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2 Markov-chain sampling

We discuss Markov chains, initially in a practical context, but then in (almost) full mathematical
rigor. We then walk through an exhibition of algorithms that illustrate some major themes: the
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Metropolis algorithm and its modern variants, bounding potentials, non-reversibility, continuous-
time Markov processes, event-driven formulations, and thinning. We again close with a discus-
sion of fundamentals: How procisely does a Markov chain “converge” and is it possible, on the
Monte Carlo heliport or its discretized variants, to converge completely, so that the outcome
cannot be distinguished from that of the children’s game?
Background material for this second lecture is contained in the book by Wasserman [1] (basic

probability theory and statistics). Levin et al. [2] contains the basic theory of Markov chains,
transition matrices, mixing and relaxation times. A recent educational paper with Tartero [3]
provides more details on the example algorithms. The heliport game and the Metropolis–
Hastings algorithm are treated in more depth in the SMAC book [4] 1

2.1 Adults on the Monte Carlo heliport

Markov-chain sampling—believe it or not—comes from a game that adults play on the Monte
Carlo heliport in the early evenings, with all the helicopters safely stowed away (see Fig. 2.1).
Up to a rescaling of lengths, it realizes the same sample space Ω□ as the children had on the
beach.

Figure 2.1: Adults throwing pebbles on the Monte Carlo heliport, and computing the number π. The
game always starts at the clubhouse. A curious procedure is followed when a pebble falls
outside the pad.

Adults fling pebbles inside the square but, because of its sheer size, they cannot possible place
pebbles randomly. So they use a different algorithm. They start at the clubhouse (position
(1, 1)),2 and carry along with them as many pebbles as their handbags will hold, then throw a
pebble randomly around them, go to where it has landed, then throw again, and again. When
they throw a pebble outside the square of the heliport, they fetch it and have it placed on top
of the pebble that marked their last position, then continue. To clarify the adults’ algorithm,
we again resort to pseudo-code (see Alg. 2.1 (markov-pi)).

Run Nhits Estimate of π

1 3123 3.123
2 3118 3.118
3 3040 3.040
4 3066 3.066
5 3263 3.263

Table 2.1: Results of five runs of Alg. 2.1 (markov-pi) with N = 4000 and a throwing range δ = 0.3

1NB: “SMAC” = Statistical Mechanics: Algorithms and Computations [4]
2If they could start at a random position, there would be no point in their game

2



Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

procedure markov-pi

Nhits ← 0; {x, y} ← {1, 1}
for i = 1, . . . , N :

∆x ← ran(−δ, δ)
∆y ← ran(−δ, δ)
if |x+∆x| < 1 and |y +∆y| < 1: then{

x← x+∆x

y ← y +∆y

if x2 + y2 < 1: Nhits ← Nhits + 1
output Nhits

——

Algorithm 2.1: markov-pi. Markov-chain Monte Carlo algorithm for computing π in the adults’
game. The game starts at the clubhouse; the throwing range δ remains fixed.

At the end of the game, the pattern of pebbles looks weird (see Fig. 2.2), and certainly differs
from that in the children’s game in Lecture 1. However, when the adults count the number of
pebbles inside the circle in the square, they again get a decent—if less precise— approximation
of the number π, (see Table 2.1, and again [4, Sect. 1.1] for the full story). We remember in
this context that probability theory, as codified in the Kolmogoroff axioms, assigns probabilities
in continuous sample spaces not to single samples but to subsets of Ω called events (see Ref. [1,
Chap. 1.3]). So one can have piles of pebbles yet, per square centimeter, realize a uniform
distribution.

Figure 2.2: Monte Carlo heliport after the game. Piles of pebbles can be seen near the boundaries,
and especially near the corners.

The players on the heliport implement the Metropolis algorithm, that dates from 1953 [5]. In
this lecture, we will discuss it, prove its correctness, analyze it, then overcome it and confront
it with a number of “beyond Metropolis” algorithms.

2.1.1 The transition matrix, balance conditions

To further describe the adults’ game and other Markov chains, we imagine its sample space Ω
discretized, with a finite number of samples x ∈ Ω. For concreteness, we suppose the heliport
discretized into a 3 × 3 pebble game with a numbering of configurations from 1 to 9, in the
order shown in Fig. 2.3a). The probabilities with which we perform the possible moves, from
x to x′, then constitute the transition matrix P (x, x′). In addition, there are time-dependent
probability distributions π{t}, where π{t}(x) describes the probability to be at a position x. At
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intermediate times, these distributions π{t} are insufficiently characterized, but we know that
π{t=0}, is a Kronecker δ function on the starting configuration x0 = 9, and that π{t→∞} should
be a constant on the landing pad.
The transition matrix P has a double meaning. On the one hand, it encodes a Monte Carlo

algorithm: P (x, x′) is precisely the (conditional) probability to move from xt−1 = x to xt = x′

in one step. The condition
∑

x′∈Ω P (x, x′) = 1 expresses the conservation of probabilities (where
the sum over the x′ includes x). On the other hand, the transition matrix gives the relationship
between the probability distributions π{t−1} and π{t} at subsequent time steps t− 1 and t:

