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This is the second of two lectures on classical particle systems. We discuss the
entropic depletion interactions and pressure, one of the difficult subjects in physics.
We then move on to discussions of more hard-sphere simulation algorithms, some
of them traditional, but mostly cutting-edge, red-hot! We end with an introductory
analysis of particle systems with more general interactions than hard spheres. What
changes with respect to hard spheres, and is it conceivable to treat true long-range
interactions?
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5 Particle systems: Physics and algorithms

5.1 Asakura–Oosawa interaction, the fifth force in nature

5.1.1 The random-clothes-pin model

The random-clothes-pin model consists in what the name indicates: N clothes-pins on a washing
line, positioned randomly, as fully defined by Alg. 5.1 (naive-pin).
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Figure 5.1: A single clothes-pin in side view (left) and in front view (right).

0 L

Figure 5.2: N = 15 clothes-pins on a washing line of length L.

Attentive participants in these lectures will readily identify this model as a one-dimensional
hard-sphere models, again with hard-wall boundary conditions. In addition Alg. 5.1 (naive-pin)
is but a one-dimensional version of the direct-sampling algorithm for hard disks. We can do much
better than Algorithm 5.1 to sample the positions, namely write the direct-sampling method,
implemented in Alg. 5.2 (direct-pin). It suffices to realize that on a line of length L with N
clothes-pins of diameter 2σ, there is L− 2Nσ of free space. Miraculously, sampling N random
numbers ran(0, L− 2Nσ), sorting them, then adding back in the 2σ for the clothes-pins is a
correct algorithm, although the sort routine, coming out of nowhere, may make us dizzy.
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Figure 5.3: Density at position x, obtained by Alg. 5.2 (direct-pin).

The above algorithms sample the integral:

ZN,L =

∫ L

0
· · ·

∫ L

0
dx1 · · · dxN π(x1, . . . , xN ), (5.1)

where π = 1 if the configuration is legal and π = 0 otherwise. The previous transformation
from the clothes-pins on a line of length L to points on a line of length L− 2Nσ shows that the
partition function must equal:

ZN,L =

{
(L− 2Nσ)N if L− 2Nσ > 0

0 else
. (5.2)
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procedure naive-pin

1 for k = 1, . . . , N :
xk ← ran(σ, L− σ)
for l = 1, . . . , k − 1:{

if |xk − xl| < 2σ: goto 1 (reject sample—tabula rasa)

output {x1, . . . , xN}
——

Algorithm 5.1: naive-pin. Direct-sampling algorithm for N pins of width 2σ on a segment of length
L (see Alg. ?? (direct-disks)).

procedure direct-pin

for k = 1, . . . , N :{
ỹk ← ran(0, L− 2Nσ)

{y1, . . . , yN} ← sort[{ỹ1, . . . , ỹN}]
for k = 1, . . . , N :{

xk ← yk + (2k − 1)σ
output {x1, . . . , xN}
——

Algorithm 5.2: direct-pin. Rejection-free direct-sampling algorithm for N pins of width 2σ on a
line segment of length L.

0 Lx

add k add N − k − 1

Figure 5.4: Computing the probability of having a clothes-pin at position x.

We may want to check whether the output of Alg. 5.2 (direct-pin) is indeed the same as tht
of Alg. 5.1 (naive-pin). Instead, let us obtain the distribution of Fig. 5.3 analytically. Clearly,
the probability π(x) is given by the total statistical weight of adding k clothes-pins to the left,
and N − k − 1 clothes-pins to the right of the pin at x (see Fig. 5.4), and this gives:

π(x) =
N−1∑
k=0

1

ZN,L

(
N − 1

k

)
Zk,x−σZN−1−k,L−x−σ︸ ︷︷ ︸
πk(x)

. (5.3)

where, fortunately, we defined zpinNL even if one cannot fit N clothes-pins into the space L.
One may plot eq. (5.3), and convince ourselves that it reproduces Fig. 5.3. The walls thus do

attract the clothes-pins. The density there is 4 times larger than in the bulk. It is as if the pins
had been glued to the post! Asakura and Oosawa, in a famous paper of 1954 [1], understood
that the interaction that we see in Fig. ?? is real, and not just a mathematical artifact. To use
a drastic statement: replace the clothes-pins by red blood cells, and the two posts by the inner
linings of our arteries. The attraction of blood cells to the walls (plus some minor details that
we may safely neglect ;) ), is what creates heart attacks.
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As a first defensive strategy, one might think that the attraction of the clothes-pins with the
walls is but a boundary effect. That this is not true can be seen by placing N pins onto a ring
with periodic boundary conditions (see Fig. 5.5). We see that the attraction of the pins to the
wall is the same as the mutual attraction of neighboring particles. They also attract each other
strongly.

x x
′

≡

0 x
′′

L
′

Figure 5.5: Computing the probability of having a clothes-pin at position x.

