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EoS ⊃ isotherm ≡ P(V )



Translation of terms

Disks in box → sample space Ω.
Moves → Markov chain: Sequence of random variables
(X0,X1, . . . ) where X0 represents the initial distribution and
Xt+1 depends on Xt through a transition matrix P .
A priori probability→ split matrix: Pij = AijPij for i ̸= j
A ⇔ a priori probability; P ⇔ filter
Examples: Metropolis filter, heatbath filter.
Monte Carlo rejections → Pii ⇔ (filter) rejection probability.
NB: Modern MCMC algorithms often have no rejections.

NB: Double role of P :
1 For probability distributions: π{t+1} = π{t}P (with

π{t}, π{t+1} non-explicit objects, often even for t → ∞).
2 For samples i , j : Pij : explicit probability to move from i to j .



Irreducibility

P irreducible ⇔ any i can be reached from any j .
π{0}: Initial probability (explicit, user-supplied). Often
concentrated on a single sample x ∈ Ω.
P irreducible ⇒ unique stationary distribution π with

πi =
∑
j∈Ω

πjPji ∀i ∈ Ω.

NB: Transition matrix P is stochastic, that is,
∑

j Pij = 1.



Irreducibility of hard-disk problem

Is the Metropolis algorithm for hard disks irreducible?
Rather not ...

Hoellmer et al. (2022), following Böröczky (1964)



Ergodic theorem

P irreducible ⇒ π unique, but maybe π{t} ̸→ π for t → ∞.
P irreducible ⇒ Ergodic theorem (E (O) :=

∑
i∈ΩOiπi ):

Pπ{0}

[
lim
t→∞

1
t

∑
it

O(it) = E (O)

]
= 1

(Strong law of large numbers for running average)

Expectation (exact)

First paper

Second paper
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Li et al. (2022)



‘Base’ and ‘tip’ configurations

N = 224 in square box (NB: 224 = 16 × 14) with 16
√

3/2 ≃ 14.

Ψ6 =
1
N

∑
l

1
nbr(l)

nbr(l)∑
j=1

exp (6iϕlj) ,

NB: E (Ψ6) = (0, 0) (Ergodic theorem as a diagnostic tool).
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Li et al. (2022)
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Li et al. (2022)
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NB: Hours of 2022 CPU time (ECMC algorithm)
to equilibrate 870 disks in a box.

Li et al. (2022)



Probability flows

Uniqueness of π ⇒ balance condition on P :

πi =
∑
j∈Ω

πjPji ∀i ∈ Ω.

‘flow’ from j to i ⇔ weight of j × probability to move from j
to i :

Fji ≡ πjPji ⇔ πi =

flows entering i︷ ︸︸ ︷∑
j∈Ω

Fji ∀i ∈ Ω,

Fji ≡ πjPji ⇔

flows exiting i︷ ︸︸ ︷∑
k∈Ω

Fik =

flows entering i︷ ︸︸ ︷∑
j∈Ω

Fji ∀i ∈ Ω,

(NB: stochasticity condition used
∑

k∈Ω Pik = 1).



Reversibility

Reversible P satisfies the ‘detailed-balance’ condition:

πiPij︸︷︷︸
Fij

= πjPji︸︷︷︸
Fji

∀i , j ∈ Ω.

General P satisfies ‘global-balance’ condition

πi =
∑
j∈Ω

πjPji ∀i ∈ Ω.

Detailed balance implies global balance.
Global balance:

flows exiting i︷ ︸︸ ︷∑
k∈Ω

Fik =

flows entering i︷ ︸︸ ︷∑
j∈Ω

Fji ∀i ∈ Ω,

DBC more restrictive, but far easier to check than GBC.



Spectrum of reversible transition matrix

Reversible P :
πiPij = πjPji ∀i , j ∈ Ω.

Reversible P : Aij = π
1/2
i Pijπ

−1/2
j is symmetric.

Reversible P :∑
j∈Ω

π
1/2
i Pijπ

−1/2
j︸ ︷︷ ︸

Aij

xj = λxi ⇔
∑
j∈Ω

Pij

[
π
−1/2
j xj

]
= λ

[
π
−1/2
i xi

]
.