π{t}(x) =
∑
x′∈Ω

π{t−1}(x′)P (x′, x) (2.1)

(see Fig. 2.3 for an illustration of the double nature of the transition matrix). At time t = 0,
π{t=0} is a distribution that we know how to sample. Most of the time, it is a single configuration
(in the example, it is a Kronecker δ function on (x, y) = (3, 3).
By extension, the matrix P t connects the distribution π{t} with the distribution of initial

configurations π{0} at time t = 0:

π{t}(x) =
∑
x′∈Ω

π{t−1}(x′)P (x′, x) ⇒ π{t}(x) =
∑
x′∈Ω

π{0}(x′)(P t)(x′, x) ∀σ ∈ Ω, (2.2)

where we pay attention to the fact that the matrix P 2, for example, is defined as the matrix
product:

(P 2)(x, x′) =
∑
x′′∈Ω

P (x, x′′)P (x′′, x′) ∀x, x′ ∈ Ω (2.3)

and likewise for higher powers of t. The matrix P 2(x, x′) describes to probability to move from
x to x′ in two steps, etc.

Figure 2.3: Double role of transition matrix in the 3× 3 pebble game. (a): P encodes the Monte Carlo
algorithm. (b): P governs the evolution of the probability π{t}.

We want the distribution π{t} at later times to correspond to the distribution π (in the example
of the heliport and its 3× 3 discretization, we want it to be be uniform π{t→∞} = 1

9). Dropping
the time indices in eq. (2.1), we arrive at the global-balance condition

π(x) =
∑
x′∈Ω

π(x′)P (x′, x) ∀x ∈ Ω. (2.4)

which is a condition on the transition matrix P (in other words, the Monte Carlo algorithm) for
an imposed distribution π that we want to sample3 For a transition matrix that is irreducible,
the global-balance condition is satisfied for a unique stationary distribution π. “Irreducible”
means that (for a finite Ω) the probability to move in a finite time from any x to any x′ is finite.
Any irreducible transition matrix has a unique π, but this distribution is not necessarily the

limit π{t} for t → ∞ for all initial distributions π{0}. A simple illustration of this consists, in

3In non-equilibrium statistical mechanics, one is often interested in the reverse problem: determining the steady
state π for a given transition matrix P .

4



Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

the 3 × 3 pebble game, in a transition matrix P (1, 2) = 1, P (2, 3) = 1 to P (9, 1) = 1, with
some numbering of the nine configurations. Convergence towards π of an irreducible Markov
chain requires that it is aperiodic, that is, that the return times from a configuration i back to
itself {t ≥ 1 : (P t)(x, x) > 0} are not all multiples of a period larger than one. For irreducible,
aperiodic transition matrices, P t = (P t)(x, x′) is a positive matrix for some fixed t, and MCMC
converges towards π from any starting distribution π{0}.

In conclusion, Markov chains that satisfy a single minimal—and easily verifiable—requirement
(irreducibility) have a unique stationary distribution π. Under a second equally simple require-
ment (aperiodicity), they satisfy π{t} → π for any initial distribution π{t=0}. We will argue time
and again that one has to wait until π{t} is close to π before extracting useful information from
a Monte Carlo calculation.

2.1.2 Reversible and non-reversible Markov chains

Figure 2.4: Motion of a Markov chain in equilibrium. For a reversible Markov chain in equilibrium,
the trajectory a→ b→ c appears with the same probability as the “reverse” trajectory
c→ b→ a.

Reversible algorithms are those that satisfy the detailed-balance condition

π(x)P (x, x′) = π(x′)P (x′, x) ∀x, y ∈ Ω. (2.5)

Detailed balance implies global balance (eq. (2.5) yields eq. (2.4) by summing over x′, considering
that

∑
x′∈Ω P (x, x′) = 1). The detailed-balance condition imposes that in equilibrium, the path

from x (at time t− 1) to x′ (at time t) is equally likely as the time-reversed path from x′ to x.
This can be extended to paths that are arbitrary long (see Fig. 2.4), and explains why Markov
chains that satisfy the detailed-balance condition are equivalently called reversible.
To set up a reversible transition matrix P for a given distribution π, we may choose

π(x)P (x, x′) ∝ min
[
π(x), π(x′)

]
for x ̸= x′. (2.6)

The right-hand side of Eq. (2.6) is symmetric in x and x′, so that the left-hand side must also
be symmetric. Therefore, detailed balance is automatically satisfied. We divide both sides by
π(x) and arrive at the equation famously proposed by Metropolis et al. in 1953:

PMet(x, x′) ∝ min

[
1,

π(x′)

π(x)

]
for x ̸= x′. (2.7)

