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Lifted MCMC in one dimension
Probability distribution π = (1/n, . . . ,1/n) (Diaconis et al. 2000)

Transport + resampling

“Lifted” Markov chain Ω̂ = Ω× {−,+}:
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Lifted MCMC in higher dimensions (1/5)

Infinitesimal moves (avoid overlaps).
This algorithm is correct without moving “down” nor “up”.
See algorithms presented by Gabriele Tartero (later today)
There are weirder versions, even for hard spheres.
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Lifted MCMC in higher dimensions (2/5)

Consensus sampling: Active sphere moves until one of the
other spheres becomes “unhappy”.
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Lifted MCMC in higher dimensions (3/5)

Metropolis filter:

pMet(a → b) = min

1,
∏
i<j

exp
(
−β∆Ui,j

)
Factorized Metropolis filter:

pFact.(a → b) =
∏
i<j

min
[
1, exp

(
−β∆Ui,j

)]
.

both satisfy the detailed-balance condition...
Interpretation in terms of Boolean random variables.

X Fact.(a → b) = X1,2 ∧ X1,3 ∧ · · · ∧ XN−1,N
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Lifted MCMC in higher dimensions (4/5)

pM(m) =
m−1∏
l=1

e−β∆U+
M (l)

︸ ︷︷ ︸
accepted

move m rejected︷ ︸︸ ︷[
1 − e−β∆U+

M (m)
]
, (1)

Peters, de With (2012)
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Lifted MCMC in higher dimensions (5/5)

Compute event-times for all factors.
Select smallest one.
Complexity O (N).
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Thinning and sampling (1/1)

Time-dependent Poisson process q(x)dx

q(x)dx︸ ︷︷ ︸
variable

= qmaxdx︸ ︷︷ ︸
constant

q(x)
qmax︸ ︷︷ ︸

rejection

This is called “Thinning”, many generalizations.
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Sampling from a discrete distribution (1/3)

Rejection sampling (see SMAC book)
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Sampling from a discrete distribution (2/3)
Tower sampling (see SMAC book)
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Sampling from a discrete distribution (3/3)

Walker’s method of aliases (see SMAC book 2nd edition)

Complexity O (1)
. . . gives O (1)/event algorithm for any potential
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