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Metropolis et al. (1953)
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eneral method, suitable for fast computing machines, for investigating such properties aslealuations of
stateffor substances consisting of interacting individual molecules is described. The method ol 0
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere

system have been qb os Alamos MANTAC and are presented here. These results are compared
to the free volumelequation of stateland to a four-term virial coefficient expansion.

@ NB: Equation of state: Pressure as a function of Volume.
@ NNB: Pressure: (Rift-Elimination probability)/(rift volume).
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Markov chain, transition matrix

@ Sample space € + disks in a box.
@ Markov chain < Moves: Sequence of random variables
(Xo ~ 0 Xy ~ 71 X ~ 712 )
Xia1 depends on X; through a transition matrix P.
@ A priori probability— split matrix: P;; = Aj;Pj; for i # j
A & a priori probability; P < filter
Examples: Metropolis filter, heatbath filter.
e Monte Carlo rejections — Pj; < (filter) rejection probability.
NB: Modern MCMC algorithms often have no rejections.
NB: Double role of P:
© For probability distributions: 7{tt1} = 7{t} p (with
it p{t+1} non-explicit objects, often even for t — o).
@ For samples: Pj: explicit probability to move from i to j.
RGNS
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Irreducibility

@ P irreducible < any i can be reached from any ;.

o 710} Initial probability (explicit, user-supplied). Often
concentrated on a single sample x € Q.

@ P irreducible = unique stationary distribution 7 with

T = ZT['J'PJ',' Vi e Q.
JjeQ

@ This is the steady-state version of

o =3"xl"Vp; vieq.
JjEQ
NB: Transition matrix P is stochastic, that is, Zj P =1
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Probability flows—Global-balance condition

o Global-balance condition:

flow j — i

~ =~
7T,':Z 7TJ'PJ',' Vi e Q.

JjeEQ
Fii

(NB: This is the steady state of 7rl.{t+1} = Zjen ﬁj.{t} Pji)

@ Global-balance condition (second formulation):

flows entering i

—~
i = Z]:J, VieQ,

JjeQ
flows exiting i flows entering i
—— —
E Fiue = E .7:j,' Vi e Q,
keQ i€
’ e
(NB: stochasticity condition used Y, o Pik = 1). DO



Reversibility—Detailed-balance condition

@ Reversible P satisfies the ‘detailed-balance’ condition:
flow i — j flow j — i
~ = ~ = o
7T,'P,'j = 7TJ'PJ',' VI,]GQ.
—~— ~
i Fj
@ General P satisfies the ‘global-balance’ condition
T = ZT(J’PJ‘; Vi e Q.
JEQ
@ Detailed balance implies global balance.
@ Checking detailed balance is easier than checking global

balance
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Spectrum of reversible transition matrix

@ Reversible P:

7[','P,'J' = 7TJ'PJ',' Vi,j € Q.
o Reversible P: Ajj = 7r,.1/2P,-J-7rj_1/2 is symmetric.
@ Reversible P:

125 -1 -1/2 -1/2
ZW/PUJ/XJ—)\X,@ZPU[ / }—)\[ /,].
je~——— jeQ

ij
@ P and A have same eigenvalues.
e A symmetric: (Spectral theorem): All eigenvalues real, can

expand on eigenvectors.

@ Irreducible, aperiodic: Single eigenvalue with A = 1, all others

smaller in absolute value.
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Total variation distance, mixing time

@ Total variation distance:

1
t _ t _ {t} .
I = vy = max w1 (4) — w(A) = 5 D |/ — il
ieQ
@ Distance:
d(t) = max ||7 {8 (710 — 7||ry

{0}

@ Mixing time:

toix(€) = min{t - () < ¢} (e < ;)

NB: 'maxﬂ_{o}' = ‘worst initial distribution 7 {°}"
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Conductance (bottleneck ratio)

Fsis . 2iesjgsTiPi

ScQumrs<it TS ScQms<i Ts

@ Reversible Markov chains:

1. .38
¢_Tcorrf¢2

(‘<": Sinclair & Jerrum (1986), Lemma (3.3))
o Arbitrary Markov chain (see Chen et al. (1999)):

1 20
< A< ==
4<D_A_CD2’

(set time: Expectation of maxs (ts X 7s) from equilibrium)

NB: One bottleneck, not many. Lower and upper bound. P B
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Lifting (Chen et al. (1999))

Markov chain M < Lifted Markov chain [1
Q > v (sample space) < Q > i (lifted sample space)

(*]
*]
o P (transition matrix) < P (lifted transition matrix)
e 7, (stationary probability) < #;

]

Condition 1: sample space is copied (‘lifted’), 7 preserved

mo=A )] = > A,

ief=1(v)
@ Condition 2: flows are preserved
lifted flow
-/
ahy = 2 AP

collapsed flow ief=1(v)jef~1(u)

= | e
M and I1 have the same conductance. @'@ e
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Metropolis algorithm / reversibility

@ The Metropolis et al. (1953) algorithm is reversible.