Let us discuss the difference between a transition matrix and a filter in order to make Eq. (2.7)
explicit and remove the proportionality sign. The move from x to x′ ̸= x proceeds in two steps.
A possible move is first proposed with an a priori probability A(x, x′) and is then accepted
or rejected with a filter. In the Metropolis algorithm, the a priori probability is symmetric,
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A(x, x′) = A(x′, x), and

PMet(x, x′)︸ ︷︷ ︸
transition matrix

= A(x, x′)︸ ︷︷ ︸
a priori probability

Metropolis filter︷ ︸︸ ︷
PMet(x, x′) . (2.8)

For the Metropolis algorithm, a proposed move x→ x′ (with x′ ̸= x) is thus accepted with the
Metropolis acceptance probability

PMet(x, x′) = min

[
1,

π(x′)

π(x)

]
, (2.9)

which is also called the Metropolis filter in order to differentiate it from the transition matrix. If
the move x→ x′ is rejected, the particle remains at x, which determines the diagonal transition
matrix elements P (x, x) and guarantees that

∑
x′ P (x, x′) = 1, in other words, that the transition

matrix is stochastic.
For the transition matrix P of a reversible Markov chain, the matrix Aij = π

1/2
i Pijπ

−1/2
j is

symmetric, as trivially follows from the detailed balance of eq. (2.5). The spectral theorem
then assures that A has only real eigenvalues and that its eigenvectors form an orthonormal
basis. The transition matrix P has the same eigenvalues as A, as well as closely related (right)
eigenvectors: ∑

j∈Ω
π
1/2
i Pijπ

−1/2
j︸ ︷︷ ︸

Aij

xj = λxi ⇔
∑
j∈Ω

Pij

[
π
−1/2
j xj

]
︸ ︷︷ ︸

x̃j

= λ
[
π
−1/2
i xi

]
︸ ︷︷ ︸

x̃i

. (2.10)

The eigenvectors x̃ of P must be multiplied with
√
π to be mutually orthogonal. They provide

a basis on which any initial probability distribution π{0} can be expanded. An irreducible and
aperiodic transition matrix P (reversible or not) has one eigenvalue λ1 = 1, and all others
satisfy |λk| < 1 ∀k ̸= 1. The unit eigenvalue λ1 corresponds to a constant right eigenvector of P
because of the stochasticity condition

∑
j∈Ω Pij = 1, and to the left eigenvector π of P , because

of the global-balance condition of eq. (2.4). Let us consider a reversible transition matrix with
a non-degenerate spectrum (which must be real, as we just showed), then slightly perturb the
elements of P , which will make it non-reversible. As the eigenvalues of a matrix continuously
depends on its elements, it follows that a non-reversible transition matrix may very well have a
real-valued spectrum.

2.1.3 Metropolis–Hastings algorithm

In Alg. 2.1 (markov-pi), moves (∆x,∆y) are restricted to a small square of edge length 2δ,
the throwing range, and as this throwing range around a position (x, y) is independent of the
position, the a priori probability is symmetric, and even constant (see Fig. 2.5A). The small
square could be replaced by a small disk without bringing in anything new (see Fig. 2.5B). A
more interesting situation arises for asymmetric a priori probabilities: in the triangle algorithm
of Fig. 2.5C, moves are sampled from an oriented equilateral triangle centered at a, with one
edge parallel to the x-axis. This extravagant choice may lack motivation in the context of the
adults’ game, but contains a crucial ingredient of modern Monte Carlo algorithms, that we will
study in later lectures.
The detailed-balance condition of eq. (2.5), in the presence of an asymmetric a priori proba-

bility A(x, x′), such as the triangular one, gives

π(x)A(x, x′)P(x, x′) = π(x′)A(x′, x)P(x′, x′). (2.11)

In this equation, π is given (we want it to be uniform, on the heliport) and so is A (we want it
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A B C

Figure 2.5: Throwing pattern in Alg. 2.1 (markov-pi) (A), with variants. The triangle algorithm (C )
requires special attention.

to be uniform, in an equilateral triangle). The probability of moving from a to b must satisfy
π(a)P(a→ b) = π(b)P(b→ a), so that the acceptance probabilities (the filter) must obey:

PMet–H(x, x′)

PMet–H(x′, x)
=

π(x′)

A(x, x′)
A(x′, x)
π(x)

.

leading to

PMet–H(x, x′) = min

[
1,

π(x′)

A(x, x′)
A(x′, x)
π(x)

]
, (2.12)

also called the Metropolis–Hastings filter, which always requires one to take into consideration
the back move (from x′ to x), when one decides whether one should accept the move from x to
x′.

2.2 Reversible Markov chains (picture book)

The material in this section is taken from Ref. [3], which presents a dozen of distinct Markov-
chain Monte Carlo algorithms to sample the Boltzmann distribution of the anharmonic oscillator.
We present three reversible Markov chains (plus a patch) before continuing with four non-
reversible algorithms, in Sec. 2.3.

