
Homework 8, Statistical Mechanics: Concepts and applications

2019/20 ICFP Master (�rst year)

Botao Li, Valentina Ros, Victor Dagard, Werner Krauth

Please study this homework carefully, as it illustrates essential

aspects of mean-�eld theory. Solutions will be provided shortly

(Dated: January 2, 2020)

In lecture 08: �Mean-Field theory (1/2) and its three pillars: Self-consistency, absence of �uctu-

ations, in�nite-dimensional limit�, we studied di�erent aspects of this important theory, which may

describe classical and quantum models, but also systems in computer science (for example graph

theory), social interactions, etc. Although mean-�eld theory thus applies to many situations it is

again in the Ising model (where it all began) that we �nd he theme of this week's homework.

I. SINGLE-SITE SELF-CONSISTENCY

The �rst aspect of mean-�eld theory, going back to Pierre-Ernest Weiss (1865-1940), is the

famous self-consistency relation for the Ising model:

m = tanh [β (Jqm+ hext)] (1)

where q is the number of neighbors of a single site (q = 2d for a d-dimensional hypercubic lattice),

J = 1 the interaction strength and hext the external magnetic �eld. In lecture 08, we solved this

self-consistency equation around the critical point for the Ising model in zero external magnetic

�eld. For small magnetization, we obtained the critical behavior

m(T ) =


0 for T > Tc = qJ

±const
(
Tc
T − 1

)β
for T < Tc

(2)

where β = 1/2 is not the inverse temperature but the critical exponent of the spontaneaous mag-

netization.

1. Familiarize yourself with the expression of eq. (1). How is it derived, and how can it be

generalized?

The energy related to size 0 is

E0 = −J
∑
i

σiσo − hextσ0
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Assuming the spin 0 is interacting with a `mean �eld', all its neighbour is substitute by

the average magnetization m. The energy becomes

E0 = −Jqmσ0 − hextσ0

where q is the number of neighbours. The magnetization of spin 0 is then

m0 =
1

Z

∑
σ0=±

σ0e
−β(Jqmσ0+hσ0)β = tanh (β(Jqm+ hext))

The site 0 should not be special compared to the other sites. Thus, there is the self-

consistency condition

m = m0 = tanh (β(Jqm+ hext))

2. Review how eq. (1) is solved under the assumption |m| � 1, so that it yields eq. (2). This

was treated in lecture 08.

At critical point, hext = 0. eq. (1) becomes

m = tanh(βJqm)

The RHS of eq. (1) could be substitute by its Taylor expansion,

m = βJqm− 1

3
β3(Jqm)3

and leads to

m

(
1

3
(βJq)3m2 − (βJq − 1)

)
= 0

m = 0 is always a solution. If βJq − 1 > 0, there are two other solutions. De�ne

βc = 1/Tc ≡ 1/Jq, then these solutions are

m = ±
√
3

(
T

Tc

)3/2(Tc
T
− 1

)1/2

Thus, the scaling of m (which is applicable near the critical point), is found by setting

T ∼ Tc:

m = ±const
(
Tc
T
− 1

)1/2
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FIG. 1: The solid line is m as a function of T , and the dashed line is m(T )/(Tc/T − 1)1/2.

3. Write a computer program to solve the self-consistency (eq. (1)) at all temperatures (con-

centrate on the positive branch, that is, suppose m = 0). For your convenience (cadeau!),

the program is already available (see mean_field_self_consistency_single_site.py), but

you may add the plot for the exact asymptotic expression near the critical point. In this case,

obtain the const in eq. (2) exactly (not by �tting) .

In Fig. 1, The solid line is m as a function of T , and the dashed line is m(T )/(Tc/T − 1)1/2.

The numerical result shows that, below Tc, the non-zero solution is always preferred. This

indicates that there is a phase transition at Tc. Below Tc, there is spontaneous magnetization;

however, the magnetization disappears when T > Tc. The constant in eq. (2) is y-coordinate of

the dashed plot at critical point. (Please ignore the peak at the Tc, since it is purely numerical

artifact.) It is roughly
√
3, which is consistent of the analytical result.