Q0 ||0o
Co O%

a a (4 move) b
o0 0O
Co Cgo Co
a a (4 move) b

@ The algorithm used by Metropolis et al. (1953) is
non-reversible.

1088 METROPOLIS, ROSENBLUTH, ROSENBLUTH, TELLER, AND TELLER

Qur method in this respect is similar to the cell configurations with a probability exp(—E/kT) and
method except that our cells contain several hundred ~weight them evenly.
particles instead of one. One would think that such a This we do as follows : We place th
sample would be quite adequate for describing any one- ion.fo
phase system. We do find, however, that in two-phase
systems the surface between the phases makes quite a
nerturbation. Alsn. statistical fluctuations mav he

V particles in any
attice. Then
b ccording
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Metropolis algorithm on path graph (1/3)

52 XL

>—& B

0 L h
=0 Ly

@ Sample space = path graph Q ={1,...,n}.
@ Phantom vertices and edges.
Metropolis algorithm (NB: P;; = A;Pj; for i # j):
Q@ Move set £ = {+,—}.
@ Flat a priori probability A: — o = choice(L).
© Metropolis filter: Accept with probability min(1, 7;/7;).
Reject: Don't move.



Metropolis algorithm on path graph (2/3)

>—& B

01 n ht
=0 T,

@ Detailed balance:

@ Metropolis algorithm:
]:ij = % min (7T,',7Tj) = P,'j = %min (].,7Tj/7r,')
@ Metropolis filter (NB: Py = A;Pj):

. R SR i
Pjj = min (1, 7/7;) Ul
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Metropolis algorithm on path graph (3/3)

o—e

01
=0

e Global balance (7

I:ZT(J _]I_

22 Fii):

b

i — %min(ﬂ'i,ﬂ'i_l) — %Illill(ﬂi,ﬂi+1)

1 d.

- 5 min(m;_1,7m;) 5 min(7m;,m; 1) -
i-1 |I| i+1

% min(7m;,mi—1) % min(m;41,7m;)

@ Crucial role of rejections.
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Lifting on the path graph (1/2)
General probability distribution 7 = (71, ..., 7,)
o 'Lifted’ sample space {2 = {1,....n} x {+,—}:

S X X

¢oe>

0 n
-0 T =0

o 'Lifted’ non-reversible Markov chain 0 = Q x {—, +}:

el
5 >

El 1 n;M
Ti=0 < T

) . . P e rormote
e Diaconis et al. (2000) D e



Lifting on the path graph (2/2)

o 'Lifted’ non-reversible Markov chain: ng: only Transport treated

G-1.+1) | %min(m,lﬂrl) %min(‘fr,‘ﬂ',ﬂ) T

% [W,g—min(m,wwl)]lTé [ —min(m;—1,m;)]

2 min(m;_1,7;) 3 min(m;,miy1)

NB: The 3 & #j, = im;
o ‘lifted’ samples (i, o) with #(i,o) = 37 (i).

@ Rejections P;; replaced by lifting moves (i,0) — (i, —0o).
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@ N spheres, with a sample space €2, and a move space L.

o L={—,+}x{1,...,N}. Moves sampled from L at each
time step.

Many choices for non-reversible liftings:
Sequential ) = Q x {1,..., N}: Move one disk after the other.
Forward © = Q x {(—=),+}: Move only in forward direction.
m Département

Particle-lifted forward 0 = Q x {1,..., N} x {(=),+}: Always _
move the same disk forward, until it is blocked... FJ ki
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Particle-lifted Forward Metropolis algorithm

Move i forward until it is rejected by 7 + 1.

@ Then move i/ + 1 forward until it is rejected, etc.

L
90— 00000

Rl = 4 4 RE, =1

NB: 1 time step: 1 particle move OR 1 lifting move

Rejections replaced by liftings (a, i) — (a,i + 1).

