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This homework illustrates essential calculations of Lecture 13. Please study carefully.

(Dated: January 15, 2020)

In lecture 13 (Bosonic quantum gases and liquid 1/2: Bose-Einstein condensation), we studied

the connection of the canonical ensemble of N non-interacting Bosons with the grand canonical

ensemble at �xed chemical potential. In fact, the grand-canonical partition function is simply the

integrand of the canonical partition function taken at the saddle point of the integration contour.

In this homework session, we will study this complex issue for the case of the three-dimensional

uniform harmonic trap, although the reasoning is independent of the external potential.

I. DENSITY OF STATES

The single-particle density of states N (E) is the number of ways you can realize a many-body

state with energy E. For the harmonic trap in three dimensions (with energy level Ex,Ey,Ez =

0, 1, 2, . . . so that ~ = 1, ω = 1, and the zero-point energy is subtracted), this is given by

N (E) =
(E + 1)(E + 2)

2
. (1)

For energy E, Ex could be 1, 2, ..., E. For each Ex, Ey has E−Ex + 1 choices. After choosing Ex

and Ey, Ez is �xed since E = Ex + Ey + Ez. Thus, the total number of states is

N (E) =
E∑

Ex=0

E − Ex + 1 =
E∑

Ex=0

Ex + 1 =
(E + 1)(E + 2)

2

Also re-derive this formula using the Kronecker δ function

δnm =

∫ π

−π

dλ

2π
ei(n−m).λ (2)
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The density of state could also be written as

N (E) =
E∑

Ex,Ey ,Ez=0

δE,Ex+Ey+Ez

=

E∑
Ex,Ey ,Ez=0

∫ π

−π

dλ

2π
ei(−E+Ex+Ey+Ez)λ

=

∫ π

−π

dλ

2π
e−iEλ

(
E∑

Ex=0

eiExλ

) E∑
Ey=0

eiEyλ

( E∑
Ez=0

eiEzλ

)

=

∫ π

−π

dλ

2π
e−iEλ

(
1− ei(E+1)λ

1− eiλ

)3

=

∮
|z|=1

dz

2πi
z−(E+1)

(
1− zE+1

1− z

)3

where z = eiλ is a complex number. The result of the integral is thus the sum of residues of

all the poles z0 which satisfy |z0| < 1. For |z| < 1, 1/(1− z) = 1 + z+ z2 + .... The integrand

could thus be written as

(1− zE+1)3
1

zE+1
(1 + 3z + 6z2 + ...)

The combinatoric factor in the last polynomial could be calculated using the identical argument

as calculating N (E) using the naive method. Each of the three 1/(1 − z) contributes some

power of z for each term. For the ith term, the �rst 1/(1− z) contributes z0∼i. The second

and third 1/(1− z) account for the rest. Thus, the Eth term, which is the only term related

to determining the residue, has a factor of (E+1)(E+2)
2 . Thus, N (E) = (E+1)(E+2)

2 .

II. NAIVE ENUMERATION

As we discussed in detail in Lecture 13, we may compute the partition function of non-interacting

bosons by summing over all the N -body states σ1, . . . , σN , and by avoiding double counting through

the condition σ1 < σ2 < · · · < σN (σk is a single-particle quantum state). Write such a program to

compute the partition function and also the condensate fraction of N = 5 non-interacting bosons

in a three-dimensional trap with energy states 0, 1, 2, 3, 4 (as discussed). For your convenience, this

program is already written (see naive_bosons.py, available on the website). Use this program to

get benchmark results. You may also modify this program in order to explicitly count the number

of N = 5 many-body states given a certain number of single-particle states (here 35).
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naive_bosons.py is designed to calculate the fraction of particles at the ground state. The output

could be found in Fig. 1. Using this simple algorithm, it is already possible to calculate the

condensate fraction for a small system.
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Naive N = 5 5-boson trap model

FIG. 1: The condensate fraction as a function of temperature, calculated by doing naive numeration.

III. INTEGRATION

As discussed in Lecture 13, we can also obtain the partition function, as well as thermodynamic

observables, by integrating the discrete (Kronecker) δ function

ZN (β) =

∫ π+iε

−π+iε

dλ

2π
e−iNλ

Emax∏
E=0

[fE(β, λ)]N(E)

︸ ︷︷ ︸
ZN (β,λ)

, (3)

with

fE(β, λ) =
1

1− exp (−βE + iλ)
, E > 0, (excited state), (4)

a Bose-Einstein factor which comes from the sum over single-particle energy states.

In Lecture 13, we used two di�erent formulas for E = 0 and for positive energies, but this is

unnecessary if we move the integration contour upwards by an in�nitesimal amount in the complex
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plane (in other words, in eq. (3) we added a little positive imaginary ε, to avoid the pole at E = 0

and λ = 0).

A. Explicit integration in the complex plane

Integrate eq. (3) in the complex plane, from −π to π and show that you obtain exactly the same

result for the partition function as the one you obtained from naive_bosons, if you use Emax = 4.

