Tutorial 1, Advanced MCMC 2022/23 ICFP Master (second year)

Werner Krauth ENS Paris

(Dated: 18 January 2023)

1. A priori probabilities and filters

- (a) In the lecture, we discussed a priori probabilities \mathcal{A} and filters \mathcal{P} . Discuss those for the 3×3 pebble game.
- (b) We discussed that a finite Markov chain takes place on a graph. Draw this graph for the 3×3 pebble game.

2. Irreducibility and uniqueness of stationary distribution

In the lecture, we discussed that an irreducible transition matrix has a unique stationary distribution (but that convergence is not guaranteed). We now consider the matrix:

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \tag{1}$$

- (a) Show that P is a transition matrix of a Markov chain.
- (b) Draw the graph of P.
- (c) Is P irreducible?
- (d) Does P have a unique stationary distribution?
- (e) Is there a contradition with what was said in the lecture?? (look up "Unique essential communicating class" in Levin & Peres).

3. Different categories of transition matrices

In the lecture, we discussed the different categories of transition matrices. We now consider the matrix:

$$P = \begin{pmatrix} 5/12 & 5/12 & 1/6 \\ 1/4 & 1/4 & 1/2 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$$
 (2)

- (a) Is P the transition matrix of a Markov chain?
- (b) If yes, is P an irreducible transition matrix?
- (c) If yes, is P an aperiodic transition matrix?
- (d) Is P reversible or non-reversible?
- (e) What is its category?

4. Total variation distance and mixing time

In the lecture, we discussed the total variation distance (TVD)

- (a) There was a "tiny" theorem to be proven... Prove it!
- (b) Compute the TVD for the 3×3 pebble game, starting from the upper right corner, for the first few steps (if you have no computer) or for all t (if you have a computer).
- (c) Compute the quantity d(t) (with the maximum taken over initial *configurations*), and the mixing time as a function of the parameter ϵ (with a computer).

5. Conductance on the path graph

The path graph $P_n = (\Omega, V)$ is the one-dimensional lattice without periodic boundary conditions, with $\Omega = \{1, ..., n\}$, and $V = \{(1, 2), ..., (n - 1, n)\}$. In week 2, we will consider a number of different MCMC algorithms, variants of the Metropolis algorithm, where one proposes a move from i to $j = i \pm 1$ with probability $\frac{1}{2}$, and accepts it with probability $\min(1, \pi_j/\pi_i)$. It will be interesting to know the conductance of the Metropolis algorithm for different choices of π .

- (a) What is the conductance for the Metropolis algorithm for the constant distribution $\pi_i = \text{const}$? (NB: the distribution must be normalized)
- (b) What is the conductance for the Metropolis algorithm for the square-wave distribution $\pi_{2k-1} = \frac{2}{3n}, \, \pi_{2k} = \frac{4}{3n} \, \forall k \in \{1, \dots, n/2\} \text{ (for even } n)$?
- (c) What is the conductance for the Metropolis algorithm for the V-shaped distribution: $\pi_i = \text{const} | \frac{n+1}{2} i | \ \forall i \in \{1, \dots, n\}$?

NB: Next week, we will connect these conductances to the mixing and correlation times. If you have time, you can compute the TVD (by simulation) as a function of time (start from configuration i = 1).