Limit infinitesimal step size: ‘Event-chain Monte Carlo’.
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1d hard spheres 2/2

© N2 N2 logN
Tmix - A
100 | s 1
g ® ¢ Heabath O |
) ', " Seq. Heatbath
108 F K3 Metropolis ©
Seq. Metropolis @
E Forward Metropolis A 7
6 Lifted Metropolis (w/o rest.) @ 1
10 Lifted Metropolis (with rest.) @
Event-chain ¢ |
0.00 0.02 0.04 .
3
t / (N~ logN
(V" logh) 107 10° 10 N
Algorithm mixing discrete analogue
Rev. Metropolis N3log N Symmetric SEP

Forward Metropolis, Lifted (c0)  N°/2 TASEP
Event-chain, Lifted (restarts) N2log N lifted TASEP
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Factorized Metropolis algorithm

"Metropolis" paradigm "Beyond-Metropolis" paradigm

(Metropolis et al, 1953) Michel , Kapfer & Krauth, 2014)
Detailed balance
vanishing probability flows
Metropolis algorithm
energy driven
Rejections
finite random moves

e Metropolis algorithm (Metropolis et al (1953))

Global balance
steady-state probability flows

Factorized Metropolis algorithm
consensus driven

Liftings
infinitesimal persistent moves

pMet(a — b) = min 1,Hexp(—BA\/,-L,-)
i<j
e Factorized Metropolis algorithm (Michel, Kapfer, Krauth
(2014) - consensus)

pFt(a — b) = H min [1,exp (—=BAV;;)].
i<j
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Event-chain algorithm with factor fields (1/4)

e Hard-sphere event-chain algorithm (standard version):
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Event-chain algorithm with factor fields (2/4)

@ Hard-sphere event-chain algorithm (factor field version):

Factor field
i (i-1)

Factor field
i (i+1)

-1 i i+1

o Adding a constant term to the global energy...
Ufact _ hZ(XH-l _ Xi)
i

@ ... will show that it profoundly changes the dynamics.
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Event-chain algorithm with factor fields (3/4)

e Hard-sphere event-chain algorithm (variable factor field):

Factor field Factor field
i (i+1) i (i-1)

i-1 i i+1
fact
U=t =nh g (Xi+1 — Xi)
i
] e
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Event-chain algorithm with factor fields (4/4)

@ Scaling of auto-correlation times (optimal factor field):

L a
6l Metropolis
107 ¢
4
B
3 ;
8 t
- PN e
102} *
f ECMC-ff no-restart
10°

102 104
N (particle number)

Ufact — hZ(Xi+l _ Xi)

o Algebraic correlations of event steps u € {—1,1} with event
time s: (u(0)u(s)) ~ s2/3. B e
o Lei, Krauth, Maggs (PRE, 2019). e
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Hard disks: event-chain Monte Carlo (ECMC)

e Bernard, Krauth, Wilson (2009).
e Michel, Kapfer, Krauth (2014) (smooth potentials).

@ Many variants.



ECMC and the hard-disk model

N=1024%2,n=0.708,a=(1:1)

0.8 1 —— ECMC, Bernard 2011
——— LMC, Bernard 2011
0.7 '> —— MPMC, this work

064 —— ECMC, this work

[We|

10° 107 10°
t (sweeps)

11.4 years (Metropolis, LMC, MPMC)
@ 10° sweeps = 4.2 days (Event-chain Monte Carlo) R
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All-Atom Coulomb problem (1/5)

. !
e
SO
ST

@ 3D water model: bond, bending, Lennard-Jones, Coulomb
(SPC/Fw).



All-Atom Coulomb problem (2/5)

. :
.,\/\}

VJ}’?V
M~ A

@ 3D water model: bond, bending, Lennard-Jones, Coulomb
(SPC/Fw).

@ Factors and types. ] e
E



All-Atom Coulomb problem (3/5)

/‘\->‘

s

-

e Factor M = (Ip, Tm): |Im| = 6, two molecules. Ty =
‘Coulomb’.
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All-Atom Coulomb problem (4/5)

/\.),l

LAV

@ Water model: bond, bending, Lennard-Jones, Coulomb
(SPC/Fw).
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All-Atom Coulomb problem (5/5)

./'\-')L

> .

-

@ This is the cell-veto algorithm (Kapfer, Krauth (2016)).
@ Thinning, Walker (1977).
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ECMC for all-atom water simulations

e ECMC: Event-driven, approximation-free, canonical.

@ here oxygen—oxygen distance for 32 water molecules.

1.0

reversible MC
----- ECMC (inside-first)

0.8

o
o

0.4

7(|roo|) (cumulative)

o
o

0.0

2 3 4 5 6 7 8
oxygen-oxygen separation [roo| [A]
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See: Faulkner, Qin, Maggs, Krauth (2018).
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Conclusions

@ Non-reversible lifted Markov chains: From a single particle to
the SPC/Fw water model.

@ Detailed balance - global balance

e Sampling exp (—BU) without knowing U
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