In conclusion, we have in this section studied the random-clothes-pin model, but have left out
one detail, which is Markov-chain Monte Carlo algorithms, which has blossomed into its own
little field [2, 3]. Nevertheless, we have understood that there is a curious interaction between
particles, even if they have no interaction except that of steric hard spheres. We have come
up with a curious direct-sampling algorithm and wonder whether we can generalize it to higher
dimensions. The answer will be: “Yes, certainly”, but it will not be completely self-evident of
how to get there.

5.1.2 Depletion: pictures in one and higher dimensions

The interpretation of the curious interaction between two clothes-pins relies on the concept of
a halo. A pin, at position x—the center of the pin—does not allow another pin to lie in the
interval [x − σ, x + σ], because of the wooden material of the pin, but in addition two other
intervals [x−2σ, x−σ], and [x+σ, x+2σ], the halo. Halos are attached to the posts, in addition
to the pins, but they behave strangely. For example, two halos can overlap, leaving more space
for the others (see [?]).

a b

Figure 5.6: Halos at work in the random clothes-pins model for N = 1. (a): Halos are attached to the
sticks and to the pin, and they do not overlap. (b): Overlapping halos leave more space for
the next pin.

a b c

Figure 5.7: Two hard disks, with their halos in a two-dimensional square box

The halo picture is naive as it cannot explain, for example, the wild oscillations of the effective
interaction potential, but it is limpid, and it can be easily transposed to higher dimensions
(see Fig. 5.7). The interaction that it engenders is called depletion, and it may be called the
“fifth” force in nature. It describes, as we already discussed, heart attacks, but also super-glues
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(which are made of polymers, where depletion is the dominant interaction) polymers. Entropic
interactions may also extend beyond soft-condensed-matter physics, as some string theorists have
argued [4], with concepts of “emergent gravity” potentially mirroring our emergent “clothes-
pin—post” depletion interaction. 1

5.1.3 Pressure

Unrelated to the above depletion interaction, we wish to discuss the concept of pressure, arguably
a most fundamental thermodynamic quantity, but certainly a very tricky one. We can give two
representation of the pressure:

1. The (kinetic) pressure is what results, in the system of 4 hard disks in a square box of
length 1, from the bangs of the disks in molecular dynamics at the walls, averaged over
time and weighted with a factor 2v⊥, the velocity normal to the wall.

2. The (thermodynamic) pressure is what results from the fundamental relation: In statistical
mechanics, the pressure P is given by the change of the free energy with the system volume:

βP =
∂ log Z

∂V
= lim

V ′→V

1

V − V ′
Z − Z ′

Z
, (5.4)

with Z the partition function and Z ′ ≡ Z(V ′). For hard disks and related models, the
rightmost fraction in eq. (5.4) expresses the probability that a sample in the original box
of volume V is eliminated in the box of reduced volume V ′ < V (see Fig. 5.8a-c). In
rift-pressure estimators [5], the volume V of an Lx × Ly box is reduced by removing an
infinitesimal vertical or horizontal slab (a “rift”), yielding the components Px and Py of
the pressure.

Figure 5.8: Volume changes in a finite box

The wall rift in Fig. 5.8 is not the most efficient estimator for the pressure but it offers an
opportunity to check in one dimension, where we can compute, on the one hand, the pressure
using eq. (5.4) and, on the other hand, realize that the configurations that disappear with a
wall rift are precisely those with a clothes-pin all the way to the right. Their number is directly

1I am indebted to the late Prof. Nick Kaiser for discussions on depletion interactions in different fields of physics.
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related to the density at the wall, and we computed it! EDMD wall-rift estimator:

βPx =
1

2Lyτsim

∑
w:(i,±êx)

2

|v⊥(i)|
(5.5a)

=

〈
2

|v⊥wall|

〉 n̂±êx
wall︷ ︸︸ ︷

1

2Lyτsim

∑
w:(i,±êx)

1 (5.5b)

=
2
√
π√∑
v2i

Γ(N + 1
2)

Γ(N)
n̂±êx
wall (5.5c)

N→∞−→
√

2πβmn̂±êx
wall . (5.5d)

Here is the kinematic EDMD estimator:

Px =
1

2Lyτsim

∑
w:(i,±êx)

2m|v⊥wall| (5.6a)

= 2m
〈
|v⊥wall|

〉
n̂±êx
wall (5.6b)

=
mRv

√
π

N

Γ(N + 1
2)

Γ(N)
n̂±êx
wall , (5.6c)

N→∞−→
√
2πβmn̂±êx

wall , (5.6d)

The distribution of the velocity perpendicular to a wall is derived from the surface element
on the hypersphere of radius Rv =