2.2.1 Metropolis algorithm

Algorithm 2.2 (metropolis) implements the symmetric a priori probability as a uniform dis-
placement ∆ = x′ − x which is as likely as −∆. The Metropolis filter is implemented with a
uniform random number Υ between 0 and 1, which we refer to as a “pebble.” For large times
t, when the initial configuration is forgotten, the algorithm samples π24. In all the following
Markov-chain algorithms, this large t condition is understood.

procedure metropolis

input x (sample at time t)

∆← ran(−δ, δ)
x′ ← x+∆
Υ← ran(0, 1)

if Υ < min

[
1,

π24(x
′)

π24(x)

]
: x← x′

output x (sample at time t+ 1)

——

Algorithm 2.2: metropolis. Sampling π24 with the Metropolis algorithm.
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2.2.2 Factorized Metropolis algorithm

The Metropolis algorithm is really famous, but it is not the end of history. A modern variant is
the factorized Metropolis algorithm that we do not discuss here in detail, but only apply to the
anharmonic oscillator, where it is written as:

P fact
24 (x, x′) = min

[
1,

π2(x
′)

π2(x)

]
min

[
1,

π4(x
′)

π4(x)

]
. (2.13)

The factorized Metropolis algorithm satisfies detailed balance:

π24(x)P
fact
24 (x, x′)

∝ π2(x)min

[
1,

π2(x
′)

π2(x)

]
︸ ︷︷ ︸
min[π2(x),π2(x′)]: x⇔x′

π4(x)min

[
1,

π4(x
′)

π4(x)

]
︸ ︷︷ ︸
min[π4(x),π4(x′)]: x⇔x′

∝ π24(x
′)P fact

24 (x′, x), (2.14)

where we have dropped the symmetric a priori probabilityA. Algorithm 2.3 (factor-metropolis)
implements the factorized Metropolis filter: Algorithm 2.3 (factor-metropolis) (which is

procedure factor-metropolis

input x
∆← ran(−δ, δ)
x′ ← x+∆
Υ← ran(0, 1)

if Υ < min

[
1,

π2(x
′)

π2(x)

]
min

[
1,

π4(x
′)

π4(x)

]
:{

x← x′

output x
——

Algorithm 2.3: factor-metropolis. Sampling π24 naively with the factorized Metropolis filter (see
Ref. [3]).

naive) can be patched by replacing its random number Υ by two independent random num-
bers Υ2 and Υ4, as shown in Alg. 2.4 (factor-metropolis(patch)). There, a proposed move is
accepted by consensus if all the factors accept it. In Alg. 2.4 (factor-metropolis(patch)), two
independent decisions are taken,4 one for the harmonic and one for the quartic factor, and the
proposed move is finally accepted only if it is accepted by both factors. The output is identical
to that of Alg. 2.3 (factor-metropolis).

2.2.3 Bounding potentials

Monte Carlo algorithms (at a difference with molecular-dynamics algorithms that we will discuss
in later lectures) are decision problems where proposed moves are accepted with a filter, for
example the Metropolis filter min[1, exp (−β∆U)]. One can often base the accept/reject decision
on a bounding potential Û , and thus avoid computing U , ∆U , and their exponentials
We say that Û is a bounding potential of a potential U if, for any pair of configurations x and

x′, it satisfies

min
(
1, e−β∆Û

)
≤ min

(
1, e−β∆U

)
∀x, x′ ∈ Ω, (2.15)

4one can view this as the sampling of two independent Boolean random variables, (see Ref. [6]), of which the
final decision is the conjunction.
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procedure factor-metropolis(patch)

input x
∆← ran(−δ, δ)
x′ ← x+∆
Υ2 ← ran(0, 1) ; Υ4 ← ran(0, 1)

if Υ2 < min

[
1,

π2(x
′)

π2(x)

]
and Υ4 < min

[
1,

π4(x
′)

π4(x)

]
:{

x← x′ (move accepted by consensus)

output x
——

Algorithm 2.4: factor-metropolis(patch). Patch of Alg. 2.3, implementing the consensus principle
(see Ref. [3]).

where ∆Û = Û(x′) − Û(x) and ∆U = U(x′) − U(x). 5 Concretely, we define harmonic and
quartic bounding potentials recursively for n = 0,±1,±2, etc., as

Û2(n) =

{
0 if n = 0

Û2(|n| − 1) + |n| if n ∈ Z\{0}
,

Û4(n) =

{
0 if n = 0

Û4(|n| − 1) + |n3| if n ∈ Z\{0}.

