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Translation of terms

@ Disks in box — sample space Q.

@ Moves — Markov chain: Sequence of random variables
(Xo, X1, ...) where Xy represents the initial distribution and
Xia1 depends on X; through a transition matrix P.

@ A priori probability— split matrix: P;; = Aj;Pj; for i # j
A & a priori probability; P < filter
Examples: Metropolis filter, heatbath filter.

e Monte Carlo rejections — Pj; < (filter) rejection probability.
NB: Modern MCMC algorithms often have no rejections.

NB: Double role of P:

© For probability distributions: 7{tt1} = 7{t} p (with
it p{t+1} non-explicit objects, often even for t — o).

@ For samples /,j: Pj;: explicit probability to move from i to j.
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Irreducibility

@ P irreducible < any i can be reached from any ;.
o 710} Initial probability (explicit, user-supplied). Often
concentrated on a single sample x € Q.

@ P irreducible = unique stationary distribution 7 with

T = ZWJPJ‘; Vi e Q.
JjeQ

NB: Transition matrix P is stochastic, that is, Zj P =1.
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Irreducibility of hard-disk problem

Is the Metropolis algorithm for hard disks irreducible?
Rather not ...
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Ergodic theorem

e P irreducible = 7 unique, but maybe 7t} 4 7 for t — 0.
@ P irreducible = Ergodic theorem (E (O) := ) :.q Ojm;):

o1 .
Pro | im -3 0() =E(0)| =1

(Strong law of large numbers for running average)
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Ej Expectation (exact) Second paper
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1092 METROPOLIS,

[N

dlstmgutsbed by pnmes lur cxample. Ay i given

schematically by the diagram

and mathematically as follows: if we define f(r;) by
flriy=1
flri)=0

ROSENBLUTH,

A3,3

it rg<d,
it ry>d,
then

A= f f dvidxdzadydysdys(frafeafo).

The schematics for the remaining integrals are indicated
in Fig. 6.
,T,he Fuqmcieqts Ass, Ay and Ay wrertrca.lc’u!ated

ROSENBLUTH, TELLER, AND TELLER

were put down at random, subject to fio=fo=fa
= fis=1. The number of trials for which fis= 1, divided
by the total number of trials, is just As 5.

The data on A4 s is quite reliable. We obtained

VI. CONCLUSION

The method of Monte Carlo integrations over con-
figuration space seems to be a feasible approach to
statistical mechanical problems which are as yet not
analytically soluble. At least for a single-phase system
a sample of several hundred particles seems sufficient.
In the case of two-dimensional rigid spheres, runs made
with 56 particles and with 224 particles agreed within
statistical error. For a computing time of a few hours
with presently available electronic computers, it seems
possible to obtain the pressure for a given volume and
temperature to an accuracy of a few percent.

In the case of two-dimensional rigid spheres our re-
sults are in agreement with the free volume approxima-
tion for A/A0< lfg
i 8.

Département
de Physique
Ecole normale
supérieure



Metropolis et al. (1953) (

a)
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‘Base’ and 'tip’ configurations

N = 224 in square box (NB: 224 = 16 x 14) with 16/3/2 ~ 14.

nbr(/)

1 1 .
Ve = N Z/: nbr(/) Jz:; exp (6i¢y)

NB: E (Vs) = (0,0) (Ergodic theorem as a diagnostic tool).
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The study of a two-dimensional system consisting of 870 hard-disk
region has shown that the isotherm has a van der Is-like loop. The

articles in the phase-transition
_nsity change across the transition

is about 4%, and the corresponding entropy change is small.

STUDY lms been made of a two-dimensional
g of 870 hard-disk particles.
Simulmncous mollons B the particles have been calcu-

Welectronic computer as described
previously.! lhe dlsks were again placed in a periodi-
cally repeated rectangular array. The computer program

interchanges it was not possible to average the two
branches.

Two-dimensional systems were then studied, since
the number of particles required to form clusters of
particles of one phase of any given diameter is less than
in three dimensions. Thus, an 870 hard-disk system is
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Alder—Wainwright (1962) (2/4)
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Alder-Wainwright (1962) (3/4)
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Alder-Wainwright (1962) (4/4)
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NB: Hours of 2022 CPU time (ECMC algorithm)
to equilibrate 870 disks in a box.
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Probability flows

@ Uniqueness of m = balance condition on P:

T IZWJPJ,’ Vi e Q.

JjeQ

o 'flow’ from j to i < weight of j x probability to move from j

to i:
flows entering i
Fi=mPi em= Y Fi Vieq
JEQ
flows exiting i flows entering i
Fi=mPi & Z]—',k = Y Fi  Vieq

keQ jeq
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Reversibility

Reversible P satisfies the ‘detailed-balance’ condition:
7T,'P,'J'=7TJ'PJ',' Vi,jGQ.
~—~—
i Fi

General P satisfies ‘global-balance’ condition

T = ZT['J'PJ',' Vi e Q.
Jjeq
Detailed balance implies global balance.

