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This is the first of two lectures on classical many-particle systems. In this first
lecture, we move from Newtonian mechanics to Boltzmann mechanics and from clas-
sical mechanics to statistical mechanics, in a way that we promise to be surprising
and, as usual, entirely example-based.
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4 Many-particle systems. From Newtonian mechanics to
Boltzmann mechanics.

In the hard-sphere model, all configurations have the same potential energy and there is no
energetic reason to prefer any configuration over any other. Only entropic effects come into
play. In spite of this restriction, hard spheres and disks show a rich phenomenology and exhibit
phase transitions from the liquid to the solid state. These “entropic transitions” were once quite
unsuspected, and then hotly debated, before they ended up poorly understood, especially in

∗werner.krauth@ens.fr, werner.krauth@physics.ox.ac.uk

1

mailto:werner.krauth@ens.fr
mailto:werner.krauth@physics.ox.ac.uk


Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

t = 0 t = 1.25

wall collision

t = 2.18 t = 3.12

pair collision

t = 3.25 t = 4.03

t = 4.04 t = 5.16 t = 5.84 t = 8.66 t = 9.33 t = 10.37

Figure 4.1: Newtonian evolution of four disks in a square box without periodic boundary conditions.

two dimensions. The physics of entropy will occupy us in Lecture 5. In the present lecture, our
focus is on the emergence of statistical mechanics from classical mechanics.

4.1 Hard disks—Newton dynamics

We discuss Newtonian dynamics of hard disks, and we will later compare it to the point of view
of statistical physics.

4.1.1 Event-driven molecular dynamics

Let us consider a model of hard disks in a box. Disks can undergo collisions with each other or
with the walls. To get started with a naive 1 program, we realize that at any generic moment,
there are N(N − 1)/2 pairs of particles which could engage in pair collision, each indexed by
a pair-collision time in the future and N individual wall collisions, also in the future. Up to
the minimum of these times, the time evolution is straight, and at the next event, either a pair
collision or a wall collision takes place (see Alg. 4.1 (event-disks)). Look here for a real-life

procedure event-disks

input {x1, . . . ,xN}, {v1, . . . ,vN}, t
{tpair, k, l} ← next pair collision
{twall, j} ← next wall collision
tnext ← min[twall, tpair]
for m = 1, . . . , N :{

xm ← xm + (tnext − t)vm

if (twall < tpair) then{
call wall-collision (j)

else:{
call pair-collision (k, l)

output {x1, . . . ,xN}, {v1, . . . ,vN}, tnext
——

Algorithm 4.1: event-disks. Event-driven molecular dynamics algorithm for hard disks in a square
box of sides 1.

Python program that we will motivate next. We now implement Alg. 4.1 (event-disks) without

1“naive” means “basically correct, but inefficient”.
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discretizing time. To do so, we consider an arbitrary pair of particles. They will collide when
the norm of their spatial distance vector

xk(t)− xl(t)︸ ︷︷ ︸
∆x(t)

= ∆x︸︷︷︸
xk(t0)−xl(t0)

+ ∆v︸︷︷︸
vk−vl

·(t− t0) (4.1)

equals twice the radius σ of the disks (see Fig. ??). This can happen at two times t1 and t2,
obtained by squaring eq. (4.1), setting |∆x| = 2σ, and solving the quadratic equation

t1,2 = t0 +
−(∆x ···∆v)±

√
(∆x ···∆v)2 − (∆v)2((∆x)2 − 4σ2)

(∆v)2
. (4.2)

The two disks will collide in the future only if the argument of the square root is positive
and if they are approaching each other ((∆x ··· ∆v) < 0). The smallest of all the pair collision
times obviously gives the next pair collision in the whole system (see Alg. 4.1 (event-disks)).
Analogously, the parameters for the next wall collision follow from a straightforward time-of-
flight analysis.

t0 t1 t2

Figure 4.2: Wall collision. The time of a collision is easy to compute, and so is the new velocity

t1

t2

t0

Figure 4.3: Approach of a pair of two disks, as programmed in eq. (4.2)