(2.16)

These definitions are extended to non-integer arguments x by linear interpolation. The anhar-
monic bounding potential is then defined as Û24(x) = Û2(x) + Û4(x) (see Fig. 2.6).
A bounding potential can simplify the decision to accept a move because a pebble 0 < Υ < 1

that falls below exp
(
−β∆Û

)
also falls below exp

(
−β∆U

)
(see Fig. 2.7a). In the remaining

algorithms, we use a two-pebble strategy for the decision to accept or reject a move. The
first pebble 0 < Υ1 < 1 decides whether a move is accepted with respect to the bounding
potential. Otherwise, if Υ1 rejects the move, we use a second pebble Υ2 to decide whether the
first-pebble rejection with respect to Û stands with respect to U (see Fig. 2.7b). A rescaling,
with 0 < Υ2 < 1, allows us to definitely reject the move if

Υ2 <
1− e−β∆U

1− e−β∆Û
. (2.17)

The two-pebble bounding-potential algorithm is implemented in Alg. 2.5 (bounded-metropolis)
for the anharmonic oscillator. It again samples the Boltzmann distribution π24, although most
positive decisions are taken on the basis of the bounding potential.

2.3 Non-reversible Markov chains (picture book)

In a tradition that started with the Metropolis algorithm many decades ago, Markov chains
are normally designed with the restrictive detailed-balance condition, although they are only
required to satisfy global balance. In this section, we illustrate more recent attempts to overcome
the detailed-balance condition in a systematic way, within the framework of “lifted” Markov
chains. Background and references can be found in [3].
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Figure 2.6: Anharmonic bounding potential Û24 and its harmonic and quartic constituents Û2 and Û4

(see Ref. [3]).

Figure 2.7: Single-pebble and two-pebble decisions in the Metropolis algorithm. (a): A single pebble
Υ illustrating that acceptance with respect to the bounding potential implies acceptance
with respect to U . (b): The first pebble Υ1 makes a decision with respect to the bounding
potential. In case of rejection, a second pebble Υ2 definitely decides on the move (see
Ref. [3]).
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procedure bounded-metropolis

input x
∆← ran(−δ, δ)
x′ ← x+∆; Υ1 ← ran(0, 1) ;

if Υ1 < min
(
1, e−β∆Û24

)
:{

x← x′

else:
Υ2 ← ran(0, 1)

if Υ2 >
1− e−β∆U24

1− e−β∆Û24

: x← x′

output x
——

Algorithm 2.5: bounded-metropolis. Metropolis algorithm illustrating the use of bounding
potentials with a two-pebble decisions. The second pebble is used and the true
potential U24 is evaluated only after a first-pebble rejection with respect to the
bounding potential Û24.

Figure 2.8: Discretized lifted Metropolis algorithm for the anharmonic oscillator. The flow into the
lifted configuration {x,+1} is indicated [see Eq. (2.21)].

2.3.1 Lifting and the zig-zag algorithm

The Metropolis algorithm proposes positive and negative displacements ∆ for the anharmonic
oscillator with symmetric a priori probabilities (see Alg. 2.2 (metropolis)). The filter then
imposes that the net flow vanishes, so there will be as many particles going from x to x + ∆
as in the reverse direction, even if, say, π(x) ≪ π(x +∆). To break detailed balance and only
satisfy global balance, (while keeping π24 as a stationary distribution), we first suppose that
the positions x lie on the grid {. . . ,−2∆,−∆, 0,∆, 2∆, . . . }, with moves allowed only between
nearest neighbors. Each configuration x is duplicated into a forward-moving one {x,+1}, and a
backward-moving one {x,−1}. From a lifted configuration {x, σ}, the lifted Metropolis algorithm
proposes only a forward move if σ = 1, and only a backward move if σ = −1. In summary,

P lift({x, σ}, {x+ σ∆, σ}) = min

[
1,

π24(x+ σ∆)

π24(x)

]
, (2.18)

where σ = ±1. When this move is rejected by the Metropolis filter, the algorithm flips the
direction and instead moves from {x, σ} to {x,−σ}:

P lift({x, σ}, {x,−σ}) = 1−min

[
1,

π24(x+ σ∆)

π24(x)

]
. (2.19)

5Equation (2.15) is more restrictive than necessary in the general case.

11



Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

This algorithm clearly violates detailed balance as there is thus no backward flow for σ = +1
and no forward flow for σ = −1. On the other hand, the lifted Metropolis algorithm satisfies
the global-balance condition of Eq. (2.4) with the ansatz

πlift
24 ({x, σ}) =

1

2
π24(x) for σ = ±1. (2.20)

For example, the flow into the lifted configuration {x,+1} satisfies

π24({x,+1})
= π24({x−∆,+1})P lift({x−∆,+1}, {x,+1})
+ π24({x,−1})P lift({x,−1}, {x,+1}). (2.21)

The two contributions on the right-hand side of Eq. (2.21) correspond on the one hand to the
accepted moves from {x−∆,+1}, and on the other hand to the lifted moves from {x,−1}, when
the move from {x,−1} toward {x − ∆,−1} is rejected (see Fig. 2.8). Equation (2.21) can be
transformed into

π24(x) = π24(x−∆)min

[
1,

π24(x)

π24(x−∆)

]
+ π24(x)

{
1−min

[
1,

π24(x−∆σ)