II. LATTICE SELF-CONSISTENCY: ABSENCE OF FLUCTUATIONS

In lecture 08, we also treated mean-�eld theory on a lattice. In this case, one no longer supposes

that all sites of the lattice are equivalent (have the same magnetization), but still neglects all

�uctuations. In this case, one generalizes

mi = tanh

β
J∑

nn j

mj + hext

 , (3)
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where for each site i, the sum goes over the nearest neighbors (nn) j of i.

1. Show that for a d-dimensional lattice of N = Ld sites with periodic boundary conditions, the

solution of eq. (3) is the same as the solution of eq. (1), for a proper choice of q.

The local magnetization is de�ned as

mi =
1

Z

∑
{σ}

σie
−βE({σ})

For simplicity, assuming that this is a 1D system. The expression of energy of the

system could be written as

E({σ}) = −
N∑
i=1

∑
j=i+1,i−1

Jσiσj − hext
∑
i

σi

Thus, massaging the expression of local magnetization,

mk =
1

Z

∑
{σ}

σk exp

β
 N∑
i=1

∑
j=i+1,i−1

Jσiσj + hext
∑
i

σi


=

1

Z

∑
{σ}

σk−1 exp

β
N−1∑

i=0

∑
j=i+1,i−1

Jσiσj + hext
∑
i

σi


=

1

Z

∑
{σ}

σk−1 exp

β
 N∑
i=1

∑
j=i+1,i−1

Jσiσj + hext
∑
i

σi


= mk−1

The second line is derived by relabeling and the third line is derived by using periodic

boundary condition. Thus, with periodic boundary condition, all the spins are identical

from a statistical point of view. With the same trick, it is also possible to prove that

all the local magnetizations are the same for a D-dimensional Ising model. Thus, it is

possible to substitute the mis in eq. (3) by m. eq. (3) then becomes eq. (1) with q = 2D.

For simplicity, all the following calculation will be done in 1D.

2. Write a computer program to actually solve eq. (3) for a �nite lattice. For your convenience,

the program is already available (see mean_field_gen_d_Ising_lattice.py). Simply down-

load and run this program and check that the overall magnetization is the same as in Section I.

Fig. 2 and Fig. 3 show that the system is homogeneous, which means it's safe to remove

the indices in eq. (3). Then, eq. (3) becomes eq. (1) and their solution has to be the
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FIG. 2: Magnetization as a function of r at T = 0.99Tc
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FIG. 3: Magnetization as a function of r at T = 1.01Tc

same. It is also possible, after showing that there is almost no �uctuation in the system,

plot the magnetization of a speci�c site (or the average over the system) as a function

of T . This plot should be identical to the solid line in Fig. 1, but plotting it is a little

time consuming.

3. By changing one single character (sic!) on a single site (sic!), modify the program so that

it keeps the magnetization at site 0 equal to 1, while updating all other spins over and over

again in order to solve the mean-�eld equations for all sites. From the converged solution,

check that for temperatures above Tc, one can de�ne a correlation length: Show that the
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correlation of the magnetization decays as:

〈m(0)m(k)〉 ∼ exp [−k/ξ(T )] (4)

(As m(0) = 1, this correlation function is the same as the magnetization at site k). Notice

the crucial point: Mean-�eld theory allows to de�ne a spatial correlation function, and a

correlation length.

The character, which needs to be changed, is the beginning position of the array of magneti-

zation when the self-consistency relation is solved recursively. Since m(0) = 1 is �xed,

FIG. 4: Magnetization as a function of r at T = 1.01Tc. Magnetization at r = 0 is set to 1.

〈m(0)m(k)〉 = m(k). As Fig. 5 shows, the correlation function decays exponentially.

Thus, it is possible to measure de�ne ξ(T ) in eq. (4).

4. (If you have time): Show that even below the critical temperature, the connected correlation

function decays exponentially:

〈m(0)m(k)〉c = 〈m(0)m(k)〉 − 〈m(0)〉 〈m(k =∞)〉 ∼ exp
[
−k/ξ̃(T )

]
, (5)

that is, although there is long-range order, the correlations also decay exponentially. In

eq. (5), m(k = ∞) can be obtained from Section I. It just describes how fast correlations

decay towards the spontaneous magnetization of an in�nite system.