Pair collisions are best analyzed in the center-of-mass frame of the two disks, where vk+vl = 0
(see Fig. ??). Let us write the velocities in terms of the perpendicular and parallel components
v⊥ and v∥ with respect to the tangential line between the two particles when they are exactly
in contact. This tangential line can be thought of as a virtual wall from which the particles
rebound:

vk = v∥ + v⊥
vl = −v∥ − v⊥︸ ︷︷ ︸

before collision

,
v′
k = v∥ − v⊥
v′
l = −v∥ + v⊥︸ ︷︷ ︸

after collision

.

The changes in the velocities of particles k and l are ∓2v⊥. Introducing the perpendicular unit
vector ê⊥ = (xk − xl)/|xk − xl| allows us to write v⊥ = (vk ··· ê⊥)ê⊥ and 2v⊥ = (∆v ··· ê⊥)ê⊥,
where 2v⊥ = v′

k − vk gives the change in the velocity of particle k. The formulas coded into
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center of mass frame
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v‖

Figure 4.4: Computing the velocities after the pair collision.

procedure pair-time

input ∆x (≡ xk(t0)− xl(t0))

input ∆v (≡ vk − vl ̸= 0)

Υ← (∆x ···∆v)
2 − |∆v|2(|∆x|2 − 4σ2)

if (Υ > 0 and (∆x ···∆v) < 0) then{
tpair ← t0 −

[
(∆x ···∆v) +

√
Υ
]
/∆2

v

else:{
tpair ←∞

output tpair
——

Algorithm 4.2: pair-time. Pair collision time for two particles starting at time t0 from positions xk

and xl, and with velocities vk and vl.

Alg. 4.3 (pair-collision) follow. We note that ê⊥ and the changes in velocities v′
k − vk and

v′
l − vl are relative vectors and are thus the same in all inertial reference frames. The program

can hence be used directly with the lab-frame velocities.

procedure pair-collision

input {xk,xl} (particles in contact: |xk − xl| = 2σ)

input {vk,vl}
∆x ← xk − xl

ê⊥ ← ∆x/|∆x|
∆v ← vk − vl

v′
k ← vk − ê⊥(∆v ··· ê⊥)

v′
l ← vl + ê⊥(∆v ··· ê⊥)

output {v′
k,v

′
l}

——

Algorithm 4.3: pair-collision. Computing the velocities of disks (spheres) k and l after an elastic
collision (for equal masses).

4.1.2 Chaos

Algorithm 4.1 (event-disks) is entirely deterministic, and we may think that it actually com-
putes the positions and velocities of N hard disks at time t from the values at time t = 0. But
this is not really the case. It suffices to run the program at different precision levels 2 in order

2this is easy to implement in the NumPy extension of Python.
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to see that we can really compute positions and velocities up to a handful of collisions. Little
errors in the numerical computations blow up inexorably, and change the sequence of collisions.
This is manifestation of chaos that, in our case, is caused by the convex curvature of the disks.

4.1.3 Complexity of molecular dynamics, heaps

4.2 Hard disks—Boltzmann dynamics

We enter into the discussion of statistical mechanics proper, in the case of the hard-disk model,
where things are easier than for general case, that we will sketch in Sec. ??. The basic property
that we can study is the equal-probability principle, that means that configurations with the
same statistical weight have the same probability.

4.2.1 Equal-probability principle, direct-disk sampling

In the hard-disk case,

π(x1, . . . ,xN ) =

{
1 if configuration legal

0 otherwise
, (4.3)

which, as in lecture 1, is to be understood with a Cartesian measure dx1, . . . ,xN on both sides.
The sampling algorithm consists in the following Algorithm 4.4 (direct-disks) is one of a

procedure direct-disks

1 for k = 1, . . . , N :
xk ← ran(xmin, xmax)
yk ← ran(ymin, ymax)
for l = 1, . . . , k − 1:{

if dist (xk,xl) < 2σ: goto 1 (reject sample—tabula rasa)

output {x1, . . . ,xN}
——

Algorithm 4.4: direct-disks. Direct sampling for N disks of radius σ in a fixed box.

number of direct-sampling algorithms for this system, of which some are even fast, in the limit
N →∞. The tabula rasa aspect of it can be understood easily.