π24(x)

]}
, (2.22)

which is identically satisfied. We have shown that the lifted Metropolis algorithm satisfies the
global-balance condition for the ansatz of Eq. (2.20), which splits π24(x) equally between {x,+1}
and {x,−1}. The sequence π{t} will actually converge to this stationary distribution.
In the lifted Metropolis algorithm, the particle, starting from x0 = 0, climbs uphill in direction

σ until a move is rejected by the filter, when it remains at its current position but reverses
its velocity to −σ. The following downhill moves, again without rejections, are followed by
another uphill climb, and so on, criss-crossing between the two wings of the potential U24. It
outputs configurations {x, σ} such that, remarkably, the x-component samples π24. This curious
algorithm is implemented in Alg. 2.6 (lifted-metropolis).

procedure lifted-metropolis

input {x, σ} (lifted sample at time t)

∆← ran(0, δ) (δ > 0)

x′ ← x+ σ∆ (x′ in direction σ from x)

Υ← ran(0, 1)

if Υ < min

[
1,

π24(x
′)

π24(x)

]
: x← x′

else: σ ← −σ
output {x, σ} (lifted sample at time t+ 1)

——

Algorithm 2.6: lifted-metropolis. Non-reversible lifted version of Alg. 2.2 (metropolis). The
x-positions that are output by this program sample π24 (see Ref. [3]).

2.3.2 Event-driven Markov processes

Markov chains in continuous time are Markov processes. Algorithm 2.6 (lifted-metropolis)
with its grid of positions {. . . ,−2∆,−∆, 0,∆, 2∆, . . . } and nearest-neighbor moves can be stud-
ied in the limit of very small ∆, where one may rescale time such that a displacement ±∆ is
itself undertaken in a time interval ∆. The particle in the anharmonic oscillator thus moves with

12
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unit absolute velocity, whose sense is reversed when there is a rejection. The downhill moves are
all accepted, and even uphill moves are accepted with a probability close to one. Rather than
to simulate each of these steps, we sample the position of the next rejection. As an example,
let us consider a sequence of uphill moves in positive direction from x = 0. The probability for
accepting an entire sequence of n subsequent uphill moves, at positions 0,∆, . . . , (n− 1)∆, and
then rejecting the move n+ 1, is

P(0→ xev) = e−β∆U24(0)···∆U24[(n−1)∆]︸ ︷︷ ︸
n accepted moves

[
1− e−β∆U24(n∆)

]
︸ ︷︷ ︸

rejection

→ βe−βU24dU24. (2.23)

In the small-∆ limit, the rejection is here expanded to first order, and ∆U is replaced by dU .
In our example of the anharmonic oscillator starting at x = 0, all the increments of ∆U24 up
to position x add up to the potential U24(x). Equation (2.23) indicates that the value of U24

at which the velocity is reversed follows an exponential distribution in U24. Remembering from
Lecture 1 how to sample an exponential random variable, we obtain

U24(xev) = −β−1 log ran(0, 1) , (2.24)

which can be inverted as U24(xev) = x2ev/2 + x4ev/4, with

xev = σ

√
−1 +

√
1− 4β−1 log ran(0, 1). (2.25)

Algorithm 2.7 (zig-zag) implements this event-driven, continuous-time, Markov process and
manages to move forward and backward. The equal-time samples again sample the Boltzmann
distribution π24 (see Fig. 2.9). The algorithm was, in essence, proposed in 2012 [7].

procedure zig-zag

input {x, σ}, t (lifted sample with σx ≤ 0 )

xev ← σ
√
−1 +

√
1− 4β−1 log ran(0, 1) (see Eq. (2.25))

tev ← t+ |xev − x|
for t∗ = int(t) + 1, . . . , int(tev):{

print x+ σ(t∗ − t) (equal-time samples)

x← xev; σ ← −σ; t← tev (“zig-zag”)

output {x, σ}, t
——

Algorithm 2.7: zig-zag. Continuous-time, event-driven version of Alg. 2.6 (lifted-metropolis).
The x-positions output by the print statement sample π24 (see Ref. [3]).

2.3.3 Thinning and the avoidance of evaluation

The Algorithm 2.7 (zig-zag) is the tip of the iceberg of modern non-reversible Markov chains,
but let us go even farther in our exploration of miniature programs, for example by considering
Alg. 2.8 (bounded-lifted), which differs by a single line from Alg. 2.5 (bounded-metropolis),
and is self-explanatory. Let us finally take to continuous-time limit of this algorithm, where the
particle moves up the bounding potential Û24, rather that the true potential U24 (see Fig. 2.10).
When it must throw the second pebble Υ2, to find out whether the rejection is real, it uses:

Υ2 <
1− e−β∆U24

1− e−β∆Û24

→ Υ2 <
dU24/dx

dÛ24/dx
, (2.26)

as implemented in Alg. 2.9 (bounded-zig-zag), a truly remarkable 11-line algorithm.
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Figure 2.9: Zig-zag algorithm (continuous-time event-driven lifted Metropolis chain). (a): The particle
swings about the origin, turning around at positions xev [sampled by Eq. (2.25)]. (b):
Piecewise deterministic constant-velocity trajectory. Particle positions are sampled at
equal time steps (see Ref. [3]).

