Advanced topics in Markov-chain Monte Carlo

Lecture 4:

Perfect sampling in Markov-chain Monte Carlo
Part 1/3: Introduction

Werner Krauth

ICFP -Master Course Ecole Normale Supérieure, Paris, France

09 February 2022

References

- C. Chanal *Thesis* University Paris VI (2010)
- J. G. Propp, D. B. Wilson Exact sampling with coupled Markov chains and applications to statistical mechanics http://citeseerx.ist.psu.edu/ viewdoc/summary?doi=10.1.1.27.1022
- W. Krauth "Statistical Mechanics: Algorithms and Computations" (Oxford University Press, 2006)

MCMC convergence theorem 1/3

MCMC results are difficult to render rigorous because of:

- Compiler bugs.
- Program bugs (unittests, software engineering, proven correctness).
- Sampling uncertainty (# of samples $\ll \infty$).
- Mixing (Convergence) problems (sampling $\pi^{\{t\}}$, not π).

MCMC convergence theorem 2/3

 Irreducible aperiodic (finite) Markov chains convergence exponentially:

$$\max_{\mathbf{x} \in \Omega} ||P^t(\mathbf{x},.) - \pi||_{\mathsf{TV}} < C\alpha^t$$

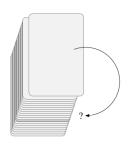
with C > 0 and $\alpha \in (0, 1)$.

- Aperiodicity: $\exists r : P(x,.)^r > 0$
- Proof = TD.
- The values of C and of α are generally unknown.

MCMC convergence theorem 3/3

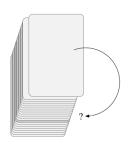
 Convergence is asking for too much, because the ergodic theorem only requires irreducibility.

Shuffling of cards 1/2



- $\Omega = \{ \text{Permutations of } \{1, \dots, N \} \}$
- $\pi^{t=0} = \delta((1, \dots, N))$
- Top-to-random shuffle
- Top (bottom) card to random
- Mixing time finite, but uniform distribution for $t \to \infty$ only

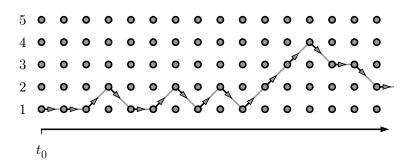
Shuffling of cards 2/2



- Mark the bottom card
- "Top-to-random" shuffles
- Top (bottom) card to random
- Stop! (Perfect sample)

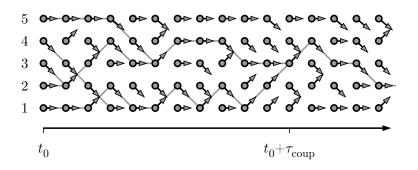
Example of a stopping rule in MCMC

Markov chain (traditional view)



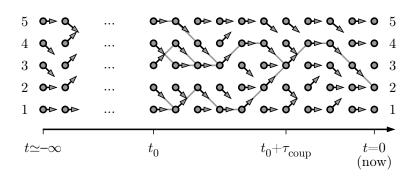
- Configuration c_t , move δ_t .
- Set $t_0 = 0$.

Markov chain (random maps), coupling



- Each configuration has its move at each time step.
- Coupling (Doeblin, 1930s).

Coupling from the past



- Starting an MCMC simulation at $t = -\infty$
- Propp & Wilson (1997)