For your convenience, this integration program is already written (see canonic_bosons.py on the

website).

FIG. 2: Absolute value of the partition function ZN (β, λ) in the complex λ plane (for N = 5 and β = 1).

Using both naive numeration and explicit integration, Z5(β) could be evaluated. The results are

shown in Table III A. As expected, the results are almost identical.

B. Experiments with the partition-function integration

In Fig. 2, you see di�erent integration contours. Implement the integration along these contours

in canonic_bosons.py and demonstrate that the result for the partition function Z does not change

(this is simply a check of the integration theorem for analytic functions. In addition, show that the

�uctuations of the integrand around the maximum changes the least if you pass through the saddle

point, de�ned throughsaddlepoint

 :
∂

i∂λ

{
−iNλ+

∑
E

N (E) log
(

1− e−βE+iλ
)}

= 0.

Up to a complex i, the saddle point is equal to the chemical potential. Notice that at the saddle

point 〈N〉 (for the grand-canonical formulation) equals N of the canonic model. For other extensive
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T Z(Naive numeration) Z(Explicit integral)

0.1 1.000136224526684 1.0001366706682846-5.752221319839128e-12i

0.2 1.0207705099637532 1.0207709472344733-5.66231262437847e-12i

0.3 1.1242278972612432 1.1242282961212084-5.251378153956728e-12i

0.4 1.3548875017920095 1.3548878388740533-4.5628035926415995e-12i

0.5 1.7802348636085865 1.780235130342653-3.751763004014194e-12i

0.6 2.535546223596034 2.5355464224802655-2.926415058985978e-12i

0.7 3.8732495947558716 3.8732497353832103-2.169193002748062e-12i

0.8 6.236889859832073 6.236889954689107-1.5377737214062471e-12i

0.9 10.359307259678479 10.3593073214196-1.0747844707466746e-12i

1.0 17.373297218268803 17.373297257032995-7.664083532655879e-13i

1.1 28.915064997929925 28.915065022157002-4.608466832193404e-13i

1.2 47.199028344469035 47.1990283595266-6.141479609765191e-13i

1.3 75.04767620163041 75.04767621199802-7.21618993812497e-13i

1.4 115.86961428002716 115.86961428608755+9.439059218282899e-13i

TABLE I: Z5(β), calculated by naive numeration and explicit integration. Two methods give almost identical

results. The in�nitesimal imaginary shift is set to 0.01i.

observables, the equivalence between the two ensembles is reached only in the limit N → ∞. For

non-intensive quantities, there are important di�erence may subsist up to the thermodynamic limit.

Fig. 2 indicates that, when Re(λ) = ±π, the integrand is almost 0. Thus, if the path of the integra-

tion is −π → −π+ εi→ π+ εi→ π, only the −π+ εi→ π+ εi part contribute to the integral.

And the integral could be calculated using canonic_boson.py by setting the imaginary shift

to ε. The result is shown in Table III B. The result of integration remains almost unchanged

when changing the value of ε. This is predicted by Cauchy's integral theorem.

With grandcan_boson.py, the value of µ could be calculated. For N = 5 and T = 1, the

chemical potential µ = −0.33. This means the saddle point is at λ = 0.33i. The real part of

integrand for �xed Im(λ) is shown in Fig. 3. When Im(λ) = −βµ (saddle point), the integrand

has a blunt peak and almost no oscillation. If Im(λ) is larger, the integrand oscillates, and

error will emerge from positive value and negative value cancelling each other. When Im(λ)

is smaller, there is a sharp peak. In order to get a accurate result, ∆Re(λ) has to be small.

Besides, the height of this sharp peak is sensitive to the cut-o� energy. Thus, using small

Im(λ) to do accurate calculation is computational expensive. Thus, the integrand is best

integrated when going through the saddle point.
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Im(λ) Z(Explicit integral)

0.01 17.373297257032995-7.664083532655879e-13j

0.11 17.37329730175706-1.4853496074908346e-12j

0.21 17.37329739413363-3.031735456503147e-12j

0.31 17.37329758143781-6.125760836483261e-12j

0.41 17.373297954755387-1.2197180385133349e-11j

0.51 17.373298687050337-2.352237965898094e-11j

0.61 17.373300102467958-4.503996542257634e-11j

0.71 17.37330280119636-8.557728848009089e-11j

0.81 17.37330788238893-1.6022949955251113e-10j

0.91 17.373317338957488-2.967585704947075e-10j

TABLE II: Z5(β), calculated with di�erent Im(λ).
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FIG. 3: The real part of integrand for �xed Im(λ).

C. Further reading

Material for this homework session is adapted from SMAC sections 4.1.2 (pp 190-191) and 4.1.3

(pp 196 - 198).

The subject of saddle point integration is best described in: C. M. Bender and S. A. Orszag
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�Advanced Mathematical Methods for Scientists and Engineers� (Mc Graw Hill, 1978).