4.2.2 Markov-disk sampling (reversible)

We now consider a reversible Markov-chain algorithm for four hard disks in a box.

procedure markov-disks

input {x1, . . . ,xN} (configuration a)

k ← nran (1, N)
δxk ← {ran(−δ, δ) , ran(−δ, δ)}
if disk k can move to xk + δxk: xk ← xk + δxk

output {x1, . . . ,xN} (configuration b)

——

Algorithm 4.5: markov-disks. Generating a hard-disk configuration b from configuration a using a
Markov-chain algorithm (see Fig. ??).
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t = 0

a

0 Tt t = T

Figure 4.5: Density at position y computed the hard way, by following the entire trajectory

4.2.3 Observables

It can be computed exactly for given particle trajectories between times t = 0 and t = T :{
y-density
at y = a

}
= ηy(a) =

1

T

∑
intersections i
with gray strip

in Fig. ??

1

|vy(i)|
. (4.4)

In Fig. 4.5, there are five intersections (the other particles must also be considered). At each
intersection, 1/|vy| must be added, to take into account the fact that faster particles spend less
time in the interval [a, a + da], and thus contribute less to the density at a. A more leisurly
approach consists in simpy analyzing stroboscopic pictures, that is, configurations at equal time
intervals. This is the approach we also use for the Monte Carlo algorithm.
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Figure 4.6: Projected density at position y, which is not constant.

4.3 Maxwell distribution, thermostats, Boltzmann distribution

4.3.1 Equal-probability principle for velocities

An obvious differences between molecular dynamics and Monte Carlo consists in that the former
has positions and velocities whereas the latter only has positions. We just considered half of the
problem, and it is not only the positions that satisfy an equal-probabability condition (under
the given constraints) but also the velocities. For them, the condition is:

4.3.2 Thermostats and the Boltzmann distribution

In Sec. 4.2.3, we saw that molecular dynamics and Monte Carlo, in other words Newton and
Boltzmann, gave absolutely the same results. We understand that, by construction, our Monte
Carlo algorithm, by construction, outputs
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Figure 4.7: Isolated anharmonic oscillator

In between the turning points −xmax and xmax the kinetic energy (with the mass equal to
unity) is 1

2(dx/dt)
2, and conservation of energy can be written as

E =
1

2

(
dx

dt

)2

+ U24(x)⇔
dx

dt
= ±

√
2 [E − U24(x)], (4.5)

which gives

dt = ±
√

1

2 [E − U24(x)]
dx. (4.6)

To simulate the isolated anharmonic oscillator, we could numerically integrate the first-order
ordinary differential equation on the right of Eq. (4.5) over a quarter period and then piece
together the entire trajectory of Fig. 4.8a. However, this method is specific to one-dimensional
dynamical systems. To reflect the general case, we numerically integrate Newton’s law for the
force F :

F = m
d2x(t)

dt2
, with F = −dU24

dx
= −x− x3. (4.7)

By substituting the time differential dt by a very small finite interval ∆t, appropriate for stepping
from t to t+∆t, and to t+ 2∆t, and so on, we obtain

x(t+∆t) = x(t) + v(t)∆t, (4.8)

v(t+∆t) = v(t)− (x+ x3)∆t. (4.9)

4.3.3 Molecular dynamics with a thermostat

For hard spheres, we celebrated brillant agreement between molecular dynamics and Monte
Carlo, and it was exactly valid at finite N . Agreement between Newton and Boltzmann can
usually only be obtained by a detour. To see this, we return to the Newtonian dynamics of the
anharmonic oscillator [3], but we take it out of isolation and have it interact with an infinite
bath of hard spheres via thermostat (see Fig. 4.9.)
Statistical mechanics teaches us that, although all the particles in the heat bath are Maxwell-

distributed, the thermostat behaves differently. In particular, because the latter lies at a fixed
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Figure 4.8: Trajectory of the isolated anharmonic oscillator

