \theta}\right)=\kappa\left(\Psi_{0}+\operatorname{Re} \frac{e^{i \theta}}{e^{\beta J-i q}-1}\right)=} \\
\kappa\left[\Psi_{0}+\frac{\omega \cos (q+\theta)-\omega^{2} \cos \theta}{1-2 \omega \cos q+\omega^{2}}\right] \tag{4}
\end{array}
$$

$$
\begin{gather*}
{[T \vec{v}]_{s \geq 0}=e^{-\beta J s} \Psi_{0}+\sum_{s^{\prime}=1}^{\infty} e^{-\beta J\left|s-s^{\prime}\right|} \cos \left(q s^{\prime}+\theta\right)=e^{-\beta J s} \Psi_{0}+\sum_{s^{\prime}=1}^{s-1} e^{-\beta J\left(s-s^{\prime}\right)} \cos \left(q s^{\prime}+\theta\right)+\sum_{s^{\prime}=0}^{\infty} e^{-\beta J s^{\prime}} \cos \left(q s^{\prime}+q s+\theta\right)} \\
=e^{-\beta J s} \Psi_{0}+\frac{e^{\beta J(1-s)} \cos (\theta+q)-e^{(2-s) \beta J} \cos \theta+\left(e^{2 \beta j}-1\right) \cos (q s+\theta)}{1+e^{2 \beta J}-2 e^{\beta J} \cos q} \tag{5}
\end{gather*}
$$

Thus we must impose

$$
\begin{align*}
e^{\beta K}\left[\Psi_{0}+\frac{e^{\beta J} \cos (q+\theta)-\cos \theta}{e^{2 \beta J}-2 e^{\beta J} \cos q+1}\right] & =\lambda \Psi_{0} \\
\omega^{s} \Psi_{0}+\frac{e^{\beta J(1-s)} \cos (\theta+q)-e^{(2-s) \beta J} \cos \theta+\left(e^{2 \beta j}-1\right) \cos (q s+\theta)}{1+e^{2 \beta J}-2 e^{\beta J} \cos q} & =\lambda \cos (q s+\theta) . \tag{6}
\end{align*}
$$

From the second equation we find

$$
\begin{equation*}
\Psi_{0}=\frac{e^{2 \beta J} \cos \theta-e^{\beta J} \cos (q+\theta)}{1+e^{2 \beta J}-2 e^{\beta J} \cos q} \tag{7}
\end{equation*}
$$

which, plugged into the first equation gives

$$
\begin{equation*}
\lambda=e^{\beta K} \cos \theta \frac{e^{2 \beta J}-1}{e^{2 \beta J} \cos \theta-e^{\beta J} \cos (q+\theta)} \tag{8}
\end{equation*}
$$

From the second equation instead we have

$$
\begin{equation*}
\lambda=\frac{e^{2 \beta J}-1}{1+e^{2 \beta J}-2 e^{\beta J} \cos q} \tag{9}
\end{equation*}
$$

which results in the consistency condition

$$
\begin{equation*}
e^{\beta K}\left(1+e^{2 \beta J}-2 e^{\beta J} \cos q\right)=e^{2 \beta J}-e^{\beta J} \frac{\cos (q+\theta)}{\cos \theta} \tag{10}
\end{equation*}
$$

For any given q, the quantity $\frac{\cos (q+\theta)}{\cos \theta}$ can assume any value, therefore there is always a value of θ for which this condition is satisfied. Consequently, the family of eigenvalues associated with eigenvectors of the form (??) is parametrized as in (??) for arbitrary q. We can therefore conclude

$$
\begin{equation*}
\lambda \in\left[\frac{1-\omega}{1+\omega}, \frac{1+\omega}{1-\omega}\right] . \tag{11}
\end{equation*}
$$

(c) Now consider a different eigenvector:

$$
\vec{w}^{t}=\left(\begin{array}{lll}
\Phi_{0} & e^{-\mu} & e^{-2 \mu} \tag{12}
\end{array} \ldots\right) .
$$

Find the corresponding eigenvalue and, if necessary, specify in what temperature regime it exists.
: We find

$$
\begin{gather*}
{[T \vec{w}]_{0}=\kappa\left(\Phi_{0}+\sum_{s=1}^{\infty} \omega^{s} e^{-\mu s}\right)=\kappa\left(\Phi_{0}+\frac{1}{e^{\beta J+\mu}-1}\right) \equiv \lambda \Phi_{0}} \tag{13}\\
{[T \vec{v}]_{s \geq 0}=\omega^{s} \Phi_{0}+\sum_{s^{\prime}=1}^{\infty} \omega^{\left|s-s^{\prime}\right|} e^{-\mu s^{\prime}} \stackrel{\beta J<\mu}{=} e^{-\beta J s} \Phi_{0}+\frac{e^{-\beta J(s-1)-\mu}-e^{-\mu s}}{1-e^{\beta J-\mu}}+\frac{e^{-\mu s}}{1-e^{-\beta J-\mu}} \equiv \lambda e^{-\mu s}} \tag{14}
\end{gather*}
$$

From the second equation we deduce

$$
\begin{equation*}
\Phi_{0}=\frac{1}{1-e^{-\beta J+\mu}} \tag{15}
\end{equation*}
$$

which plugged into the first equation gives

$$
\begin{equation*}
e^{\beta K}\left(\frac{e^{\beta J}-e^{-\beta J}}{e^{\beta J}-e^{-\mu}}\right)=\lambda \tag{16}
\end{equation*}
$$

while the second equation results in the constraint

$$
\begin{equation*}
e^{-\mu}=\frac{\omega}{1-\kappa^{-1}} \tag{17}
\end{equation*}
$$

Since $\mu>0$ (otherwise the eigenvector would not be normalizable), this places a condition on the temperature:

$$
\begin{equation*}
\omega<1-\kappa^{-1} \tag{18}
\end{equation*}
$$

The discrete eigenvalue that exists in the temperature range satisfying the condition above is given by

$$
\begin{equation*}
\lambda_{0}=\frac{\kappa\left(1-\omega^{2}\right)(\kappa-1)}{\kappa\left(1-\omega^{2}\right)-1} . \tag{19}
\end{equation*}
$$

(d) Find the eigenvalue that dominates the thermodynamics below the critical temperature (temperature at which the roughening transition occurs), and discuss what this means for the two phases.
: Lets check whether this inequality holds:

$$
\begin{gathered}
\frac{\kappa\left(1-\omega^{2}\right)(\kappa-1)}{\kappa\left(1-\omega^{2}\right)-1}>\frac{1+\omega}{1-\omega} \\
\kappa \omega^{2}-2(\kappa-1) \omega-2+\kappa+1 / \kappa>0,
\end{gathered}
$$

The quadratic equation has one root $\omega=\frac{K-1}{K}$, so no part of the parabola lies below the x-axis and the inequality holds. Therefore, where λ_{0} exists (i.e., below T_{c}), it is the largest eigenvalue. Roughly speaking, the right eigenvector \vec{w}^{t}, and the corresponding left eigenvector of T give the probabilities of various heights: the product of the two vectors' k th components is proportional to the probability of $h=k$ on a given site.
You can then see that below T_{c} the width of the substrate is bound, whereas above the rougheninng transition it is not.

