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Introduction

Some general information:

• Starting time: 9:00 AM, finishing time: 12:00 PM

• External material is not allowed (no books, scripts, calculators, computers, etc.). Do not touch your phone
during the entire duration of the exam, even to check the time.

• Use only paper provided by ENS.

• Do not forget to write your name onto the cover sheet.

• Please transfer your answers from the green scratch paper (brouillon) to the white exam paper.

• Please leave the scratch paper at your desk.

• Do not forget to sign the register (“feuille d’émargement”).

NB: This exam sheet contains three exercises on pages numbered 2-6.
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I. CHEBYCHEV INEQUALITY AND MILL’S INEQUALITY

In this exercise, we explore basic properties of four different probability distributions. For clarity, we summarize
the following:

Random variable Property Comment

X,Xi Var(X) = 1, Mean µ(X) = 0 General zero-mean distribution

XN Average of N independent Xi see eq. (1)

Y, Yi Normal distribution, see eq. (2)

Y N Average of N independent Yi see eq. (3)

1. Recall the definition of the mean (expectation) of a probability distribution and of its variance. Now consider a
random variable X taken from a probability distribution π with zero mean and unit variance and the average
of N such independent random variables:

XN =
X1 + · · ·+XN

N
(1)

What is the variance of XN , and what is its mean?

Mean µ =
∫
zπ(z)dz, Variance

∫
(z − µ)2π(z)dz. Mean of XN is zero, Var(XN ) = 1/N .

2. Chebychev’s inequality states that the probability to be more than t away from the mean P(|z − µ(X)| ≥ t)
satisfies

P(|z − µ| ≥ t) ≤ Var(X)/t2 (Chebychev inequality; for arbitrary distribution)

Prove Chebychev’s inequality (Hint: You may suppose that the mean µ = 0).

From the definition of the variance (for zero mean),

VarX =

∫ ∞
−∞

dzz2π(z) >

∫
|z|>t

dzz2π(z) > t2
∫
|z|>t

dzπ(z) = t2P(|z| ≥ t)

The Chebychev inequality follows by dividing through t2.

3. For the normal distribution

π(z) =
1√
2π

exp

(
−z

2

2

)
, (2)

the much stronger Mill’s inequality holds. It is given by:

P(|z| > t) <

√
2

π

e−t
2/2

t
(Mill’s inequality; normal distribution)

Prove Mill’s inequality and generalize it for a Gaussian distribution with zero mean, but standard deviation σ
(Hint: note that P(|z| > t) = 2P(z > t)).

From the definition, we have that

P(|z| > t) = 2P(z > t) =

√
2

π

∫ ∞
t

dz exp
(
−z2/2

)
=√

2

π
exp

(
−t2/2

) ∫ ∞
t

dz exp
(
−(z2/2− t2/2)

)
=√

2

π
exp

(
−t2/2

) ∫ ∞
t

dz exp

[
−1

2
(z + t)(z − t)

]
<√

2

π
exp

(
−t2/2

) ∫ ∞
t

dz exp [−t(z − t)] =√
2

π
exp

(
−t2/2

) ∫ ∞
0

du exp [−tu]

and Mill’s inequality follows immediately. For a Gaussian with standard deviation σ, one simply changes
P(|z| > t) into P(|z| > tσ). The rhs of the above eqs remains unchanged.
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4. Now consider Y1, . . . YN independent normally distributed random variables and their average:

Y N =
Y1 + · · ·+ YN

N
(3)

What is the variance of Y N , and what is its distribution? What are the bounds P(|Y N | > t) that you can obtain
from the Chebychev inequality and from Mill’s inequality?

Y N is a Gaussian, because the sum of Gaussians is a Gaussian. Its variance equals 1/N , so that its standard

deviation is σ = 1/
√
N . For a Gaussian, Chebychev’s inequality says that the probability to be more than pσ

away from the mean is smaller than 1/t2, whereas Mill’s inequality states that this probability is smaller than√
2/π exp

(
−t2/2

)
/t. For all t > 1, this is better than Chebychev, and it is quite sharp, already for t & 1.

