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Metropolis et al. (1953)

NB: Equation of state: Pressure as a function of Volume.

NNB: Pressure: (Rift-Elimination probability)/(rift volume).



Markov chain, transition matrix

Sample space Ω ← disks in a box.
Markov chain ← Moves: Sequence of random variables
(X0 ∼ π{0},X1 ∼ π{1},X2 ∼ π{2} . . . )
Xt+1 depends on Xt through a transition matrix P .
A priori probability→ split matrix: Pij = AijPij for i ̸= j
A ⇔ a priori probability; P ⇔ filter
Examples: Metropolis filter, heatbath filter.
Monte Carlo rejections → Pii ⇔ (filter) rejection probability.
NB: Modern MCMC algorithms often have no rejections.

NB: Double role of P :
1 For probability distributions: π{t+1} = π{t}P (with

π{t}, π{t+1} non-explicit objects, often even for t →∞).
2 For samples: Pij : explicit probability to move from i to j .



Irreducibility

P irreducible ⇔ any i can be reached from any j .
π{0}: Initial probability (explicit, user-supplied). Often
concentrated on a single sample x ∈ Ω.
P irreducible ⇒ unique stationary distribution π with

πi =
∑
j∈Ω

πjPji ∀i ∈ Ω.

This is the steady-state version of

π
{t}
i =

∑
j∈Ω

π
{t−1}
j Pji ∀i ∈ Ω.

NB: Transition matrix P is stochastic, that is,
∑

j Pij = 1.



Probability flows—Global-balance condition

Global-balance condition:

πi =
∑
j∈Ω

flow j → i︷︸︸︷
πjPji︸︷︷︸
Fji

∀i ∈ Ω.

(NB: This is the steady state of π
{t+1}
i =

∑
j∈Ω π

{t}
j Pji )

Global-balance condition (second formulation):

πi =

flows entering i︷ ︸︸ ︷∑
j∈Ω
Fji ∀i ∈ Ω,

flows exiting i︷ ︸︸ ︷∑
k∈Ω
Fik =

flows entering i︷ ︸︸ ︷∑
j∈Ω
Fji ∀i ∈ Ω,

(NB: stochasticity condition used
∑

k∈Ω Pik = 1).



Reversibility—Detailed-balance condition

Reversible P satisfies the ‘detailed-balance’ condition:

flow i → j︷︸︸︷
πiPij︸︷︷︸
Fij

=

flow j → i︷︸︸︷
πjPji︸︷︷︸
Fji

∀i , j ∈ Ω.

General P satisfies the ‘global-balance’ condition

πi =
∑
j∈Ω

πjPji ∀i ∈ Ω.

Detailed balance implies global balance.
Checking detailed balance is easier than checking global
balance



Spectrum of reversible transition matrix

Reversible P :
πiPij = πjPji ∀i , j ∈ Ω.

Reversible P : Aij = π
1/2
i Pijπ

−1/2
j is symmetric.

Reversible P :∑
j∈Ω

π
1/2
i Pijπ

−1/2
j︸ ︷︷ ︸

Aij

xj = λxi ⇔
∑
j∈Ω

Pij

[
π
−1/2
j xj

]
= λ

[
π
−1/2
i xi

]
.

P and A have same eigenvalues.
A symmetric: (Spectral theorem): All eigenvalues real, can
expand on eigenvectors.
Irreducible, aperiodic: Single eigenvalue with λ = 1, all others
smaller in absolute value.



Total variation distance, mixing time

Total variation distance:

||π{t} − π||TV = max
A⊂Ω
|π{t}(A)− π(A)| = 1

2

∑
i∈Ω
|π{t}

i − πi |.

Distance:
d(t) = max

π{0}
||π{t}(π{0})− π||TV

Mixing time:

tmix(ϵ) = min{t : d(t) ≤ ϵ} (ϵ <
1
2
)

NB: ‘max
π{0} ’ ≡ ‘worst initial distribution π{0}’



Conductance (bottleneck ratio)

Φ ≡ min
S⊂Ω,πS≤ 1

2

FS→S

πS
= min

S⊂Ω,πS≤ 1
2

∑
i∈S ,j ̸∈S πiPij

πS
.

Reversible Markov chains:

1
Φ
≤ τcorr ≤

8
Φ2

(‘≤’: Sinclair & Jerrum (1986), Lemma (3.3))
Arbitrary Markov chain (see Chen et al. (1999)):

1
4Φ
≤ A ≤ 20

Φ2 ,

(set time: Expectation of maxS (tS × πS) from equilibrium)
NB: One bottleneck, not many. Lower and upper bound.



Lifting (Chen et al. (1999))

Markov chain Π ⇔ Lifted Markov chain Π̂

Ω ∋ v (sample space) ⇔ Ω̂ ∋ i (lifted sample space)
P (transition matrix) ⇔ P̂ (lifted transition matrix)
πv (stationary probability) ⇔ π̂i

Condition 1: sample space is copied (‘lifted’), π preserved

πv = π̂
[
f −1(v)

]
=

∑
i∈f −1(v)

π̂i ,

Condition 2: flows are preserved

πvPvu︸ ︷︷ ︸
collapsed flow

=
∑

i∈f −1(v),j∈f −1(u)

lifted flow︷︸︸︷
π̂i P̂ij .

Π and Π̂ have the same conductance.



Metropolis algorithm / reversibility

1 The Metropolis et al. (1953) algorithm is reversible.

a a (+ move) b

a a (+ move) b

2 The algorithm used by Metropolis et al. (1953) is
non-reversible.



Metropolis algorithm on path graph (1/3)

Sample space = path graph Ω = {1, . . . , n}.
Phantom vertices and edges.