Global balance:

flows exiting i flows entering i
—— —
S Fu = Y Fi  VieqQ
keQ JjeQ

DBC more restrictive, but far easier to check than GBC.

3
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Spectrum of reversible transition matrix

@ Reversible P:

7[','P,'J' = 7TJ'PJ',' Vi,j € Q.
o Reversible P: Ajj = 7r,.1/2P,-J-7rj_1/2 is symmetric.
@ Reversible P:

125 -1 -1/2 -1/2
ZW/PUJ/XJ—)\X,@ZPU[ / }—)\[ /,].
je~——— jeQ

ij
@ P and A have same eigenvalues.
e A symmetric: (Spectral theorem): All eigenvalues real, can

expand on eigenvectors.

@ Irreducible, aperiodic: Single eigenvalue with A = 1, all others

smaller in absolute value.
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Classes for non-reversible transition matrix

Non-reversible P can be ‘unhappy’ in different ways:

@ P can be non-reversible, real eigenvalues, eigenvectors
non-orthogonal.

@ P can be non-reversible, real eigenvalues: Non-diagonalizable.

(algebraic multiplicity # geometric multiplicity).

P can be non-reversible, pairs of complex eigenvalues.

Most common case: Complex eigenvalues.

For simple examples, see Weber (2017)
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Metropolis algorithm / reversibility

@ The Metropolis et al. algorithm is reversible.

0O O @)
ol P22

a a (+ move) b
o0 Q0O
O Cgo oo
a a (+ move) b

@ The algorithm used by Metropolis et al. is non-reversible.

1088 METROPOLIS, ROSENBLUTH, ROSENBLUTH, TELLER, AND TELLER

Our method in this respect is similar to the cell configurations with a probability exp(—E/kT) and
method except that our cells contain several hundred weight them evenly.
particles instead of one. One would think that such a This we do as follows : We place the ¥ particles in any
sample would be quite adequate for describing any one- ion.for exa e. Then
phase system. We do find, however, that in two-phase ccording
systems the surface between the phases makes quite a
merturhation. Also. statistical fluctuations mav he
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Total variation distance, mixing time

o Total variation distance:

1
{ty _ = {tha) — = E ey _ o
|| ||tV Tcaé\w (A) — 7 (A)| 5 2 |7T; i|.

(Above) first eq.: definition; second eq.: (tiny) theorem

Distance:

d(t) = max ||7 {8 (710 — 7||ry

{0}

Mixing time:
tmix(€) = min{t : d(t) < €}

Usually e = 1/4 is taken (arbitrary, must be smaller than 1):
tmix = tmix(1/4)
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Mixing time (poor man's)

o, N= 10242,7=0.708, a=(1:1)

0.8 1

0.7

— 0.5

©

>

— 0.4
0.3 1
0.2 1

0.1
0.0 ==

LMC, Bernard 2011

T~ — MPMC, this work
0.6

10°

107
t (sweeps)

10°

Metropolis algorithm on a sequential CPU ~ 10%® moves/hour

1 sweep ~ 10° moves

10970-10/24 /365 ~ 11.4 years.

Li et al. (2022, mod)
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Conductance (bottleneck ratio)

Fsis . 2iesjgsTiPi

ScQumrs<it TS ScQms<i Ts

@ Reversible Markov chains:

1. .38
¢_Tcorrf¢2

(‘<": Sinclair & Jerrum (1986), Lemma (3.3))
o Arbitrary Markov chain (see Chen et al. (1999)):

1 20
< A< ==
4<D_A_CD2’

(set time: Expectation of maxs (ts X 7s) from equilibrium)

NB: One bottleneck, not many. Lower and upper bound. P B
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Lifting (Chen et al. (1999)) (1/2)

e Markov chain M < Lifted Markov chain [1
Q 5 v (sample space) < Q 5 i (lifted sample space)

°
o P (transition matrix) < P (lifted transition matrix)
e m, (stationary probability) < 7;
e Condition 1: sample space is copied (‘lifted’), 7 preserved
m =& [fH(v)] = i,
ief—1(v)
@ Condition 2: flows are preserved
lifted flow
—/
TPy = > 7P

collapsed flow ief~1(v)jef~1(uv)

A . Pt . RFl Département
Usually: Q = Q x £, with £ a set of lifting variables o Uil

supérieure



Lifting (Chen et al. (1999)) (2/2)

o Required: Mapping from (lifted sample space) to Q that
preserves stationary probability distribution.

o Required: Lifted transition matrix P that preserves flow.
e Optional: = Q x £ (with £: set of lifting variables).
e Optional:

#(u,0)  #(v,0) oy Vo
= ) Veveavoel (1)

o There are many liftings P for a given lifted sample space .

