Advanced topics in Markov-chain Monte Carlo

Lecture 6:

Sampling π (stationary distributions), computing π (Free energies)

Part 2/2: Thermodynamic Integration / Simulated annealing / Simulated tempering

Werner Krauth

ICFP -Master Course Ecole Normale Supérieure, Paris, France

22 February 2023

References

- D. Frenkel, B Smit, Understanding Molecular Simulation: From Algorithms to Applications, (Elsevier, 2001)
- B. Hajek, Cooling Schedule for optimal annealing, Mathematics of Operations Research (1988)

Thermodynamic integration

- All of MCMC: concerned with π_i/π_j , norm of π_i (usually) unknown.
 - Metropolis filter: $\mathcal{P}(i \to j) = \min(1, \pi_j/\pi_i)$.
 - NB: Flow: $\mathcal{F}_{ij} = \pi_i P_{ij}$ (usually) unknown.
- All of physics:
 - concerned with $Z = \sum_{i \in \Omega} \pi_i \ (\pi_i = \exp(-E_i/kT))$
 - Partitition function known analytically in some limits:
 - High-temperature limit: $T \to \infty \Leftrightarrow \beta \to 0$
 - Ideal-gas limit: density $\rho \to 0$, interactions $\to 0$.
 - Ideal-solid limit: density $\rho \to \rho_{\text{max}}$, interactions \to harmonic.
 - Keep Ω, change π.
- Creating a path from a known limit to the relevant $\{\Omega, \pi\}$ is called "Thermodynamic integration".
- Path must (normally) be smooth (avoid phase transitions).

Thermodynamic integration 1/3

• Partition function $Z(\alpha) = \sum_{i \in \Omega} \tilde{\pi}_i^{\alpha}$ (" $\tilde{\pi}_i$ to the power α ") (NB: π : normalized, $\tilde{\pi}$: non-normalized).

$$Z(\alpha') = \sum_{i \in \Omega} \tilde{\pi}_i^{\alpha'} = \sum_{i \in \Omega} \tilde{\pi}_i^{\alpha} \frac{\tilde{\pi}_i^{\alpha'}}{\tilde{\pi}_i^{\alpha}}$$

$$\frac{Z(\alpha')}{Z(\alpha)} = \frac{1}{Z(\alpha)} \sum_{i \in \Omega} \tilde{\pi}_i^{\alpha'} = \sum_{i \in \Omega} \pi_i^{\alpha} \frac{\tilde{\pi}_i^{\alpha'}}{\tilde{\pi}_i^{\alpha}} = \mathbb{E} \left(\frac{\tilde{\pi}_i^{\alpha'}}{\tilde{\pi}_i^{\alpha}} \right)_{\alpha}$$

$$Z(1) = \left[\frac{Z(1)}{Z(0.75)}\right] \left[\frac{Z(0.75)}{Z(0.5)}\right] \left[\frac{Z(0.5)}{Z(0.25)}\right] \left[\frac{Z(0.25)}{Z(0)}\right] Z(0)$$

• Only Z(0) is known.

•

Thermodynamic integration 2/3

- V-shaped: $\pi_i = \text{const}|\frac{n+1}{2} i| \ \forall i \in \Omega = \{1, \dots, n\}.$
- Suppose that const = $\frac{4}{n^2}$ is unknown.
- \tilde{V} -shaped: $\tilde{\pi}_i = |\frac{n+1}{2} i| \ \forall i \in \Omega$.
- Partition function $Z = \sum_{i \in \Omega} \tilde{\pi}_i$.
- Consider $\tilde{\pi}^{\alpha}$ ("pi to the power alpha").
- $\alpha = 0$: $Z(\alpha = 0) = n$

Thermodynamic integration 3/3

- This is Problem 1 of today's TD.
- Relation to Simulated annealing.
- Relation to Simulated tempering.

Simulated annealing 1/2

Simulated annealing: MCMC Optimization algorithm

- Start at very small values of α ,
- At each step, slowly increase α by a tiny amount.

In the V-shaped probability distribution (with $\pi(n) = 0^+$), switch to temperature language.

- $U_i = -\log(\pi_i)$
- Set up temperature schedule $T_k \to 0$ for $k \to \infty$
- Accept / reject move ΔU with Metropolis filter min [1, exp (-ΔU/T_k)]

Simulated annealing 2/2

Simulated annealing: MCMC optimization algorithm

- Theorem (Hajek 1988): need $\sum_k \exp(-d^*/T_k) = \infty$ for sure convergence to lowest-energy configuration.
- Corrolary (Hajek 1988): If $T_k = c/\log{(k+1)}$, then need $c \ge d^*$
- Easy to check in V-shaped distribution on the path graph.

Simulated tempering 1/2


```
\begin{array}{l} \textbf{procedure temp-rev} \\ \textbf{input } \mathcal{D}^{\text{padded}}, \{x, \alpha\}, p_{\text{copy}} \\ \textbf{if } (\textbf{ran} \, (0, 1) > p_{\text{copy}}) \textbf{ then} \\ \begin{cases} \sigma_x \leftarrow \textbf{choice}\{-1, 1\} \\ \textbf{if } (\textbf{ran} \, (0, 1) < \pi_{x+\sigma_x}^{\alpha}/\pi_x^{\alpha}) \textbf{ then} \\ \{x \leftarrow x + \sigma_x \end{cases} \\ \textbf{else} \\ \begin{cases} \sigma_\alpha \leftarrow \textbf{choice}\{-1, 1\} \\ \textbf{if } (\textbf{ran} \, (0, 1) < \pi_x^{\alpha+\sigma_\alpha}/\pi_x^{\alpha}) \textbf{ then} \\ \{\alpha \leftarrow \alpha + \sigma_\alpha \end{cases} \\ \textbf{output } \{x, \alpha\} \end{array}
```

- Let the system evolve at several temperatures.
- Move between temperatures, move between positions.