Figure 2.10: Continuous-time version of the bounded-lifted Metropolis algorithm as implemented in
Alg. 2.9 (bounded-zig-zag) The proposed event xev is confirmed by comparing the

derivatives of the true potential U24 and the bounding potential Û24 [see Eq. (2.26)].
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procedure bounded-lifted

input {x, σ} (lifted sample at time t)

∆← ran(0, δ) (δ > 0)

x′ ← x+ σ∆; Υ1 ← ran(0, 1)

if Υ1 < min
(
1, e−β∆Û24

)
:{

x← x′

else:
Υ2 ← ran(0, 1)

if Υ2 >
1− e−β∆U24

1− e−β∆Û24

: x← x′

else: σ ← −σ
output {x, σ} (lifted sample at time t+ 1)

——

Algorithm 2.8: bounded-lifted. Discrete-time bounded-lifted Metropolis algorithm using two-pebble
decisions. The second pebble is used and the true potential U24 is evaluated only after
a first-pebble rejection with respect to the bounding potential Û24.

2.4 Convergence of Markov chains: fundamental aspects

In the previous sections of this lecture, we established the correctness of a number of reversible
and non-reversible algorithms. Implementing and running the associated computer programs, we
convinced ourselves that the algorithms where correct and that, for t→∞, the distribution π{t}

converged towards π{t=∞} = π. On the heliport, π corresponds to the uniform distribution in the
square. In the anharmonic oscillator, it corresponds to the Boltzmann distribution exp (−βU24)
with U24(x) = x2/2 + x4/4.
The convergence of the π{t} to π differs in nature from the convergence of the running average

(the number of hits to trials in the pebble games of the last two lectures).
In this context, one defines the total-variation distance (TVD) of two (normalized) distribu-

tions ρ and π by

||ρ− π||TV = max
A⊂Ω
|ρ(A)− π(A)| = 1

2

∑
x∈Ω
|ρ(x)− π(x)| (2.27)

2.4.1 Convergence theorem of Markov chain, ergodic theorem

Convergence theorem for Markov chains: Suppose that the transition matrix P of a finite Markov
chain is irreducible and aperiodic, with stationary distribution π. Then there exist constant
α ∈ (0, 1) and C > 0 such that

max
x0∈Ω

||P t(x0, .)− π||TV ≤ Cαt (2.28)

(see [2, Theorem 4.9]. The proof is just a few lines long.). Exponential convergence can thus be
proven for all initial conditions, with minimal requirements on the Markov chain.
Ergodic theorem for Markov chains: Suppose that the transition matrix P of a finite Markov

chain is irreducible, with stationary distribution π. Consider a real-valued function f , and a
starting distribution µ that can be arbitrarily different from π. Then

Pµ

{
lim
t→∞

1

t

t∑
s=1

f(xs) = ⟨f⟩
}

= 1 (2.29)

generalizing the strong law of large numbers.
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procedure bounded-zig-zag

input {x, σ}, t (lifted sample)

if σx < 0: x0 ← 0; else: x0 ← x (starting point)

n← int(|x0|); q̂ ← n+ 1 + (n+ 1)3; σ̃ ← σ
xev ← x0 + σ

[
−(βq̂)−1 log ran(0, 1)

]
if |xev| > n+ 1:{

xev ← σ(n+ 1)
else if ran(0, 1) < |xev + x3ev|/q̂:{

σ̃ ← −σ
tev ← t+ |xev − x|
for t∗ = int(t) + 1, . . . , int(tev):{

print x+ σ(t∗ − t) (equal-time samples)

x← xev; σ ← σ̃; t← tev (“zig-zag”)

output {x, σ}, t
——

Algorithm 2.9: bounded-zig-zag. Continuous-time bounded-lifted Metropolis algorithm. It need not
invert the potential U24, foreshadowing the use of bounding potentials in real-world
applications.

2.4.2 Stopping times

After having concentrated on the mere subject of their correctness, we now discuss the detailed
behavior of Markov chains, and introduce the top-to-random shuffling of cards, which has rev-
olutionized the understanding of convergence. As its name indicates, the algorithm consists
in taking the top card of the deck, and re-inserting it randomly. We use a formulation of the
algorithm where, with n cards, we have n equally likely places where to put it, including where
it was before (see Fig. 2.11).

Figure 2.11: Top-to-random shuffle. (a): General presentation. (b): The n choices of placing the top
card, for n = 3 (see Alg. 2.10 (top-to-random).)