@ Liftings are popular for transfering parts of the moves into the
sample space.

@ Lifting do not increase conductance.
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Metropolis algorithm on path graph (1/4)

*—b Bl o

01 n h#
=0 T

e Path graph P, so that Q, = {1,...,n}.
@ Phantom vertices and edges.
Metropolis algorithm (NB: P;; = A;Pj; for i # j):
Q@ Move set £ = {+,—}.
@ A flat — o = choice(L).
© Metropolis filter: Accept with probability min(1, 7;/7;).



Metropolis algorithm on path graph (2/4)

@ Detailed balance:
i Py = 7 Pji
~—~— =~
Fij Fji

@ Metropolis algorithm:
.7:,:,' = % min (7T,',7Tj) <~ PU = %min (1,7Tj/7r,')
@ Metropolis filter (NB: Py = A;;Pj):

I . 5 S
Pij = min (1,7 /7;) ] tevemarae

périeure



Metropolis algorithm on path graph (3/4)

0 n

=0

@ Global balance (m; = Zj 7 Pji = ZJ- Fii):

i — %min(ﬂ'i, Tio1) — %Inin(ﬂ'i7 Tit1)

- % min(m;_1,7m;) % min(7;,miq1) -
i-1 |I| i+1

% min(7m;,mi—1) %111i11(7r;+1.7r,)

@ Irreducibility OK if no holes in 7.
@ Aperiodicity OK, thanks to boundaries @'@ E:"VEW
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Metropolis algorithm on path graph (4/4)

*—6 P ry

01 n ht
E;ﬂ i

procedure metro-path
input =
o ¢ choice(L) (L ={-1,+1})
if (ran(0,1) < Mzes/m:) then
{ i +—Ti+0o
output =
R e

@ E Ecole normale

supérieure



Lifting on the path graph (1/4)

General probability distribution 7 = (71,...,7,)
@ 'Collapsed’ Markov chain:

o ‘Lifted’ Markov chain = Q x {—, +}:

O

D_ ’ ,,’[ ’{VL_".)‘
iy Y

R S / )

iEE i+BL o W

@ Replace all rejections by lifting moves.

e Diaconis et al. (2000) .



Lifting on the path graph (2/4)

o 'Lifted Markov chain: Transport’

1o i
X s min(mi—1,m;) [ 5 min(m;,mi41) [
G(-1,4+1) | 2 T 2 o i+1,+1

% [W,i—nlin(m,wwl)]lTé [ —min(m;—1,m;)]

T ),
5 min(m;_1,7m;) 5 min(m;,miq1)

NB: The 3 & #j, = im;
e 'Lifted Markov chain: Resampling’

@ Resampling can often be dropped

&,
e}
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Lifting on the path graph (3/4)

@ Transport

procedure transport-path
input {z,o} (configuration € O=0Qx {+. -}
if (ran(0,1) < 4o /7)) then
{ T4+ Ti +0
else
{o+ -0
output {x,o}

@ Resampling

procedure resample-path
input {x, o} (configuration € Q=0x {+.—}
if (ran(0,1) < p) then (p: resampling rate)
{o+ -0
output {z,c}
o Ry

Rkt
. M) Ecole normale
e Mix freely! (M



Lifting on the path graph (4/4)

T Trj}_sport " Resampling
- - = & . 8 8 @ .
1~ I I S
Weo e ® s ® g
- 1~ 3- n-
Model ‘ Conductance  tmix (collapsed) tmix (lifted)
Flat O(1/n) O (n?) O (n)
Square O(1/n) O (n?) O (n?)

V-shape | O (1/n?) O (n?log n) O (n?)



1d hard spheres with periodic boundary conditions

(a) ! . (b) f

@ N spheres, diameter o, interval L, m(a) =1 Va

@ N spheres, diameter 0, interval L — No.
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Reversible Metropolis algorithm, 1d (detailed balance)

-1 i i+1
o Local Metropolis: x; — x; £ € (reject if overlap, € > 0)

o Detailed balance:

map(@a — b) = mpp(b — a)
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Sequential Metropolis algorithm, 1d (global balance)

-1 i i+1

@ Sequential Metropolis: Update 0, then 1, then 2,
o Global balance:

F = 5(A++7z++A +R;) =

1088 METROPOLIS, ROSENBLUTH, ROSENBLUTH, TELLER, AND TELLER

Our method in this respect is similar to the cell configurations with a probability exp(—E/kT) and
method except that our cells contain several hundred weight them evenly.
particles instead of one. One would think that such a This we do as folluws We place the \V particles in any
sample would be quite adequate for describing any one- .
phase system. We do find, however, that in two-phase
systems the surface between the phases makes quite a

nerturhation. Also. statistical fluctuations mav he - département
LY, dePhysiue
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Forward Metropolis algorithm, 1d (global balance)

e
90— 00000
- vé-o

e Forward Metropolis: x; — x; + € (reject if overlap, € > 0)
°

1
P = 3 (A RE) =1

=1 for any €

Fx:‘l Département
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Lifted Forward Metropolis algorithm, 1d (global balance)

Move i forward until it is rejected by 7 + 1.

