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In lecture 07 (Ising model: from van der Waerden to Kac and Ward's combinatorial solution)

we treated high-temperature expansions of the two-dimensional Ising model, leading up to its

exact solution through a method that identi�es the high-temperature undirected loops with the

directed permutation cycles of a corresponding matrix. This also provides the theme for the present

homework session.

I. PERMUTATION CYCLES AND DETERMINANTS

A. Preparation (general matrix)

Consider a general 4× 4 matrix A with real elements:

A =


1 a12 a13 a14

a21 1 a23 a24

a31 a32 1 a34

a41 a42 a43 1

 (1)

and its determinant

detA =
∑
P

sign(P )a1P (1)a2P (2)a3P (3)a4P (4). (2)

where P are the 24 permutations of the elements (1, 2, 3, 4). Write down the terms in the determi-

nant corresponding to some of the permutations, and explain that the formula

detA =
∑
cycle
con�gs

(−1)# of cycles aP1P2aP2P3 . . . aPMP1︸ ︷︷ ︸
weight of �rst cycle

aP ′
1P

′
2
. . .︸ ︷︷ ︸

other cycles

=
∑
cycle
con�gs

(−1)· weight of�rst cycle

× · · · ×
(−1)· weight oflast cycle

 . (3)

is OK for even N (no proof needed, just provide the "feel" that eq. (2) is correct). Illustrate the

presence of �hairpin� terms in the determinant. if aij is available alongside aji.
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All the permutations could be decomposed into a series of operations of exchanging two elements.

Forming a k-cycle (from the identity permutation) requires k − 1 operations. Thus, the total

number of operations of a permutation is

Nex =

n∑
i=1

(ki − 1)

where Nex is the total number of exchanges, i denotes cycles and n is the total number of

cycles. Since
∑n

i=1 ki = N and N is even, what matters for the sign of this permutation is

then
∑n

i=1 1 = n.

If aij appears along with aji, They form a cycle on their own.

B. Naive matrix Ũ2×2

In lecture 07, we considered the naive matrix:

Û2×2 =


1 γ tanh(β) · ·

· 1 · γ tanhβ

γ tanh(β) · 1 ·

· · γ tanh(β) 1

 .

where any �·� stand for �0� and γ = eiπ/4 = 4
√
−1. Write down the determinant of this matrix in

terms of permutation cycles. Show that

Z2×2 = (24 cosh4 β) det
(
Û2×2

)
(4)

corresponds to the partition function of the 2 × 2 partition function of the Ising model without

periodic boundary conditions. Familiarize yourself with how to visualize cycles in the matrix (from

one element of the matrix, you move vertically to the diagonal, then horizontally to the next

element, etc).

There are two permutations which gives none 0 terms, one of them is identity, i.e.
(
1 2 3 4
1 2 3 4

)
. This

permutation gives 1. The other permutation contains one cycle. The cycle is identi�ed as

in Fig. 1 and its contribution (including the sign introduced by the cycle) is −γ4 tanh4(β).

Thus, the determinant is 1 + tanh(β) and Z2×2 = 24 cosh4 β det
(
Û2×2

)
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FIG. 1: Identifying the cycle in the matrix

II. THE 4N × 4N KAC-WARD MATRIX FOR THE ISING MODEL ON N SITES

We now treat the Kac-Ward matrix U , whose determinant is connected to the square of the

partition function Z:

Z = 2N cosh(β)Ne
√
det(U) (5)

where N is the number of sites and Ne = 2L(L− 1) the number of edges. The key idea has to do

with car tra�c (see Fig. 2).

FIG. 2: Highway crossing. To solve the two-dimensional Ising model, Kac and Ward used a high-way crossing

strategy to allow traversing each site of the Ising model in all di�erent directions, yet to avoid hair-pins.

One crossing corresponds to one site of the lattice, and it is broken up into four di�erent directions (�right�

= 1, �up� = 2, �left� = 3, �down� = 4). Straight traversals count as ν, left turns = α, hairpin turns = 0,

right turns = α (see Table I).
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A. The not-so-naive matrix U2×2

A not-so-naive Kac-Ward matrix for the 2× 2 problem is given by the following:

U2×2 =



1 · · · ν α · α · · · · · · · ·
· 1 · · · · · · α ν α · · · · ·
· · 1 · · · · · · · · · · · · ·
· · · 1 · · · · · · · · · · · ·
· · · · 1 · · · · · · · · · · ·
· · · · · 1 · · · · · · α ν α ·
· α ν α · · 1 · · · · · · · · ·
· · · · · · · 1 · · · · · · · ·
· · · · · · · · 1 · · · ν α · α
· · · · · · · · · 1 · · · · · ·
· · · · · · · · · · 1 · · · · ·
α · α ν · · · · · · · 1 · · · ·
· · · · · · · · · · · · 1 · · ·
· · · · · · · · · · · · · 1 · ·
· · · · · · · · · α ν α · · 1 ·
· · · · α · α ν · · · · · · · 1


. (6)

As discussed in lecture 07, rows and columns 1-4 of this matrix correspond to site 1 of the Ising

model, column 5-8 to site 2, columns 9-12 to site 3, and columns 13-16 to site 4.

• Explain the values of u6,13, u6,14, u6,15 in this matrix.

The sites in the system are labeled as
(
3 4
1 2

)
.

