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I. CAN 1D CLASSICAL SYSTEMS HAVE PHASE TRANSITIONS?

1. Molecular zipper [Source: C. Kittel, American Journal of Physics 37, 917 (1969)]

[The model]

Kittel’s toy model for DNA-melting:
DNA melting refers to the dissociation of the two strands of the double helix by an increase of tem-
perature or change of pH.

Suppose a zipper in a heat bath (with temperature T ) has N links. Each link can either be closed
with energy 0 or open with energy ε. However, the zipper can only unzip from one end. Thus, link
number n can only open if all links before it are also open (1, 2, ..., n−1). The final link can never be
open (shown as a thick black square on the right side of the diagram below). This prevents the zipper
from disconnecting and drifting apart. When a link is closed it can only be in one configuration.
However, when the link is open, the two pieces of the link are free to spin around and assume G
different positions. Thus, the open link has a degeneracy of G.

(a) Let the number of links be N . Compute the free energy.

: The energy corresponding to n open links is nε. The number of configurations for given n is Gn.
The partition function is therefore given by

Z =
N−1∑
n=0

Gne−βnε =
1− (Ge−βε)N

1−Ge−βε
. (1)

The free energy reads as

F = −β−1 logZ = β−1 log
1−Ge−βε

1− (Ge−βε)N
. (2)

(b) Simplify the expression in the thermodynamic limit N →∞. Is the free energy an analytic function
of β = 1/T? What is the difference between G = 1 and G > 1 cases?
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: If Ge−βε > 1 then (Ge−βε)N � 1, and hence

F
1�N (Ge−βε>1)−−−−−−−−−−−→ −β−1N log[Ge−βε] + β−1 log[Ge−βε − 1] +O(G−NeNβε) . (3)

If instead Ge−βε < 1 then(Ge−βε)N � 1, and hence

F
1�N (Ge−βε<1)−−−−−−−−−−−→ β−1 log[1−Ge−βε] +O(GNe−Nβε) . (4)

If there is only one configuration then Ge−βε = e−βε < 1 for any finite temperature and the
free energy is an analytic function of the temperature. On the other hand, for G > 1 there is a
critical temperature equal to kTc = ε

logG where the free energy is not smooth.

(c) Compute the average number open links at temperature T .

: The average number open links 〈n〉 is equal to the average energy 〈E〉 per unit ε: 〈n〉 = 〈E〉
ε . Since

〈E〉 = −∂β logZ we obtain

〈n〉 =
1

ε
∂β log

1−Ge−βε

1− (Ge−βε)N
=

1

G−1eβε − 1
− N

G−NeNβε − 1
→ 1

G−1eβε − 1
+

{
N +O(NG−NeNβε) Ge−βε > 1

O(NGNe−Nβε) Ge−βε < 1 .
(5)

In conclusion, at temperature higher than the critical one most of the links are open; at lower
temperature most of them are close.

(d) (Optional) Let us now assume that an open link can take a given configuration g0 ∈ 1, . . . , G only
if there are no other open links with g < g0. Is there a phase transition? If yes, what is the critical
temperature?

: Let us denote the number of open links by xm,j = mG + j, where m = 0, 1, . . . bN−1
G c and 0 =

1, . . . , G − 1. The number of configuration that the xm,j-th link can take is Cm,j = G − j + 1.
The degeneracy gm,j of the xm,j-th energy level is the product of all the Cm,j for the links opened
at that moment

gm,j =
( m∏
m′=0

G∏
j′=1

Cm′,j′
)( j∏

j′=1

Cm,j′
)

=
( m∏
m′=0

G∏
j′=1

(G−j′+1)
)( j∏

j′=1

(G−j+1)
)

=
G!m+1

(G− j)!
(6)

The partition function is therefore given by

Z =

bN−1
G c∑

m=0

G∑
j=1

gm,je
−βεxm,j =

bN−1
G c∑

m=0

G∑
j=1

G!m+1

(G− j)!
e−βε(mG+j) =

G∑
j=1

G!e−βεj

(G− j)!
1− (G!e−βεG)M

1−G!e−βεG
,

(7)
where M = bN−1

G c + 1. The first sum is an analytic function of β and contributes to the free

energy with an analytic additive term. The remaining part is equivalent to (??), but now G!e−βεG

takes the place of Ge−βε. In conclusion, the critical temperature is the solution of

G!e−βcεG = 1 , (8)

that is to say

kTc =
G

log(G!)
ε ∼ ε

log(G/e)
(9)
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2. Ising model in a staggered field.