P and A have same eigenvalues.
A symmetric: (Spectral theorem): All eigenvalues real, can
expand on eigenvectors.
Irreducible, aperiodic: Single eigenvalue with λ = 1, all others
smaller in absolute value.



Classes for non-reversible transition matrix

Non-reversible P can be ‘unhappy’ in different ways:
P can be non-reversible, real eigenvalues, eigenvectors
non-orthogonal.
P can be non-reversible, real eigenvalues: Non-diagonalizable.
(algebraic multiplicity ̸= geometric multiplicity).
P can be non-reversible, pairs of complex eigenvalues.
Most common case: Complex eigenvalues.
For simple examples, see Weber (2017)



Metropolis algorithm / reversibility

1 The Metropolis et al. algorithm is reversible.

a a (+ move) b

a a (+ move) b

2 The algorithm used by Metropolis et al. is non-reversible.



Total variation distance, mixing time

Total variation distance:

||π{t} − π||TV = max
A⊂Ω

|π{t}(A)− π(A)| = 1
2

∑
i∈Ω

|π{t}
i − πi |.

(Above) first eq.: definition; second eq.: (tiny) theorem
Distance:

d(t) = max
π{0}

||π{t}(π{0})− π||TV

Mixing time:
tmix(ϵ) = min{t : d(t) ≤ ϵ}

Usually ϵ = 1/4 is taken (arbitrary, must be smaller than 1
2):

tmix = tmix(1/4)



Mixing time (poor man’s)

Metropolis algorithm on a sequential CPU ≃ 1010 moves/hour
1 sweep ≃ 106 moves
109+6−10/24/365 ≃ 11.4 years.
Li et al. (2022, mod)



Conductance (bottleneck ratio)

Φ ≡ min
S⊂Ω,πS≤ 1

2

FS→S

πS
= min

S⊂Ω,πS≤ 1
2

∑
i∈S ,j ̸∈S πiPij

πS
.

Reversible Markov chains:

1
Φ

≤ τcorr ≤
8
Φ2

(‘≤’: Sinclair & Jerrum (1986), Lemma (3.3))
Arbitrary Markov chain (see Chen et al. (1999)):

1
4Φ

≤ A ≤ 20
Φ2 ,

(set time: Expectation of maxS (tS × πS) from equilibrium)
NB: One bottleneck, not many. Lower and upper bound.



Lifting (Chen et al. (1999)) (1/2)

Markov chain Π ⇔ Lifted Markov chain Π̂

Ω ∋ v (sample space) ⇔ Ω̂ ∋ i (lifted sample space)
P (transition matrix) ⇔ P̂ (lifted transition matrix)
πv (stationary probability) ⇔ π̂i

Condition 1: sample space is copied (‘lifted’), π preserved

πv = π̂
[
f −1(v)

]
=

∑
i∈f −1(v)

π̂i ,

Condition 2: flows are preserved

πvPvu︸ ︷︷ ︸
collapsed flow

=
∑

i∈f −1(v),j∈f −1(u)

lifted flow︷︸︸︷
π̂i P̂ij .

Usually: Ω̂ = Ω× L, with L a set of lifting variables σ



Lifting (Chen et al. (1999)) (2/2)

Required: Mapping from Ω̂ (lifted sample space) to Ω that
preserves stationary probability distribution.
Required: Lifted transition matrix P̂ that preserves flow.
Optional: Ω̂ = Ω× L (with L: set of lifting variables).
Optional:

π̂(u, σ)

π(u)
=

π̂(v , σ)

π(v)
∀ u, v ∈ Ω; ∀ σ ∈ L. (1)

There are many liftings P̂ for a given lifted sample space Ω̂.
Liftings are popular for transfering parts of the moves into the
sample space.
Lifting do not increase conductance.



Metropolis algorithm on path graph (1/4)

Path graph Pn so that Ωn = {1, . . . , n}.
Phantom vertices and edges.

Metropolis algorithm (NB: Pij = AijPij for i ̸= j):
1 Move set L = {+,−}.
2 A flat → σ = choice(L).
3 Metropolis filter: Accept with probability min(1, πj/πi ).