5. Does the central limit theorem make a statement about the relation between the distributions of XN and of
Y N? If yes, are there other conditions on the Xi for the central limit theorem to apply?

Yes, the Gnedenko-Kolmogorov theorem states that for iid random variables with finite variance the distribution
of X converges to the distribution of Y , for N → ∞. There are no other conditions on the Xi. The finiteness
of the variance is the only one.
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II. BRAGG–WILLIAMS APPROXIMATION FOR THE 3-STATE POTTS MODEL, LANDAU THEORY

The three-state Potts model (that we already considered in the mid-term exam) has the following Hamiltonian:

H = −J
∑
〈i,j〉

δsi,sj , (4)

where δsi,sj is the Kronecker delta: it is equal to 1 when si = sj and zero otherwise. The spins can take on three
values, namely A, B, and C. J is positive, and the term 〈i, j〉 indicates that i and j are neighbors. There are N sites
in total and each spin (site) has q neighbors (for the cubic lattice in 3D, q = 6). We write down the free energy as a
function of the density of spins nA = NA/N , nB = NB/N and nC = NC/N , where NA is the number of spins of type
A, etc.

1. Recall that the entropy of a state is defined as kB times the logarithm of the number of microscopic configurations.
What is the number of microscopic configurations of the N spins, given NA, NB , and NC , if we suppose that
all these configurations are equally probable? Use Stirling’s formula log (x!) = x log x− x to obtain the entropy
for large N , as a function of nA, nB , nC .

The number of different configurations is{
# of configs

}
=

N !

NA!NB !NC !

Using Stirling’s formula for the logarithm of this expression, we find

N logN −NA logNA −NB logNB −NC logNC . (5)

We write NA = N nA etc, so that the above equation becomes (noticing that NA +NB +NC = N):

−N(nA log nA + nB log nB + nC log nC). (6)

The entropy is kB times the last equation

2. Likewise, what is the energy of the system for large N if it is supposed that any site is equally likely to have
value A, B, or C, under the condition that NA, NB , and NC are fixed?

There are Nq/2 edges. The total interaction is

−NqJ
2

(n2A + n2B + n2C)

3. From the above, write down the free energy in Bragg–Williams approximation as a function of nA, nB , nC as a
function of temperature. Do not forget to state the constraint equation on nA, nB , and nC .

The free energy is F = U − TS:

F = −NqJ
2

(n2A + n2B + n2C) +NkBT (nA log nA + nB log nB + nC log nC). (7)

under the constraint nA + nB + nC = 1.

4. Recall Viviani’s theorem, which states that the sum of the distances from any interior point to the sides of an
equilateral triangle equals the length of the triangle’s altitude (see Fig. 1). Express the Bragg–Williams free
energy in terms of the independent variables x and y. (Hint: nA = 1

3 (1 + 2y), etc.)

We have for nA:

nA = 0 for y = −1/2

nA = 1 for y = 1,
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FIG. 1: Viviani’s theorem (special case): nA + nB + nC = 1 can be represented as points in the interior of this equilateral
triangle.

so that it follows nA = 1
3 (1 + 2y). To obtain nB = c + dx + ey, we can check the conditions in A and C, to

obtain nB = 1
3 (1−

√
3x− y), and by symmetry nC = 1

3 (1 +
√

3x− y). together therefore:

nA =
1

3
(1 + 2y)

nB =
1

3
(1−

√
3x− y)

nC =
1

3
(1 +

√
3x− y)

It suffices to plug these expressions into the original Bragg–Williams free energy.

5. Compute the values of x, y and, equivalently, of nA, nB , nC that minimize the Bragg–Williams free energy in the
limit T → 0 and in the limit T →∞. Provide proof of why this is so, do not just plausibility arguements. What
is the nature of the minimal-free-energy solution at small non-zero temperatures and at high finite temperatures?

In the T → 0 limit, the Bragg–Williams free energy is dominated by the energy term (the first term).