Metropolis algorithm (NB: Pij = AijPij for i ̸= j):
1 Move set L = {+,−}.
2 Flat a priori probability A: → σ = choice(L).
3 Metropolis filter: Accept with probability min(1, πj/πi ).

Reject: Don’t move.



Metropolis algorithm on path graph (2/3)

Detailed balance:
πiPij︸︷︷︸
Fij

= πjPji︸︷︷︸
Fji

Metropolis algorithm:

Fij =
1
2 min (πi , πj)⇔ Pij =

1
2 min (1, πj/πi )

Metropolis filter (NB: Pij = AijPij):

Pij = min (1, πj/πi )



Metropolis algorithm on path graph (3/3)

Global balance (πi =
∑

j πjPji =
∑

j Fji ):

Crucial role of rejections.



Lifting on the path graph (1/2)
General probability distribution π = (π1, . . . , πn)

‘Lifted’ sample space Ω̂ = {1, . . . , n} × {+,−} :

‘Lifted’ non-reversible Markov chain Ω̂ = Ω× {−,+}:

Diaconis et al. (2000) ‘



Lifting on the path graph (2/2)

‘Lifted’ non-reversible Markov chain: NB:‘ only Transport treated

NB: The 1
2 ⇔ π̂i ,σ = 1

2πi

‘lifted’ samples (i , σ) with π̂(i , σ) = 1
2π(i).

Rejections Pi ,i replaced by lifting moves (i , σ)→ (i ,−σ).



1d hard spheres 1/2

N spheres, with a sample space Ω, and a move space L.
L = {−,+} × {1, . . . ,N}. Moves sampled from L at each
time step.

Many choices for non-reversible liftings:
Sequential Ω̂ = Ω× {1, . . . ,N}: Move one disk after the other.

Forward Ω̂ = Ω× {(−),+}: Move only in forward direction.
Particle-lifted forward Ω̂ = Ω× {1, . . . ,N} × {(−),+}: Always

move the same disk forward, until it is blocked...



Particle-lifted Forward Metropolis algorithm

Move i forward until it is rejected by i + 1.
Then move i + 1 forward until it is rejected, etc.

F lift
(a,i) = A+

i +R+
i−1 = 1.

NB: 1 time step: 1 particle move OR 1 lifting move
Rejections replaced by liftings (a, i)→ (a, i + 1).
Limit infinitesimal step size: ‘Event-chain Monte Carlo’.



1d hard spheres 2/2
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Algorithm mixing discrete analogue
Rev. Metropolis N3 logN Symmetric SEP
Forward Metropolis, Lifted (∞) N5/2 TASEP
Event-chain, Lifted (restarts) N2 logN lifted TASEP

Kapfer—Krauth (2017)



Factorized Metropolis algorithm

Metropolis algorithm (Metropolis et al (1953))

pMet(a→ b) = min

1,
∏
i<j

exp (−β∆Vi ,j)


Factorized Metropolis algorithm (Michel, Kapfer, Krauth
(2014) - consensus)

pFact.(a→ b) =
∏
i<j

min [1, exp (−β∆Vi ,j)] .

X Fact.(a→ b) = X1,2 ∧ X1,3 ∧ · · · ∧ XN−1,N



Event-chain algorithm with factor fields (1/4)

Hard-sphere event-chain algorithm (standard version):



Event-chain algorithm with factor fields (2/4)

Hard-sphere event-chain algorithm (factor field version):

Adding a constant term to the global energy...

U fact = h
∑
i

(xi+1 − xi )

... will show that it profoundly changes the dynamics.



Event-chain algorithm with factor fields (3/4)

Hard-sphere event-chain algorithm (variable factor field):

U fact = h
∑
i

(xi+1 − xi )



Event-chain algorithm with factor fields (4/4)
Scaling of auto-correlation times (optimal factor field):

U fact = h
∑
i

(xi+1 − xi )

Algebraic correlations of event steps u ∈ {−1, 1} with event
time s: ⟨u(0)u(s)⟩ ∼ s−2/3.
Lei, Krauth, Maggs (PRE, 2019).



Hard disks: event-chain Monte Carlo (ECMC)

Bernard, Krauth, Wilson (2009).
Michel, Kapfer, Krauth (2014) (smooth potentials).
Many variants.



ECMC and the hard-disk model

109 sweeps ≡ 11.4 years (Metropolis, LMC, MPMC)
106 sweeps ≡ 4.2 days (Event-chain Monte Carlo)



All-Atom Coulomb problem (1/5)

3D water model: bond, bending, Lennard-Jones, Coulomb
(SPC/Fw).



All-Atom Coulomb problem (2/5)

3D water model: bond, bending, Lennard-Jones, Coulomb
(SPC/Fw).
Factors and types.



All-Atom Coulomb problem (3/5)

Factor M = (IM ,TM): |IM | = 6, two molecules. TM =
‘Coulomb’.



All-Atom Coulomb problem (4/5)

Water model: bond, bending, Lennard-Jones, Coulomb
(SPC/Fw).



All-Atom Coulomb problem (5/5)

This is the cell-veto algorithm (Kapfer, Krauth (2016)).
Thinning, Walker (1977).



ECMC for all-atom water simulations

ECMC: Event-driven, approximation-free, canonical.
here oxygen–oxygen distance for 32 water molecules.
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See: Faulkner, Qin, Maggs, Krauth (2018).



Conclusions

Non-reversible lifted Markov chains: From a single particle to
the SPC/Fw water model.
Detailed balance - global balance
Sampling exp (−βU) without knowing U