The sample space Ωshuffle
n of the top-to-random shuffle of n cards consists of all the permuta-

tions of {1, . . . , n}, so that, for n = 3, we have

Ωshuffle
3 = {1 ≡ {1, 2, 3}, 2 ≡ {1, 3, 2}, 3 ≡ {2, 1, 3}, (2.30)

4 ≡ {2, 3, 1}, 5 ≡ {3, 1, 2}, 6 ≡ {3, 2, 1}} (2.31)

At t = 0, the initial configuration is taken to be

π{t=0} = 1 = δ[(1, , . . . , n)]. (2.32)

16



Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

This configuration has nothing special to it—it has no lower energy, no higher probability. An
appropriate relabeling of cards would map it onto any other configuration. We now take the top
card and insert it into the deck in a way described in the transition matrix given by

P shuffle
n =

1

3



1 0 1 1 0 0
0 1 0 0 1 1
1 1 1 0 0 0
0 0 0 1 1 1
1 1 0 0 1 0
0 0 1 1 0 1

 , (2.33)

and written up in Alg. 2.10 (top-to-random). Clearly, the top-to-random shuffle

procedure top-to-random

input {c1, . . . , cn}
i← choice({1, . . . , n})
{ĉ1, . . . , ĉn} ← {c2, . . . , ci, c1, ci+1, . . . , cn}
output {ĉ1, . . . , ĉn}
——

Algorithm 2.10: top-to-random Markov-chain Monte Carlo shuffling algorithm for n cards in a deck.
A single iteration is shown.

procedure top-to-random-stop

input {c1, . . . , cn}
cfirst ← cn
for t = 1, 2, . . . :

c̃1 ← c1
{ĉ1, . . . , ĉn} ← top-to-random({c1, . . . , cn})
if c̃1 = cfirst: break

output {ĉ1, . . . , ĉn}, t
——

Algorithm 2.11: top-to-random-stop. Markov-chain Monte Carlo shuffling algorithm for n cards in
a deck integrating a stopping rule. It outputs a perfect sample.

Eigenvalues of P shuffle
n : 0, 1

n ,
2
n , . . . , 1− 2

n , 1 Degeneracies:

n = 2 :[1, 0, 1]

n = 3 :[2, 3, 0, 1]

n = 4 :[9, 8, 6, 0, 1]

n = 5 :[44, 45, 20, 10, 0, 1]

n = 6 :[265, 264, 135, 40, 15, 0, 1]

n = 7 :[1854, 1855, 924, 315, 70, 21, 0, 1]

Although the inverse gap is of order O (n), we find that there is an intermediate, non-
asymptotic time scale O (n log n) called the mixing time. It was discovered in the example
of the top-to-random shuffle.
Expected running time: n log n
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• Total variation distance:

||π{t} − π||TV = max
A⊂Ω
|π{t}(A)− π(A)| = 1

2

∑
i∈Ω
|π{t}

i − πi|.

• Distance:
d(t) = max

π{0}
||π{t}(π{0})− π||TV

• Mixing time:
tmix(ϵ) = min{t : d(t) ≤ ϵ}

• Usually ϵ = 1/4 is taken, ϵ = 1/e would be better.

• Theorems: d[ℓtmix(1/2)] < 2−ℓtmix(1/2)

• Theorems: d[ℓtmix(1/e)] < e−ℓtmix(1/e)

Relaxation time:

• tmix = ||π{tmix} − π||TV = 1/e

• tcorr = inverse gap.

• tmix ≫ tcorr leads to cutoff phenomenon.

• Aldous–Diaconis (1986)

• Diaconis–Fill-Pitman (1992)

2.4.3 Perfect sampling

Another approach to sampling exactly (“perfectly”) from a distribution π using a Markov chain
that starts at π{t=0}.

1

2

3

4

5

t0

Figure 2.12: Diffusion of a particle on 5 sites

1

2

3

4

5

t0 t0+τcoup

Figure 2.13: Diffusion of a particle on 5 sites using random maps. The position where particles couple
is not a sample of π.
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procedure forward-coupling

P ← {1, . . . , N}
t← 0
while True:

t← t+ 1
P ← {min[max(b+ choice(−1,+1), N ]for b ∈ P}
if |P| = 1: break

output P, t (position, time of coupling)

——

Algorithm 2.12: forward-coupling. Forward coupling algorithm

1

2

3

4

5

1

2

3

4

5

...

...

...

...

...

t≃−∞ t0 t0+τcoup t=0
(now)

Figure 2.14: Diffusion of a particle on 5 sites using the coupling-from-the-past approach. The position
at t = 0 is a perfect sample, if we can find it from t = −∞.
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procedure coupling-from-past

ttot ← 0
while True:

ttot ← ttot − 1
Attot ← draw-arrows (draw arrows at time ttot)

for t = ttot, ttot + 1, . . . ,−1:{
P ← {b+At(b)for b ∈ P}

if |P| = 1: break
output P (perfect sample)

——

Algorithm 2.13: coupling-from-past. Coupling-from-the-past algorithm for diffusion.
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