Reminder: In physics, transfer matrices appear in diverse contexts. In classical statistical physics they
are employed to compute partition functions. The basic idea is to construct a matrix T (β) such that
the partition function can be written in the form

Z = Tr[TN (β)W ] , (10)

where W is a matrix that depends on the boundary conditions and N is an integer that in one
dimensional chains is proportional to the number of sites. For the sake of simplicity, let us assume
that T (β) is symmetric and therefore is diagonalizable. We have

F = −β−1 logZ = −β−1 log

(
n∑
i=1

λNi (β)Tr[ΠiW ]

)
= −β−1N log (λmax(β)) +O(N0) (11)

where n is the dimensionality of the transfer matrix (essentially the number of states each constituent
can assume), λi(β) are the eigenvalues of T (β) and Πi the corresponding projectors on the eigenspace
(i.e., if ~vi is an eigenvector, [Πi]`n = [~vi]`[~vi]n).

Reminder: A matrix M is reducible if and only if it can be placed into block upper-triangular form by
simultaneous row/column permutations, i.e.

P tMP =

(
X Y
0 Z

)
. (12)

where P is a permutation matrix and X and Z are square matrices. Notice that if all the elements
of the matrix are non-zero then the matrix is irreducible.

Reminder: Phase transitions are generally forbidden in one dimensional systems by virtue of the following
theorems:

• Theorem 1: [Perron-Frobenius] Let A be an irreducible matrix with non-negative elements; the
maximum eigenvalue is positive and non-degenerate.

• Theorem 2: If T (β) is a complex matrix with elements analytic functions of β, the eigen-
values are analytic functions of β with only algebraic singularities localized at the points where
eigenvalues split or coalesce (eigenvalue crossings).

If the transfer matrix T (β) is finite-dimensional and does not have zeros then it is irreducible and
if all the elements are positive (theorem 1) there are no eigenvalue crossings and therefore f(β) =
−N log λmax(β) is an analytic function of β for all β ≥ 0 (theorem 2). Since the elements of the
transfer matrix are generally the exponentials of real numbers (i.e. strictly positive number), there
can not be phase transitions at finite temperature. Can you think of any exceptions? In what
circumstances would there be zeros present in the transfer matrix?

The model: We consider a classical Ising model in a staggered field:

E({s}) = −J
L∑
`=1

s`s`+1 − (−1)`hs` . (13)

Here s` are classical spin variables s` ∈ {−1, 1}, J has the dimensions of an energy, and h is the
absolute value of the staggered field.
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(a) Write down a transfer matrix for this model.

: We assume that L is even. The partition function reads as

Z =
∑
{s}L

exp
(
βJ

L∑
`=1

s`s`+1 + (−1)`hs`

)
=

∑
{s}L

L/2∏
`=1

exp
(
β(Js2`−1s2` − hs2`−1)

)
exp
(
β(Js2`s2`+1 + hs2`)

)
=

∑
{s}L

(L/2−1∏
`=1

Ls2`−1s2`Ms2`s2`+1

)
LsL−1sL exp

(
β(JsLsL+1 + hsL)

)
, (14)

where

Lss′ = exp
(
β(Jss′ − hs)

)
Mss′ = exp

(
β(Jss′ + hs)

)
. (15)

A transfer matrix for this model is therefore

T = LM =

(
eβ(J−h) e−β(J+h)

e−β(J−h) eβ(J+h)

)(
eβ(J+h) e−β(J−h)

e−β(J+h) eβ(J−h)

)
=(

e2βJ + e−2β(J+h) 1 + e−2βh

1 + e2βh e2βJ + e−2β(J−h)

)
(16)

(b) Show the formal structure of the partition function both for periodic (sL+1 ≡ s1) and open (sL+1 ≡ 0)
boundary conditions.

: If periodic boundary conditions are imposed, (??) can be written as

Z = Tr[TL/2] . (17)

If instead sL+1 ≡ 0 we obtain

Z = ~LtTL/2−1L~R , (18)

where

~L =

(
1
1

)
~R =

(
eβJh

e−βJh

)
(19)

(c) Are there phase transitions at finite temperature?

: There can not be phase transitions because the transfer matrix is finite-dimensional and has strictly
positive eigenvalues.

3. Generalized Kittel’s model [Source: J. A. Cuesta and A. Sánchez, J. Stat. Phys. 115, 869 (2004)]
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The model: our model can be described by the following Hamiltonian

H = ε(1− δs10) +

N−2∑
i=1

(ε+ Λδsi0)(1− δsi+10) (20)

where label si = 0, 1, ..., G signifies the configuration of the ith link (if the i-th link is closed then
si = 0, otherwise the link is in the si ∈ (1, . . . , G)-th state). Roughly, you can think of it as a
generalized version of problem 1, where it is now possible to open links from any position in the
zipper (not just the open end) at the cost of energy Λ. Λ is an auxiliary variable that is used to
parametrize the forbidden configurations of the original problem.