� u6,13 means turning right at site 4

� u6,14 means going upward through site 4

� u6,15 means turning left at site 4

• Expose, by direct inspection, the four non-trivial permutations in this matrix.

There are 2 cycles in the matrix, which correspond to the clockwise loop of tra�c (1 →

4 → 3 → 2) and anti-clockwise loop of tra�c (1 → 2 → 3 → 4) in the con�guration.

The cycles in the matrix are shown in Fig. 3. Each cycle provides a permutation.

Since all of the terms which contribute to the cycles never appears in the same row or

column, the multiplication of the cycles also yields a permutation. And the last non-

trivial permutation is identity.

• Compute the determinant of U2×2 from the cycle-sum representation of eq. (3), and show

that it agrees with the determinant of Û2×2.

The two cycles give α4 and α4 respectively, thus

det (U2×2) = 1− α4 − α4 + (αα)4 = (1 + tanh4(β))2 =
[
det
(
Û2×2

)]2
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FIG. 3: Cycles in the matrix. The orange cycle is for anti-clockwise loop, while the blue cycle is for clockwise

loop. The loops do not overlap, which means none of the elements, which contribute to the cycles, are in

the same row or column.

TABLE I: The matrix elements of the �rst row of the Kac�Ward matrix U2×2 (see eq. (6)).

Matrix element (example) value type

u1,5 ν = tanhβ (straight traversal of site 2)

u1,6 α = eiπ/4 tanhβ (left turn at site 2)

u1,7 0 (hairpin turn at site 2)

u1,8 α = e−iπ/4 tanhβ (right turn at site 2)

B. Compact notation for U2×2

Show that the matrix U2×2 can be compactly written as a matrix of 4× 4 matrices:

U2×2 =


1 u→ u↑ .

u← 1 · u↑

u↓ · 1 u→

· u↓ u← 1

 (7)
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where 1 is the 4× 4 unit matrix, and furthermore, the 4× 4 matrices u→, u↑, u←, and u↓ are given

by

u→ =


ν α · α

· · · ·

· · · ·

· · · ·

 , u↑ =


· · · ·

α ν α ·

· · · ·

· · · ·

 ,

u← =


· · · ·

· · · ·

· α ν α

· · · ·

 , u↓ =


· · · ·

· · · ·

· · · ·

α · α ν

 .
(8)

One can check explicitly that this matrix is identical to the 16 × 16 matrix. This matrix can also

be interpreted in the following way: Each column and each row in (compact) U2×2 stands for

a site. If one can reach site j by moving upward from site i, there are non-trivial elements

in block U2×2,ij. (For other directions, this interpretation also works.) This block is denoted

by u↑. In u, rows means the directions of going from site i to site j, and columns means

the directions of going out of site j. Thus, only the second row of u↑ contains non-trivial

elements. And the value of these elements could be found by using similar argument as

constructing Table I. As long as the two directions are �xed, the elements in matrices u

are irrelevant to the positions of the sites. So the matrices u works for arbitrary sites and

arbitrarily large systems. By using the compact notion, the Kac-Ward matrix could by written

down by examining how the sites are connected, instead of analyzing explicitly what are the

elements.

III. KAC-WARD MATRIX FOR THE 4× 4 ISING MODEL

Using the compact notation of Section II B, write down the matrix U4×4, in complete analogy

with what you did for U2×2. Compute its determinant, using a computer algorithm at a few di�erent

temperatures. For your convenience, a mathematica notebook �le setting up the matrix U2×2 is

made available on the website. Note that the conversion factor of eq. (5) must be introduced in

order to yield the partition function Z.

• Explain what this program does.
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This program build the U2×2 using the compact notion, and calculate the determinant of this

matrix.

• Explain in particular why you have to take the square root of the determinant.

The non-trivial contribution to the determinant comes from the loops of tra�c in the con-

�guration. The loops appear here are identical to the loops which appear in the high

temperature expansion, and their contribution are also identical. However, loops in the

Kac-Ward matrix formalism are directed, which means the contribution of each loop is

counted twice, not to mention the combination of the clockwise and anti-clockwise loop

also contributes to the determinant. Taking square root is thus needed to get rid of these

contributions.

• Modify this program to make it work for U4×4 (or write your own) and compute the partition

function of the 4 × 4 Ising model (without periodic boundary conditions), version Kac and

Ward. Notice that we have not proven that this matrix actually gives the exact result.

Please check the mathematica �le for solution. Though not proven, the Kac-Ward method

does give correct result.

• To check this latter point, compare the partition function with the partition function of the

4×4 Ising model obtained from the high-temperature expansion (see Fig. 4, and in particular,

its �gure caption).

Please check the mathematica �le for solution.

Notice that there are many non-zero cycles in the matrix U4×4 that have no relation to loops in the

high-temperature expansion of the Ising model. It was the �good fortune� of Kac and Ward that

they all sum up to zero. Your program does provide a constructive prove of this property for small

loops and cycles.
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FIG. 4: All the 512 loops that make up the high-temperature expansion of the 4 × 4 Ising model without

periodic boundary conditions. Note that there is one loop with zero edges. There are, in addition, 9 loops

with four edges, 12 loops with 6 edges, 50 loops with 8 edges, 92 loops with 10 edges, 158 loops with 12

edges, 116 loops with 14 edges, 69 loops with 16 edges, 4 loops with 18 edges, 1 loop with 20 edges (in

yellow). The �golden� con�guration presents a loop within a loop.


