Homework 7, Statistical Mechanics: Concepts and applications

2019/20 ICFP Master (first year)

Botao Li, Valentina Ros, Victor Dagard, Werner Krauth
(Dated: November 15, 2019)

In lecture 07 (Ising model: from van der Waerden to Kac and Ward’s combinatorial solution)
we treated high-temperature expansions of the two-dimensional Ising model, leading up to its
exact solution through a method that identifies the high-temperature undirected loops with the

directed permutation cycles of a corresponding matrix. This also provides the theme for the present

homework session.

I. PERMUTATION CYCLES AND DETERMINANTS
A. Preparation (general matrix)

Consider a general 4 x 4 matrix A with real elements:

1 a2 a13 aus
az1 1 a3 ag
A= (1)
az1 azz 1 az
a4l ag2 aqz 1

and its determinant

det A =) " sign(P)ay p(1)asp(2)asp(3)0ap(a)- (2)
P

where P are the 24 permutations of the elements (1,2, 3,4). Write down the terms in the determi-

nant corresponding to some of the permutations, and explain that the formula

of cycles
det A = E (—1)# ¥y AP PAP,Py -+ - APy Py APIP) - -
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is OK for even N (no proof needed, just provide the "feel" that eq. (2) is correct). Illustrate the

presence of “hairpin” terms in the determinant. if a;; is available alongside aj;.



All the permutations could be decomposed into a series of operations of exchanging two elements.
Forming a k-cycle (from the identity permutation) requires k — 1 operations. Thus, the total

number of operations of a permutation is

N, = Z(k ~1)
1=1

where Ny 1s the total number of exchanges, i denotes cycles and n is the total number of

cycles. Since Y"1 | ki = N and N is even, what matters for the sign of this permutation is

then Y ;1 =mn.

If a;; appears along with aj;, They form a cycle on their own.

B. Naive matrix Usyo

In lecture 07, we considered the naive matrix:

1 ~ tanh(S)

Oy — . 1 . ~tanh 3
~ tanh(/3) : 1

~ tanh(3) 1

where any “” stand for “0” and v = ¢/™/* = /—1. Write down the determinant of this matrix in

terms of permutation cycles. Show that
Zyx2 = (2' cosh? B) det <U2x2) (4)

corresponds to the partition function of the 2 x 2 partition function of the Ising model without
periodic boundary conditions. Familiarize yourself with how to visualize cycles in the matrix (from
one element of the matrix, you move vertically to the diagonal, then horizontally to the next

element, etc).

‘ ‘ . o o 1234 .
There are two permutations which gives none 0 terms, one of them is identily, i.e. (1 53 4). This
permutation gives 1. The other permutation contains one cycle. The cycle is identified as
in Fig. 1 and its contribution (including the sign introduced by the cycle) is —y* tanh*(f).

Thus, the determinant is 1 + tanh(8) and Zaxo = 2* cosh? 8 det (ngg)
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FIG. 1: Identifying the cycle in the matrix

II. THE 4N x 4N KAC-WARD MATRIX FOR THE ISING MODEL ON N SITES

We now treat the Kac-Ward matrix U, whose determinant is connected to the square of the
partition function Z:

Z = 2N cosh(B)Ne /det(U) (5)

where N is the number of sites and N, = 2L(L — 1) the number of edges. The key idea has to do
with car traffic (see Fig. 2).

sssssssss

all

FIG. 2: Highway crossing. To solve the two-dimensional Ising model, Kac and Ward used a high-way crossing
strategy to allow traversing each site of the Ising model in all different directions, yet to avoid hair-pins.
One crossing corresponds to one site of the lattice, and it is broken up into four different directions (“right”

= 1, “up” = 2, “left” = 3, “down” — 4). Straight traversals count as v, left turns = «, hairpin turns = 0,
right turns = @ (see Table I).



A. The not-so-naive matrix Usyo

A not-so-naive Kac-Ward matrix for the 2 x 2 problem is given by the following:

T ava - - - - -
s T
s T
A
..... 1. - ... . ava
arva li ........

Ussoa = | 1. e a (6)
......... 1 - - -
.......... T
QWY - e 1. . .
............ 1. .
............. 1 -
--------- ava - -1
L QWY - e e 14

As discussed in lecture 07, rows and columns 1-4 of this matrix correspond to site 1 of the Ising

model, column 5-8 to site 2, columns 9-12 to site 3, and columns 13-16 to site 4.

e Explain the values of ug 13, U614, U 15 in this matrix.

The sites in the system are labeled as (‘f g)

— ug13 means turning right at site 4
— ug,14 means going upward through site 4

— ue,15 means turning left at site 4

e Fxpose, by direct inspection, the four non-trivial permutations in this matrix.