Metropolis algorithm on path graph (2/4)

Detailed balance:
πiPij︸︷︷︸
Fij

= πjPji︸︷︷︸
Fji

Metropolis algorithm:

Fij =
1
2 min (πi , πj) ⇔ Pij =

1
2 min (1, πj/πi )

Metropolis filter (NB: Pij = AijPij):

Pij = min (1, πj/πi )



Metropolis algorithm on path graph (3/4)

Global balance (πi =
∑

j πjPji =
∑

j Fji ):

Irreducibility OK if no holes in π.
Aperiodicity OK, thanks to boundaries



Metropolis algorithm on path graph (4/4)



Lifting on the path graph (1/4)

General probability distribution π = (π1, . . . , πn)

‘Collapsed’ Markov chain:

‘Lifted’ Markov chain Ω̂ = Ω× {−,+}:

Replace all rejections by lifting moves.
Diaconis et al. (2000)



Lifting on the path graph (2/4)

‘Lifted Markov chain: Transport’

NB: The 1
2 ⇔ π̂i ,σ = 1

2πi

‘Lifted Markov chain: Resampling’

Resampling can often be dropped



Lifting on the path graph (3/4)

Transport

Resampling

Mix freely!



Lifting on the path graph (4/4)

Model Conductance tmix (collapsed) tmix (lifted)
Flat O (1/n) O

(
n2) O (n)

Square O (1/n) O
(
n2) O

(
n2)

V-shape O
(
1/n2) O

(
n2 log n

)
O
(
n2)



1d hard spheres with periodic boundary conditions

(a) (b)

N spheres, diameter σ, interval L, π(a) = 1 ∀a
N spheres, diameter 0, interval L− Nσ.



Reversible Metropolis algorithm, 1d (detailed balance)

Local Metropolis: xi → xi ± ϵ (reject if overlap, ϵ > 0)
Detailed balance:

πap(a → b) = πbp(b → a)



Sequential Metropolis algorithm, 1d (global balance)

Sequential Metropolis: Update 0, then 1, then 2, . . .
Global balance:

F seq
a =

1
2
(
A+

i +R+
i +A−

i +R−
i

)
= 1.



Forward Metropolis algorithm, 1d (global balance)

Forward Metropolis: xi → xi + ϵ (reject if overlap, ϵ > 0)

F forw
a =

1
N

∑
i

(
A+

i +R+
i−1

)︸ ︷︷ ︸
=1 for any ϵ

= 1,



Lifted Forward Metropolis algorithm, 1d (global balance)

Move i forward until it is rejected by i + 1.
Then move i + 1 forward until it is rejected, etc.

F lift
(a,i) = A+

i +R+
i−1 = 1.

NB: 1 time step: 1 particle move OR 1 lifting move.
Infinitesimal ϵ → 0 version: Event-chain algorithm.



Synopsis (Non-reversible Markov chains in 1d)
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Algorithm mixing discrete analogue
Rev. Metropolis N3 logN Symmetric SEP
Forward Metropolis, Lifted (∞) N5/2 TASEP
Event-chain, Lifted (restarts) N2 logN lifted TASEP

Kapfer—Krauth (2017)



Higher-dimensional variant: event-chain algorithm

Bernard, Krauth, Wilson (2009).
Infinitesimal moves: No multiple overlaps, consensus.
Michel, Kapfer, Krauth (2014) (smooth potentials).
Many variants.



ECMC and the hard-disk model

109+6−10/24/365 = 11.4 years
106+6−10/24 = 4.2 days
Li et al. (2022)



Synopsis large hard-disk system

Li et al. (2022)
NB: Pressures are required precisely for further analysis.



Conclusions (1/3)

EoS ⊃ isotherm ≡ P(V )

Pressure unambiguous, even at finite N.



Conclusions (2/3)

‘vast subject...’



Conclusions (3/3)

We discussed:
Markov chains, a priori probabilities, filters.
Transition matrix P , and its double role.
Irreducibility.
Ergodic theorem, and its use as a diagostic tool.
Flows and balance conditions.
Reversibility, non-reversibility.
Classes of non-reversible transition matrices.
Total variation distances.
Mixing times.
Lifted Markov chains.