F ∝ (n2A + n2B + n2C) ∝ (1 + 2y)2 + (1−
√

3x− y)2 + (1 +
√

3x− y)2

The partial derivatives with respect to x and y of this function are zero only at (x, y) = (0, 0), but this
corresponds to a maximum. So the minimum is on the boundary. At the boundaries, one of the species is zero.
Around the limiting line the free energy is proportional, for example, to n2A + (1 − nA)2. Again the derivative
is zero at nA = 1/2, but this is a maximum. So the minimum is in the corner, and the solution is symmetric as
is the triangle itself.

In the T →∞ limit, the free energy is dominated by the entropy term. In this case, it is easy to show, through
the partial derivatives, that the stable minimum is (x, y) = (0, 0), corresponding to perfect symmetry of the
species.

At low temperature and at high temperature, the solution must preserve the symmetries of the T = 0 and
T =∞ limit.

6. From the above, further simplify the analysis of the Bragg–Williams free energy by writing it as a function of a
single parameter m (Hint: use m = y, take into account one possible broken symmetry).

We discuss the Bragg–Williams free energy in the direction where x = 0, for −1/2 < y < 1. The first term is
−qNJ/6(1 + 2m2). In the second term, the expression is

NkBT

[
1

3
(1 + 2m) log

[
1

3
(1 + 2m)

]
+ 2

1

3
(1−m) log

[
1

3
(1−m)

]]
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Here, all the log 1
3 terms give a prefactor 1, and we obtain

F = −qNJ/6(1 + 2m2) +NkBT

[
2

3
(1−m) log (1−m) +

1

3
(1 + 2m) log (1 + 2m)− log 3

]

7. Expand the free energy as a function of m up to the m4 term. The Bragg–Williams free energy, expanded for
small m, has the structure of a Landau free energy. Explain why this is a Landau theory, and also explain the
difference with the Landau theory for the Ising model (Hint: drop constant terms).

Expanding up to fourth order in m, one obtains that the term in [ ] equals m2 − m3/3 + m4/2, so that,
forgetting terms in m0, one has

F/N = const−
(
qJ

3
− kBT

)
m2 − kBT

3
m3 +

kBT

2
m4

The m3 term is absent in the Landau theory for the Ising model because of the m⇔ −m symmetry. It breaks
this symmetry, and induces a first-order transition.

8. Landau theory (Bragg–Williams for small m) predicts a first-order phase transition for the three-state Potts
model. Explain why this is so. Compute the temperature of the first-order phase transition within Landau
theory to fourth order in m, and the jump of the value m (Hint: at the transition temperature, there are two
local minima with zero free energy (if you neglect constants) and zero first derivative with respect to m).

Forgetting again the constant term, the free energy per spin and its first derivative should both be zero, as this
signals the competition of two stable solutions

f = 0 = −a2m2 − a3m3 + a4m
4

f ′ = 0 = −2a2m− 3a3m
2 + 4a4m

3

We can devide the first equation by m2 and the second by m, multiply the first one by 2, and obtain the jump
in the magnetization to be equal to m = 1/3. It takes place at a temperature kBT = qJ

3
18
17 . At this value

of the temperature, the prefactor of m2 is still positive, so the first-order transition effectively preempts the
second-order phase transition consisting in the change of sign of the prefactor of m2.
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III. WEN’S PLAQUETTE MODEL

Wen’s plaquette model is defined for spin 1/2 particles (referred to simply as spins), whose states are described by
the three Pauli matrices, corresponding to the particle’s spin in three spacial directions:

σx =

(
0 1

1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0

0 −1

)
.

In this problem, you will be using the following properties of the Pauli matrices:

• Pauli matrices for different spins always commute.

• Each Pauli operator squared is equal to the identity matrix.

• Operators σx
i and σz

i , corresponding to the same spin i, anti-commute.

• Both operators σx
i and σz

i have eigenvalues +1 and −1, corresponding to the spin being up and down, respectively
(in the two separate bases).

• Applying σx
i to a spin up in σz

i basis produces a spin down. In other words, σx
i flips the value of the σz

i operator.

• Equivalently, applying σz
i to a spin up in σx

i basis produces a spin down. In other words, σz
i flips the value of

the σx
i operator.