(a) In what limit do you get the original problem 1 back?

: We do in the limit Λ→∞.

(b) Let the number of links be N − 1. Write down a transfer matrix for the model.

: We have the set of N − 1 variables xj = 0, 1, . . . , G with the following meaning: if the j-th link is
closed then xj = 0, otherwise the link is in the xj ∈ (1, . . . , G)-th state. The energy of a given
configuration {x1, . . . , xN−1} can be recast in the following (symmetric) form

E{x1,...,xN−1} = (N−1)ε+
Λ− ε

2
δx10−

Λ + ε

2
δxN−10+

N−2∑
i=1

[Λ− ε
2

(δxi0+δxi+10)−Λδxi0δxi+10

]
(21)

The first term (N − 1)ε is constant and hence irrelevant; by neglecting it, the partition function
reads as

Z =
∑

{x1,...,xN−1}

exp
(
−βΛ− ε

2
δx10

)N−2∏
i=1

exp
(
−βΛ− ε

2
(δxi0 + δxi+10) + βΛδxi0δxi+10

)
×

exp
(
β

Λ + ε

2
δxN−10

)
= ~LtTN−2(β)~R , (22)

where (the vectors have dimension G+ 1, the first element corresponding to x = 0)

~Lt =
(
exp
(
−β Λ−ε

2

)
1 · · · 1

)
~Rt =

(
exp
(
β Λ+ε

2

)
1 · · · 1

)
, (23)

and

[T (β)]xx′ = exp
(
−βΛ− ε

2
(δx0 + δx′0) + βΛδx0δx′0

)
, x, x′ = 0, 1, . . . , G (24)

(c) Compute the free energy in the thermodynamic limit. Is it an analytic function of β if G = 1? And
if G > 1?

: The free energy can be directly obtained from the partition function:

F = −β−1 log[~LtTN−2(β)~R] . (25)

In order to take the thermodynamic limit, we need to compute the largest eigenvalue of T (β) and
the corresponding eigenvector. We immediately see that T (β) has G identical raws, which means
that there are at least G − 1 eigenvalues equal to zero. The largest eigenvalue can not be zero,
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so we can focus on the remaining two solutions. Let us cast a generic eigenvector ~v in the form
~v =

(
φ ~wt

)
, where ~w is a vector with dimension G. The secular equation reads as

eβεφ+ e−β
Λ−ε

2 ~u · ~w = λφ

(e−β
Λ−ε

2 φ+ ~u · ~w)~u = λ~w ,
(26)

where ~ut =
(
1 · · · 1

)
. Since we are looking for nonzero eigenvalues, the last equation tells us

that ~w is proportional to ~u: ~w = α~u. Plugging this ansatz into the secular equation gives

eβεφ+ e−β
Λ−ε

2 αG = λφ

e−β
Λ−ε

2 φ+ αG = λα ,
(27)

i.e.

(eβε − λ)φ+ e−β
Λ−ε

2 Gα = 0

e−β
Λ−ε

2 φ+ (G− λ)α = 0 .
(28)

This system has a solution only if the determinant of the matrix constructed with the coefficients
is zero, that is to say

det

(
eβε − λ e−β

Λ−ε
2 G

e−β
Λ−ε

2 G− λ

)
= 0 . (29)

From this we obtain

λ± =
G+ eβε ±

√
(G+ eβε)2 − 4Geβε(1− e−βΛ)

2
. (30)

The discriminant is always positive, λ+ > λ−, so the leading eigenvalue is

λmax =
G+ eβε +

√
(G+ eβε)2 − 4Geβε(1− e−βΛ)

2
(31)

Since this is an analytic function of β, also the free energy will be analytic. Now we compute
the eigenvector associated with the largest eigenvalue. Plugging the expression for λmax in the
second of (??) we obtain

φ = −eβ
Λ−ε

2
G− eβε −

√
(G+ eβε)2 − 4Geβε(1− e−βΛ)

2
α . (32)

The spectral decomposition of the transfer matrix gives

T (β) ∼ λmax~vmax~v
T
max (33)

(d) Explain in what this model differs from the one of Exercise 1.

: In the limit Λ→∞ the maximal eigenvalue becomes singular at G = eβε, indeed

λmax =
G+ eβε + |G− eβε|

2
= max(G, eβε) . (34)