@ Then move i/ + 1 forward until it is rejected, etc.

L
90— 00000

f“j},.) =AF+RI =1
NB: 1 time step: 1 particle move OR 1 lifting move.

Infinitesimal € — O version: Event-chain algorithm.
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Synopsis (Non-reversible Markov chains in 1d)

% Heatbath
" Seq. Heatbath

Metropolis
Seq. Metropolis

Forward Metropolis
Lifted Metropolis (w/o rest.)
Lifted Metropolis (with rest.)
Even‘l—chain

4t . a
2r ) 1 10°
il -

0 \; |
0.00 0.02 0.04

1 (N logN)

Var u

X NN Wol N
Il

Algorithm mixing discrete analogue
Rev. Metropolis N3log N Symmetric SEP
Forward Metropolis, Lifted (c0)  N°/2 TASEP
Event-chain, Lifted (restarts) N2log N lifted TASEP

o Département
de Physique
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Higher-dimensional variant: event-chain algorithm

Bernard, Krauth, Wilson (2009).
Infinitesimal moves: No multiple overlaps, consensus.
Michel, Kapfer, Krauth (2014) (smooth potentials).

Many variants.
Fx:(l Département
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ECMC and the hard-disk model

0 N=10242,n=0.708,a=(1:1)

0.8 —— ECMC, Bernard 2011
LMC, Bernard 2011
0.7 \ —— MPMC, this work

064 ~—— ECMC, this work

0.5 1

|We|

0.4 A
0.3 A
0.2 A
0.1

0.0

10° 107 10°
t (sweeps)

o 10°9+6-10/24/365 = 11.4 years

o 106+6-10/24 — 4.2 days

o Lietal (2022)
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Synopsis large hard-disk system

n
0.72 0.71 0.7
8.05 9.2953
i 0.9167 0.9040 0.8912 ]
+ P
e Qi2014,a=(1:V3/2) e Mak 2006, a = mixed
[ Engel 2013, a=(1:1) X this work, a=(1:1)
£ Bernard 2011, a=(1:1) X this work, a=(1:V3/2)
8.00 ’ . x 9.2376
- = o
< i / * ¥ 3
< | == S
& ™ e & &
/ B *
* ”’ . . ® *
e -
7.95 A 9.1799
! R
N =10242 v *
(20)?
1.0912 1.0999  1.1085  1.1172  1.1258
1.26 1.27 1.28 1.29 1.30
VIVo

o Lietal (2022)

NB: Pressures are required precisely for further analysis.
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Conclusions (1/3)

URNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUN

Equation of State]Calculations by Fast Computing Machines

NicHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AuGusta H. TELLER,
Los Alamos Scientific Laboralory, Los Alamos, New Mexico

AND

EpwArD TELLER,* Depariment of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

eneral method, suitable for fast computing machines, for investigating such properties agieaualions of
statei{or substances consisting of interacting individual molecules is described. The method Coj o
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been g on the T,0s Alamos MANTAC and are presented here. These results are compared

to the free volumd

and to a four-term virial coefficient expansion.

e EoS D isotherm = P(V)

@ Pressure unambiguous, even at finite N.
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Conclusions (2/3)

URNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUN

Equation of State Calculations by Fast Computing Machines

NicuorAs METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. RosEnBLuTH, AND Aucusta H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND
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A general method, suitable for fast computing machines, for 1nvest1gatmg such properties as equations of
state for substances consisting of interacting individual mole s is described. The method consists of a
modified Monte Carlo integration over configuration space for the two-dimens rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. Th&re compared
to the free volume equation of state and to a four-term virial coefficient expansion.

@ 'vast subject...’
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Conclusions (3/3)

We discussed:

Markov chains, a priori probabilities, filters.
Transition matrix P, and its double role.
Irreducibility.

Ergodic theorem, and its use as a diagostic tool.
Flows and balance conditions.

Reversibility, non-reversibility.

Classes of non-reversible transition matrices.
Total variation distances.

Mixing times.

Lifted Markov chains.
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