√
v21 + · · ·+ v2n in n = 2N dimensions:

dΩ = Rn−1
v sinn−2 ϕ1 sin

n−3 ϕ2 . . . sin ϕn−2dϕ1 . . . dϕn−1, (5.7)

where ϕ1, . . . , ϕn−2 ∈ [0, π] and ϕn−1 ∈ [0, 2π], and where only v1 = Rv cos ϕ1 is expressed in
terms of a single angle. It is thus convenient to identify v1 with v⊥wall. The radius Rv of the
hypersphere at the microcanonical energy E = mR2

v/2 is related to the inverse temperature in
the canonical ensemble as R2

v = 2N/(mβ). With the integrals

A =

∫ π

0
dϕ1| cos ϕ1| sinn−2 ϕ1 =

2

n− 1
,

B =

∫ π

0
dϕ1 sin

n−2 ϕ1 =
√
π
Γ[(n− 1)/2]

Γ(n/2)
,

(5.8)

this yields: 〈
1

|v⊥wall|

〉
=

1

Rv

B

A
=

√
π

Rv

Γ(N + 1
2)

Γ(N)

N→∞−→
√

πmβ

2
, (5.9a)

〈
|v⊥wall|

〉
= Rv

B

2NA
=

Rv
√
π

2N

Γ(N + 1
2)

Γ(N)

N→∞−→
√

π

2mβ
, (5.9b)

where in the limit N →∞ the ratio of the Γ functions approaches
√
N .

5.2 More hard-sphere Monte Carlo algorithms

We discuss a number of hard-sphere algorithm, but first consider a single particle.
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5.2.1 Coupling from the past

In a previous lecture, we discussed stopping rules (for the card-shuffling applications). We
succeeded in fast and perfect sampling from the set of all ordering of a game of cards, using
a Markov chain. The domain of perfect sampling was greatly extended, about 25 years ago,
through the approach of coupling from the past, that we now explain for a single particle.

Consider a single particle moving on a lattice of five sites. Suppose it moves with probability
1
3 one step down, straight, one step up (see Fig. 5.9).

1

2

3

4

5

t0

Figure 5.9: Diffusion of a particle on 5 sites.

procedure forward-coupling

P ← {1, . . . , N}
t← 0
while True:

t← t+ 1
P ← {min[max(b+ choice(−1, 0,+1), N ] for b ∈ P}
if |P| = 1: break

output P, t (position, time of coupling)

——

Algorithm 5.3: forward-coupling. Forward coupling algorithm

1

2

3

4

5

t0 t0+τcoup

Figure 5.10: Diffusion of a particle on 5 sites using random maps. The position where particles couple
is not a sample of π.

5.2.2 Coupling algorithms in higher dimensions

Coupling, a concept introduced in the 1030s by the French–German mathematician W. Doeblin,
is not confined to simple test cases. We can also make it work in higher dimensions. We discuss
here the algorithm of Mahoney et al., which uses halos in a clever way.
We use that at low density, any two configurations of spheres a and z can be connected through

a path of length < 2N as follows: a → b → c → ..... → z, where any two neighbors differ only
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t≃−∞ t0 t0+τcoup t=0
(now)

Figure 5.11: Diffusion of a particle on 5 sites using the coupling-from-the-past approach. The position
at t = 0 is a perfect sample, if we can find it from t = −∞.

Figure 5.12: Path coupling: At low enough density, any two configurations of N hard disks can be
connected through a path of ∼ N steps which differ in one disk position only.

Figure 5.13: text
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procedure coupling-from-past

ttot ← 0
while True:

ttot ← ttot − 1
Attot ← draw-arrows (draw arrows at time ttot)

for t = ttot, ttot + 1, . . . ,−1:{
P ← {b+At(b)for b ∈ P}

if |P| = 1: break
output P (perfect sample)

——

Algorithm 5.4: coupling-from-past. Coupling-from-the-past algorithm for diffusion.

in 1 sphere. MC algorithm: Take random sphere, place it at random position anywhere in the
box. This is Alg. ?? (markov-disk), but with a throwing range which is half of the entire box.
We now couple two configurations MC algorithm: Take random sphere, place it at the same

random position for both copies.

• p(1→ 0): Pick 1, move to where it fits in both copies

p(1→ 0) ≥ 1

N

[
1− N − 1

N
4η

]
• p(1→ 2): Pick 2 . . . N move near to 1A or 1B.

p(1→ 2) ≤ N − 1

N

[
8

N
η

]
• =⇒ for η < 1/12: further coupling likely.

Figure 5.14: text

• Coupling time of PathCoupling algorithm

• NB: 0.12 > 1/12

• “Physical” relevance of the transition at η = 0.12?

5.2.3 Non-reversibility

Explain straight event-chain Monte Carlo algorithm, and show that it satisfies the global-balance
condition
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5.3 Interacting-particle systems

5.3.1 Monte Carlo and molecular dynamics for interacting particles

5.3.2 Long-range interactions with and without cutoffs

5.3.3 Phase transitions in two dimensions
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