Again, m(0) = 1 and 〈m(0)m(k)〉 = m(k). As Fig. 5 shows, the correlation function

decays exponentially. Like the T > Tc case, the correlation function decays until it
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FIG. 5: Magnetization as a function of r at T = 0.99Tc. Magnetization at r = 0 is set to 1.

reaches the spontaneous magnetization given by the self-consistency relation. However,

in this case, it decays much faster than in the T > Tc case.

5. Show (by trying out di�erent values of the temperature) that the correlation length ξ diverges

as one approaches the critical temperature, both from above and from below. If you have

time, try to extract the exponent ν describing this divergence above the critical temperature,

as well as the analogous exponent ν ′ below. It can be shown easily that ν ′ = ν.
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FIG. 6: Correlation function when t = (T/Tc − 1)1/2 is negative. Magnetization at r = 0 is set to 1.

Fig. 6 and Fig. 7 show how the correlation function behaves when t ≈ 0. The correlation

length is proportional to the x-coordinate when the correlation function intersect with
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FIG. 7: Correlation function when t = (T/Tc − 1)1/2 is positive. Magnetization at r = 0 is set to 1.

the x axis. No matter t → 0+ or t → 0−, the correlation length become larger when

t→ 0. And these �gures also indicates ν ′ = ν = 0.5.

III. COMPLETE GRAPH OF N SITES WITH N →∞

Please revise the last part of lecture 08, where we showed that the self-consistency condition of

eq. (1) is exact for the complete graph on N sites with N →∞. Three points are crucial:

1. The complete-graph system is an exact physical model, although it is unrealistic. Fur-

thermore, it is described exactly by the mean-�eld self-consistency, putting it (the self-

consistency) on a much stronger base. This physical model (Ising on a complete graph) must

have consistent thermodynamics, that is, positive entropy, and a free energy that satis�es

F = U − TS, etc.

2. The free energy of the mean-�eld model can be expressed as a function of m, T , and hext.

3. We may then expand the free energy as a power of the order parameter. This is the beginning

of Landau theory (1937), the subject of lecture 09, the next lecture.

In a fully connected model, the total �eld acting on spin i is

hext + (N − 1)−1qJ
∑
j 6=i

σj
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where the sum is over all of the sites except for site i. The strength of the interaction is

qJ/(N − 1). The production of q and J is e�ectively one number, and the factor (N1)
−1

preserves the relation E ∼ N . The total energy of the mean-�eld model is thus

E({σ}) = − qJ

N − 1

∑
(i,j)

σiσj − hext
∑
i

σi

where the �rst sum is over N(N − 1)/2 possible pairs. The total magnetization of the system

is

M =
∑
i

σi

Using the relation

M2 =
∑
i,j

σiσj = 2
∑
(i,j)

σiσj +
∑
i

σ2i

the total energy of the system could be written in terms of M as

E({σ}) = qJ

2(N − 1)
(M2 −N)− hextM

When r spins are down and N − r spins are up, M = N − 2r. Combining with the fact that

there are
(
N
r

)
con�gurations for M = N − 2r, the partition function of the system could be

expressed as

Z =
∑
r

cr

where

cr =

(
N

r

)
exp

{
−β
[
− qJ

2(N − 1)

(
(N − 2r)2 −N

)
− hext (N − 2r)

]}
In order to �nd which r dominates, de�ne

dr =
cr+1

cr
=
N − r
r + 1

exp

{
−β
[
2

qJ

(N − 1)
(N − 2r − 1)− 2hext

]}
The mean magnetization of each site is

m =
1

N
M = 1− 2r

N

which means dr could also be expressed by

dm ≈
1 +m

1−m
exp [−2β(qJm+ hext)]
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If cr reach its extreme value at r0, r0 has to satisfy

dr0 = 1

It is possible to derive, from this equation, the relation that m0 = 1− 2r0
N satis�es. It is

m0 = tanh [(qJm0 + hext)/kT ]

The �uctuation of m could be ignored when compared with m. Thus the con�gurations, in

which m 6= m0, could be ignored. Thus

m = tanh [(qJm+ hext)/kT ]

which is the self-consistency relation and is identical to the one in the �rst section.