• This can be generalized to more complex operators: e.g., σz
i flips the value of the σx

i σ
x
j operator because it

anti-commutes (= flips) σx
i and commutes (= does nothing to) σx

j .

Another example: σx
i σ

z
j commutes with σz

i σ
x
j because σx

i anti-commutes with σz
i , σz

j anti-commutes with σx
j ,

and (−1)× (−1) = 1.

瀀

FIG. 2: Wen’s plaquette model. X̂ and Ẑ in the Fig. correspond to σx and σz, respectively. (a) Building blocks of the

Hamiltonian (8) are plaquette operators Q̂p. The form of Q̂p is the same for all of the square plaquettes. (b) Excitations

(indicated by red crosses) are located at the ends of string operators consisting of successive X̂ and Ẑ, shown as dotted lines
connecting the centers of diagonal plaquettes.

In Wen’s plaquette model, spins live on the sites of a square lattice. This model is equivalent to the toric code, in
which spins are located at the bonds of a square lattice. The Hamiltonian is a sum of plaquette operators, taken over
all squares making up the lattice:

H = −
∑
p

Q̂p, Q̂p = σx
1σ

z
2σ

x
3σ

z
4 , (8)

where all operators Q̂p have the form shown in Fig. 2(a).

1. Show that all operators Q̂p commute (Hint: Avoid lengthy calculations and simply use the properties of σx and

σz). Show that this implies that eigenstates of eq. (8) are characterized by one eigenvalue of Q̂p per square.

• When squares do not share any spins, their Q̂p commute trivially.
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• When squares share one spin, that spin contributes to the two Q̂p with the same component, so they
commute.

• When squares share two spins, their two sigmas anti-commute, (−1) × (−1) = 1, so the two Q̂p still
commute.

2. What are the possible eigenvalues of Q̂p? (Hint: There are only two. No need to diagonalize the matrix Q̂p,
just use the properties of Pauli matrices).

Q2
p = 1 so Qp = ±1

3. What are the values of Q̂p that minimize the energy? (These are the quantum numbers of the system’s ground
state)

In the ground state, all Qp = +1

4. If your system is initially in a ground state, what does a single spin flip do? Consider both the action of σz
i on

an arbitrary spin i, and the action of σx
i on an arbitrary spin i. Describe verbally and/or pictorially the new

state(s) of the system using Qp quantum numbers.

See Fig. 2(b), single X flip produces a pair of excitations on two diagonal plaquettes. A single Z flip would
create excitations on two diagonal plaquettes in the other possible direction.

5. You now know how to create excitations in this system. After flipping a single spin, excitations are located at
two square plaquettes sharing a corner. Show that the two excited squares can be separated in space and can
be thought of as being located at the endpoints of a string operator (Hint: consider Fig. 2(b)).

Flip a spin, create two excitations. Flip another spin to flip one of these two squares again, and the excitation
gets “shifted”.

6. Just as in the original toric code, there are two types of excitations in Wen’s model. Both look like squares with
Qp = −1. What allows us to distinguish the two? (Hint: Think about question (5) and consider Fig. 2(b)).

Strings connect diagonal plaquettes→ strings come in two colors, just like the checkerboard→ excitations come
in two flavors.

7. The two types of excitations are both bosons. When two bosons are exchanged, nothing happens to the
wavefunction. When two fermions are exchanged, the wavefunction picks up a minus sign. If we exchange two
identical particles, and then exchange them again, nothing happens to the wavefunction because for bosons we
have (+1) × (+1) = 1 and similarly for fermions we have (−1) × (−1) = 1. If we perform a double exchange
of two particles and get something other than the identity (+1), these particles are anyons: neither bosons nor
fermions.

If you attach yourself to one of the two particles, and exchange them twice, to you it will look as if the second
particle went around you in a circle. In Wen’s plaquette model, just as in the toric code, moving particles involves
extending strings, and closed strings are not observable (only the strings’ endpoints are). Thus, exchanging two
particles twice is equivalent to have one go around the other in a closed string – a circle. Use this and the
properties of Pauli matrix operators to show that the two types of excitations in Wen’s plaquette model are
anyons with respect to one another.

Strings of different flavors anti-commute when they cross.