Figure 4.9: Anharmonic oscillator coupled to a heat bath
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procedure isolated-dynamics

input x, v, t
t← t+∆t
x′ ← x+ v∆t
v ← v −

(
x+ x3

)
∆t

x← x′

output x, v, t
——

Algorithm 4.6: isolated-dynamics. Naive integration of Newton’s equations for the isolated
anharmonic oscillator (see Fig. 4.8).

position (up to an infinitesimal interval), its velocity follows the distribution

π(v)dv = β|v|e−βv2/2dv, (4.10)

often called the Maxwell boundary condition. It differs by the prefactor β|v| from the Maxwell
distribution of one velocity component. The velocity distribution of the thermostat in Eq. (4.10)
can be sampled as

v = ±
√
−2 log ran(0, 1)

β
, (4.11)

(it is an exponential distribution of the random variable v2).

procedure thermostat-dynamics

input x, v, t
x′ ← x+ v∆t
t← t+∆t
Υ← ran(0, 1)
if x · x′ < 0 and Υ < 1/2:{

v ← −sign(v)
√
−2β−1 log ran(0, 1) (see Eq. (4.11))

else:{
v ← v − (x+ x3)∆t
x← x′

output x, v, t
——

Algorithm 4.7: thermostat-dynamics. Naive solution of Newton’s equations for the anharmonic
oscillator with the semi-permeable thermostat at x = 0 (see Fig. 4.10).

Output of Alg. 4.7 (thermostat-dynamics) can be histogrammed to see that the distribution
of positions is exactly (up to discretization errors in ∆t) the Boltzmann distribution of the
anharmonic oscillator, proving (experimentally but by our own means) that the Boltzmann
distribution describes a subsystem interacting with a heat bath. But what about the distribution
of velocities? As we only give our particle a kick at x = 0, we’d surely suppose that it runs
out of steam as it climbs up the potential. But this is not the case, and Fig. 4.11 illustrates it
by histogramming probability distributions of the velocities at different values up the hill. As
statistical mechanics dictates, we have independence of distributions of positions and velocities.
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Figure 4.10: Trajectory of the anharmonic oscillator coupled to a heat bath.

Figure 4.11: Velocity distributions of the anharmonic oscillator (Algorithm 4.7) at different
approximate positions of x. Up to discretization effects, they all agree with the Maxwell
distribution at inverse temperature β = 1.

10



Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

[2] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing Times. American
Mathematical Society, 2008.

[3] G. Tartero and W. Krauth, “Concepts in Monte Carlo sampling,” American Journal of
Physics, vol. 92, no. 1, p. 65–77, 2024.

[4] W. Krauth, Statistical Mechanics: Algorithms and Computations. Oxford University Press,
2006.

[5] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation
of State Calculations by Fast Computing Machines,” J. Chem. Phys., vol. 21, pp. 1087–1092,
1953.

[6] W. Krauth, “Event-Chain Monte Carlo: Foundations, Applications, and Prospects,” Front.
Phys., vol. 9, p. 229, 2021.

[7] E. A. J. F. Peters and G. de With, “Rejection-free Monte Carlo sampling for general poten-
tials,” Phys. Rev. E, vol. 85, p. 026703, 2012.

11


	Many-particle systems. From Newtonian mechanics to Boltzmann mechanics.
	Hard disks—Newton dynamics
	Event-driven molecular dynamics
	Chaos
	Complexity of molecular dynamics, heaps

	Hard disks—Boltzmann dynamics
	Equal-probability principle, direct-disk sampling
	Markov-disk sampling (reversible)
	Observables

	Maxwell distribution, thermostats, Boltzmann distribution
	Equal-probability principle for velocities
	Thermostats and the Boltzmann distribution
	Molecular dynamics with a thermostat



