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I. PHYSICS IN INFINITE DIMENSIONS

1. Ising model on the Bethe lattice

The model: Consider the Ising model on a Bethe lattice at inverse temperature β. The energy reads as

E({σ}) = −J(
∑
(i,j)

σiσj + h
∑
i

σi) , (1)

and the first sum is over all the bonds of the Bethe lattice.

(a) We define the dimensionality of a lattice as d = limn→∞
log cn
logn , where cn = 1 + m1 + · · · + mn with

m1 the number of neighbors per site, m2 the number of next-nearest neighbors, and so on. Show
that, for some regular lattices you know, this definition is consistent with our intuition. Which is the
dimensionality of the Bethe lattice?

: Let us consider simple hyper-cubic lattices. In 1D, m1 = m2 = · · · = 2, therefore cn = 1 + 2n;

the dimensionality is limn→∞
log(2n+1)

logn = 1. In 2D, it is simple to see that mn = 4n, therefore

cn = 1 + 4
∑n
j=1 j = 1 + 2n(n + 1); the dimensionality is limn→∞

log(1+2n2+2n)
logn = 2. It is clear

that we only have to determine the asymptotic behavior of cn. In 3D, it is then sufficient to
note that mn ∼ n2 to get d = 3. If we apply the same definition to the Bethe lattice, for the

central spin we obtain mn = q(q − 1)n−1. Thus, cn = 1 + q
∑n−1
j=0 (q − 1)j = qn+1−1

q−1 and the

dimensionality is d = ∞. (Note that for a spin different from the central one, mn is slightly
different, but still increases exponentially with n.)

(b) Rewrite the probability of a configuration in the form

P ({σ}) =
1

Z
eβJhσ0

q∏
j=1

Qn(σ0|{σ}(j)) , (2)

where {σ}j are all the spins in the j-th subtree (we are labeling the spins as σ
(j,k,... )
i , where (j, k, . . . )

identifies the specific branch and i is a redundant index equal to the number of the shell - Fig. ??).

: In the canonical description, the probability of a configuration is

P ({σ}) =
1

Z
eβJ

∑
(i,j) σiσj+βJh

∑
i σi , (3)

where Z is the partition function. By isolating the contribution from the central spin of the Bethe
lattice we find

P ({σ}) =
1

Z
exp
(
βJhσ0 +βJh

∑
i

σi+βJσ0

q∑
k=1

σ
(k)
1 +βJ

q∑
k=1

∞∑
i=0

q−1∑
{k}i

σ
(k,k1,...,ki)
i σ

(k,k1,...,ki+1)
i+1

)
,

(4)
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where, for i = 0, σ
(k,k1,...,ki)
i ≡ σ(k)

i . Thus we have

Qn(σ0|{σ}(j)) = exp
(
βJh

∞∑
i=0

q−1∑
{k}i

σ
(j,k1,...,ki)
i + βJσ0σ

(j)
1 + βJ

∞∑
i=0

q−1∑
{k}i

σ
(j,k1,...,ki)
i σ

(j,k1,...,ki+1)
i+1

)
.

(5)

(c) Show that Qn(σ0|{σ}j) satisfies the recurrence relation

Qn(σ0|{σ}(j)) = eβJσ0σ
(j)
1 +βJhσ

(j)
1

q−1∏
k=1

Qn−1(σ
(j)
1 |{σ}(j,k)) , (6)

where {σ}j,k are all the spins in k-th brunch of the j-th subtree.

: This is a direct consequence of (5). In addition, this holds true also replacing n by m ≤ n.

(d) Define gn(σ0) =
∑
{σ}(j) Qn(σ0|{σ}j) and write a recurrence relation for xn = gn(−)

gn(+) . Show that, by

consistency, g0(σ0) must be set equal to 1.

: By summing (6) over the spins {σ}(j) in the j-th subtree we obtain

∑
{σ}(j)

Qn(σ0|{σ}(j)) =
∑
{σ}(j)

eβJσ0σ
(j)
1 +βJhσ

(j)
1

q−1∏
k=1

Qn−1(σ
(j)
1 |{σ}(j,k)) =

∑
σ
(j)
1

eβJσ0σ
(j)
1 +βJhσ

(j)
1

q−1∏
k=1

∑
{σ}(j,k)

Qn−1(σ
(j)
1 |{σ}(j,k)) , (7)

which means

gn(σ0) =
∑
σ
(j)
1

eβJσ0σ
(j)
1 +βJhσ

(j)
1 [gn−1(σ

(j)
1 )]q−1 ≡

∑
σ=±1

eβJσ0σ+βJhσ[gn−1(σ)]q−1 . (8)

Consequently, we have

xn =
eβJ−βJhxq−1n−1 + e−βJ+βJh

e−βJ−βJhxq−1n−1 + eβJ+βJh
. (9)

Let us consider the case n = 1. We have (j is a given integer between 1 and q)

g1(σ0) =
∑
σ
(j)
1

eβJσ0σ
(j)
1 +βJhσ

(j)
1 , (10)

which is equivalent to (8) if we define g0(±) = 1.

(e) Express the local magnetization 〈σ0〉 as a function of xn.