There are 2 cycles in the matriz, which correspond to the clockwise loop of traffic (1 —
4 — 3 = 2) and anti-clockwise loop of traffic (1 — 2 — 3 — 4) in the configuration.
The cycles in the matriz are shown in Fig. 8. FEach cycle provides a permutation.
Since all of the terms which contribute to the cycles never appears in the same row or
column, the multiplication of the cycles also yields a permutation. And the last non-

trivial permutation is identily.

e Compute the determinant of Usxo from the cycle-sum representation of eq. (3), and show

that it agrees with the determinant of UQXQ.

The two cycles give a* and @* respectively, thus

det (Ugx2) = 1 — a* — @' + (a@)* = (1 + tanh*(B8))? = [dct (02“)}2
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FIG. 3: Cycles in the matrix. The orange cycle is for anti-clockwise loop, while the blue cycle is for clockwise
loop. The loops do not overlap, which means none of the elements, which contribute to the cycles, are in

the same row or column.

TABLE I: The matrix elements of the first row of the Kac-Ward matrix Usx2 (see eq. (6)).

Matrix element (example) value type
Ui s v =tanh g (straight traversal of site 2)
u16 a = e™/*tanh 8 (left turn at site 2)
u17 0 (hairpin turn at site 2)
u1 8 a@=e "/*tanh 8 (right turn at site 2)

B. Compact notation for Usyo

Show that the matrix Usxo can be compactly written as a matrix of 4 x 4 matrices:

1 ’U,_> 'U/]*
ue 1 ©ugp
Uaxo = (7)
u, - 1 wu_
i up U 1




where 1 is the 4 x 4 unit matrix, and furthermore, the 4 x 4 matrices u_,, uy, u, and u| are given

by

i ] o - [ V]
One can check explicitly that this matrix is identical to the 16 x 16 matriz. This matriz can also
be interpreted in the following way: Each column and each row in (compact) Usxa stands for
a site. If one can reach site j by moving upward from site i, there are non-trivial elements
in block Uy ;. (For other directions, this interpretation also works.) This block is denoted
by uy. In u, rows means the directions of going from site i to site j, and columns means
the directions of going out of site j. Thus, only the second row of uy contains non-trivial
elements. And the value of these elements could be found by using similar argument as
constructing Table 1. As long as the two directions are fized, the elements in matrices u
are wrrelevant to the positions of the sites. So the matrices uw works for arbitrary sites and
arbitrarily large systems. By using the compact notion, the Kac- Ward matriz could by written
down by examining how the sites are connected, instead of analyzing explicitly what are the

elements.

III. KAC-WARD MATRIX FOR THE 4 x 4 ISING MODEL

Using the compact notation of Section Il B, write down the matrix Usx4, in complete analogy
with what you did for Usxo. Compute its determinant, using a computer algorithm at a few different
temperatures. For your convenience, a mathematica notebook file setting up the matrix Usxo is
made available on the website. Note that the conversion factor of eq. (5) must be introduced in

order to yield the partition function Z.

e Fxplain what this program does.



This program build the Usyo using the compact notion, and calculate the determinant of this

matriz.

e Explain in particular why you have to take the square root of the determinant.

The non-trivial contribution to the determinant comes from the loops of traffic in the con-
figuration. The loops appear here are identical to the loops which appear in the high
temperature expansion, and their contribution are also identical. However, loops in the
Kac-Ward matriz formalism are directed, which means the contribution of each loop is
counted twice, not to mention the combination of the clockwise and anti-clockwise loop
also contributes to the determinant. Taking square root is thus needed to get rid of these

contributions.

e Modify this program to make it work for Uyx4 (or write your own) and compute the partition
function of the 4 x 4 Ising model (without periodic boundary conditions), version Kac and

Ward. Notice that we have not proven that this matrix actually gives the exact result.

Please check the mathematica file for solution. Though not proven, the Kac-Ward method

does give correct result.

e To check this latter point, compare the partition function with the partition function of the
4 x 4 Tsing model obtained from the high-temperature expansion (see Fig. 4, and in particular,

its figure caption).

Please check the mathematica file for solution.

Notice that there are many non-zero cycles in the matrix Usx4 that have no relation to loops in the
high-temperature expansion of the Ising model. It was the “good fortune” of Kac and Ward that
they all sum up to zero. Your program does provide a constructive prove of this property for small

loops and cycles.
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FIG. 4: All the 512 loops that make up the high-temperature expansion of the 4 x 4 Ising model without
periodic boundary conditions. Note that there is one loop with zero edges. There are, in addition, 9 loops
with four edges, 12 loops with 6 edges, 50 loops with 8 edges, 92 loops with 10 edges, 158 loops with 12
edges, 116 loops with 14 edges, 69 loops with 16 edges, 4 loops with 18 edges, 1 loop with 20 edges (in

yellow). The “golden” configuration presents a loop within a loop.



