Advanced topics in Markov-chain Monte
Carlo

Lecture 8:
Meta algorithms, consensus sampling
Part 2/2: Consensus sampling

Werner Krauth

ICFP -Master Course Ecole Normale Supérieure, Paris, France

15 March 2023

Werner Krauth Advanced topics in Markov-chain Monte Carlo



References

W. Krauth Frontiers in Physics (2022)

Werner Krauth Advanced topics in Markov-chain Monte Carlo



Lifted MCMC in one dimension

Probability distribution = = (1/n,...,1/n) (Diaconis et al. 2000)

@ Transport + resampling
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Lifted MCMC in higher dimensions (1/5)

@ Infinitesimal moves (avoid overlaps).

@ This algorithm is correct without moving “down” nor “up”.
@ See algorithms presented by Gabriele Tartero (later today)
@ There are weirder versions, even for hard spheres.
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Lifted MCMC in higher dimensions (2/5)

@ Consensus sampling: Active sphere moves until one of the
other spheres becomes “unhappy”.
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Lifted MCMC in higher dimensions (3/5)

@ Metropolis filter:

i<j

pVe'(a — b) = min { Hexp (—BAU;))

@ Factorized Metropolis filter:

prat(a— b) = [ min [1,exp (—BAU)] .

i<j

both satisfy the detailed-balance condition...
@ Interpretation in terms of Boolean random variables.

XFt (@ b) = Xjo A Xi3 A A Xn_1N

Werner Krauth Advanced topics in Markov-chain Monte Carlo



Lifted MCMC in higher dimensions (4/5)
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@ Peters, de With (2012)
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Lifted MCMC in higher dimensions (5/5)

@ Compute event-times for all factors.
@ Select smallest one.
@ Complexity O (N).
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Thinning and sampling (1/1)
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@ Time-dependent Poisson process q(x)dx
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@ This is called “Thinning”, many generalizations.
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Sampling from a discrete distribution (1/3)

@ Rejection sampling (see SMAC book)
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Fig. 1.28 Saturday night problem solved by Alg. 1.13 (reject-finite).
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Sampling from a discrete distribution (2/3)
@ Tower sampling (see SMAC book)
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Fig. 1.29 Saturday night problem
solved by tower sampling,
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Sampling from a discrete distribution (3/3)

@ Walker's method of aliases (see SMAC book 2nd edition)

Cell-veto sampling using Walker’s method

@ Complexity O (1)
@ ...gives O (1)/event algorithm for any potential
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