: The local magnetization is given by

〈σ0〉 =
∑
{σ}

σ0P ({σ}) , (11)
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which, using (2), reads as

〈σ0〉 =

∑
{σ} σ0e

βJhσ0
∏q
j=1Qn(σ0|{σ}(j))∑

{σ} e
βJhσ0

∏q
j=1Qn(σ0|{σ}(j))

. (12)

This can be rewritten in a compact form using the definition of gn and xn as follows:

〈σ0〉 =

∑
σ0
σ0e

βJhσ0 [gn(σ0)]q∑
σ0
eβJhσ0 [gn(σ0)]q

=
−e−βJh[gn(−)]q + eβJh[gn(+)]q

e−βJh[gn(−)]q + eβJh[gn(+)]q
=
−e−βJhxqn + eβJh

e−βJhxqn + eβJh
. (13)

In conclusion, the magnetization is unequivocally determined by the value of xn.

(f) What happens in the thermodynamic limit n→∞? Does the model exhibit ferromagnetism?

: In order to compute the magnetization in the thermodynamic limit, we must determine x∞ =
limn→∞ xn. This corresponds to a fixed point of the equation ( cf. (9))

x = f(x) =
eβJ−βJhxq−1 + e−βJ+βJh

e−βJ−βJhxq−1 + eβJ+βJh
. (14)

Specifically, it is the point reached applying iteratively the equation starting from x = x0 = 1.
First, we note that x = 1 is a fixed point for h = 0. Let us then consider the behavior in the
limit of weak field. If (14) has only one solution, from the schematic plot of the function, we
realize that the fixed point is stable (f ′(1) < 1). On the other hand, the fixed point is not stable
if f ′(1) > 1 (in that case there must be more solutions, in particular, three). If the fixed point is
not stable, x∞ will depend on the sign of h, even in the limit h → ∞. This is the signature of
ferromagnetism. To see it clearly, we can reinterpret (14) as a condition that gives h for given
x:

2βJh(x) = log
( e2βJ − x
e2βJx− 1

xq−1
)
. (15)

Since the exponential on the left had side is positive, x must be in the interval (e−2βJ , e2βJ). Let
us now differentiate the equation with respect to log x. We find

2βJxh′(x) = q − 1− 2 sinh(2βJ)

2 cosh(2βJ)− x− 1/x
. (16)

If β is large enough, 2βJxh′(x) is positive for x ≈ 1 and approaches −∞ for x → e±2βJ . In
addition, from (15) it follows that h(1) = 0. Thus, there must be another value of x 6= 1 where
h(x) = 0.

(g) Show that there is a phase transition (q > 2) and compute the critical temperature.

: This could be solved by identifying the temperature at which 2βJxh′(x) changes sign. Alternatively,
one can compute f ′(1). This is given by

f ′(1) = (q − 1)
sinh(2Jβ)

1 + cosh(2(1 + h)Jβ)
. (17)

The critical temperature corresponds to the solution to the equation f ′(1) = 1 for h = 0

(q − 1) sinh(2Jβc) = 1 + cosh(2Jβc)⇒ e2Jβc =
q

q − 2
, (18)

where we have taken the unique positive solution to the equation for e2Jβc . If q > 2, the critical
temperature is finite, so there is a finite-temperature phase transition.
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(h) Expand around the critical temperature and show that, in the limit of small h and temperature close
to the critical one, the magnetization 〈σ0〉 satisfies

βJh = 〈σ0〉3 b
( T − Tc
Tc 〈σ0〉2

)
, (19)

where

b(x) =
1

2
(q − 2)x log

q

q − 2
+

(q − 1)(q − 2)

3q2
. (20)

Which are the values of the critical exponents β and δ?

: We consider the model at inverse temperature β < βc close to the inverse critical temperature. For
small h, x is close to 1, and it is convenient to parametrize it as x = e−2s, with s close to 0. By
series expanding (15) around s = 0 we find

βJh(e2s) = [coth(βJ)− q + 1]s+
1

3

cosh(βJ)

sinh3(βJ)
s3 +O(s5) . (21)

At temperature close to the critical temperature, t = β−1βc − 1 ≈ 0, therefore we can expand the
expressions in the limit of small t. We easily find

βcJh(e2s) = q(q − 2)
[
βcJts+

1

3
(q − 1)s2 +O(t2s, ts3, s5)

]
. (22)

From (13) the magnetization is given by

〈σ0〉 = tanh(βJh+ qs) . (23)

From (22) we see that h is much smaller than s (the leading term is multiplied by t), thus we
have

s = q−1 〈σ0〉+O(h, 〈σ0〉3) . (24)

Plugging this into (22) gives

βJh(e2s) = 〈σ0〉3 b(t/ 〈σ0〉2) +O(t2 〈σ0〉 , t 〈σ0〉3 , 〈σ0〉5) , (25)

where b(x) is given by (20).
The critical exponent β and δ can be extracted directly from this expression, indeed in general we
have

βJh ∼ 〈σ0〉 | 〈σ0〉 |δ−1b̃(t| 〈σ0〉 |−
1
β ) , (26)

for some scaling function b̃(x). In conclusion, we find β = 1
2 and δ = 3.


