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This homework will not count for your grade (and it will

not be graded). Please study it nevertheless carefully,

as it illustrates essential aspects of mean-�eld theory.

(Dated: November 8, 2016)

In lecture 09: �Mean-Field theory (1/2) and its three pillars: Self-consistency, absence of �uctu-

ations, in�nite-dimensional limit�, we studied di�erent aspects of this important theory, which may

describe classical and quantum models, but also systems in computer science (for example graph

theory), social interactions, etc. Although mean-�eld theory thus applies to many situations it is

again in the Ising model (where it all began) that we �nd he theme of this week's homework.

I. SINGLE-SITE SELF-CONSISTENCY

The �rst aspect of mean-�eld theory, going back to Pierre-Ernest Weiss (1865-1940), is the

famous self-consistency relation for the Ising model:

m = tanh [β (Jqm+ hext)] (1)

where q is the number of neighbors of a single site (q = 2d for a d-dimensional hypercubic lattice),

J = 1 the interaction strength and hext the external magnetic �eld. In lecture 09, we solved this

self-consistency equation around the critical point for the Ising model in zero external magnetic

�eld. For small magnetization, we obtained the critical behavior

m(T ) =


0 for T > Tc = qJ

±const
(
Tc
T − 1

)β
for T < Tc

(2)

where β = 1/2 is not the inverse temperature but the critical exponent of the spontaneaous mag-

netization.

1. Familiarize yourself with the expression of eq. (1). How is it derived, and how can it be

generalized?

2. Review how eq. (1) is solved under the assumption |m| � 1, so that it yields eq. (2). This

was treated in lecture 09.
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3. Write a computer program to solve the self-consistency (eq. (1)) at all temperatures (con-

centrate on the positive branch, that is, suppose m = 0). For your convenience (cadeau!),

the program is already available (see mean_field_self_consistency_single_site.py), but

you may add the plot for the exact asymptotic expression near the critical point. In this case,

obtain the const in eq. (2) exactly (not by �tting) .

II. LATTICE SELF-CONSISTENCY: ABSENCE OF FLUCTUATIONS

In lecture 09, we also treated mean-�eld theory on a lattice. In this case, one no longer supposes

that all sites of the lattice are equivalent (have the same magnetization), but still neglects all

�uctuations. In this case, one generalizes

mi = tanh

β
J∑

nn j

mj + hext

 , (3)

where for each site i, the sum goes over the nearest neighbors (nn) j of i.

1. Show that for a d-dimensional lattice of N = Ld sites with periodic boundary conditions, the

solution of eq. (3) is the same as the solution of eq. (1), for a proper choice of q.

2. Write a computer program to actually solve eq. (3) for a �nite lattice. For your convenience,

the program is already available (see mean_field_gen_d_Ising_lattice.py). Simply down-

load and run this program and check that the overall magnetization is the same as in Section I.

3. By changing one single character (sic!) on a single site (sic!), modify the program so that

it keeps the magnetization at site 0 equal to 1, while updating all other spins over and over

again in order to solve the mean-�eld equations for all sites. From the converged solution,

check that for temperatures above Tc, one can de�ne a correlation length: Show that the

correlation of the magnetization decays as:

〈m(0)m(k)〉 ∼ exp [−k/ξ(T )] (4)

(As m(0) = 1, this correlation function is the same as the magnetization at site k). Notice

the crucial point: Mean-�eld theory allows to de�ne a spatial correlation function, and a

correlation length.

4. (If you have time): Show that even below the critical temperature, the connected correlation

function decays exponentially:

〈m(0)m(k)〉c = 〈m(0)m(k)〉 − 〈m(0)〉 〈m(k =∞)〉 ∼ exp
[
−k/ξ̃(T )

]
, (5)
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that is, although there is long-range order, the correlations also decay exponentially. In

eq. (5), m(k = ∞) can be obtained from Section I. It just describes how fast correlations

decay towards the spontaneous magnetization of an in�nite system.

5. Show (by trying out di�erent values of the temperature) that the correlation length ξ diverges

as one approaches the critical temperature, both from above and from below. If you have

time, try to extract the exponent ν describing this divergence above the critical temperature,

as well as the analogous exponent ν ′ below. It can be shown easily that ν ′ = ν.

III. COMPLETE GRAPH OF N SITES WITH N →∞

Please revise the last part of lecture 09, where we showed that the self-consistency condition of

eq. (1) is exact for the complete graph on N sites with N →∞. Three points are crucial:

1. The complete-graph system is an exact physical model, although it is unrealistic. Fur-

thermore, it is described exactly by the mean-�eld self-consistency, putting it (the self-

consistency) on a much stronger base. This physical model (Ising on a complete graph) must

have consistent thermodynamics, that is, positive entropy, and a free energy that satis�es

F = U − TS, etc.

2. The free energy of the mean-�eld model can be expressed as a function of m, T , and hext.

3. We may then expand the free energy as a power of the order parameter. This is the beginning

of Landau theory (1937), the subject of lecture 10, next week.


