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This lecture treats classical many-particle systems that interact with a hard-sphere
potential. We move from Newtonian mechanics to Boltzmann mechanics and from
classical mechanics to statistical mechanics, in a way that, as usual, is entirely
example-based. We then treat the case of one-dimensional hard spheres.
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4 Many-particle systems. From Newtonian mechanics to
Boltzmann mechanics.

In the hard-sphere model, all configurations have the same potential energy and there is no
energetic reason to prefer any configuration over any other. Only entropic effects come into
play. In spite of this restriction, hard spheres and disks show a rich phenomenology and exhibit
phase transitions from the liquid to the solid state. These “entropic transitions” were once quite
unsuspected, and then hotly debated, before they ended up poorly understood, especially in
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Figure 4.1: Newtonian evolution of four disks in a square box without periodic boundary conditions.

two dimensions. The physics of entropy will occupy us in Lecture 5. In the present lecture, our
focus is on the emergence of statistical mechanics from classical mechanics.

4.1 Hard disks—Newton dynamics

We discuss Newtonian dynamics of hard disks, and we will later compare it to the point of view
of statistical physics.

4.1.1 Event-driven molecular dynamics

Let us consider a model of hard disks in a box. Disks can undergo collisions with each other or
with the walls. To get started with a naive 1 program, we realize that at any generic moment,
there are N(N − 1)/2 pairs of particles which could engage in pair collision, each indexed by
a pair-collision time in the future and N individual wall collisions, also in the future. Up to
the minimum of these times, the time evolution is straight, and at the next event, either a pair
collision or a wall collision takes place (see Alg. 4.1 (event-disks)). Look here for a real-life

procedure event-disks

input {x1, . . . ,xN}, {v1, . . . ,vN}, t
{tpair, k, l} ← next pair collision
{twall, j} ← next wall collision
tnext ← min[twall, tpair]
for m = 1, . . . , N :{

xm ← xm + (tnext − t)vm

if (twall < tpair) then{
call wall-collision (j)

else:{
call pair-collision (k, l)

output {x1, . . . ,xN}, {v1, . . . ,vN}, tnext
——

Algorithm 4.1: event-disks. Event-driven molecular dynamics algorithm for hard disks in a square
box of sides 1.

Python program that we will motivate next. We now implement Alg. 4.1 (event-disks) without

1“naive” means “basically correct, but inefficient”.
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discretizing time. To do so, we consider an arbitrary pair of particles. They will collide when
the norm of their spatial distance vector

xk(t)− xl(t)︸ ︷︷ ︸
∆x(t)

= ∆x︸︷︷︸
xk(t0)−xl(t0)

+ ∆v︸︷︷︸
vk−vl

·(t− t0) (4.1)

equals twice the radius σ of the disks (see Fig. 4.3). This can happen at two times t1 and t2,
obtained by squaring eq. (4.1), setting |∆x| = 2σ, and solving the quadratic equation

t1,2 = t0 +
−(∆x ···∆v)±

√
(∆x ···∆v)2 − (∆v)2((∆x)2 − 4σ2)

(∆v)2
. (4.2)

The two disks will collide in the future only if the argument of the square root is positive
and if they are approaching each other ((∆x ··· ∆v) < 0). The smallest of all the pair collision
times obviously gives the next pair collision in the whole system (see Alg. 4.1 (event-disks)).
Analogously, the parameters for the next wall collision follow from a straightforward time-of-
flight analysis.

t0 t1 t2

Figure 4.2: Wall collision. The time of a collision is easy to compute, and so is the new velocity

t1

t2

t0

Figure 4.3: Approach of a pair of two disks, as programmed in eq. (4.2)

Pair collisions are best analyzed in the center-of-mass frame of the two disks, where vk+vl = 0
(see Fig. 4.4). Let us write the velocities in terms of the perpendicular and parallel components
v⊥ and v∥ with respect to the tangential line between the two particles when they are exactly
in contact. This tangential line can be thought of as a virtual wall from which the particles
rebound:

vk = v∥ + v⊥
vl = −v∥ − v⊥︸ ︷︷ ︸

before collision

,
v′
k = v∥ − v⊥
v′
l = −v∥ + v⊥︸ ︷︷ ︸

after collision

.

The changes in the velocities of particles k and l are ∓2v⊥. Introducing the perpendicular unit
vector ê⊥ = (xk − xl)/|xk − xl| allows us to write v⊥ = (vk ··· ê⊥)ê⊥ and 2v⊥ = (∆v ··· ê⊥)ê⊥,
where 2v⊥ = v′

k − vk gives the change in the velocity of particle k. The formulas coded into
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lab frame

disk k

disk l

center of mass frame

v⊥
v‖

Figure 4.4: Computing the velocities after the pair collision.

procedure pair-time

input ∆x (≡ xk(t0)− xl(t0))

input ∆v (≡ vk − vl ̸= 0)

Υ← (∆x ···∆v)
2 − |∆v|2(|∆x|2 − 4σ2)

if (Υ > 0 and (∆x ···∆v) < 0) then{
tpair ← t0 −

[
(∆x ···∆v) +

√
Υ
]
/∆2

v

else:{
tpair ←∞

output tpair
——

Algorithm 4.2: pair-time. Pair collision time for two particles starting at time t0 from positions xk

and xl, and with velocities vk and vl.

Alg. 4.3 (pair-collision) follow. We note that ê⊥ and the changes in velocities v′
k − vk and

v′
l − vl are relative vectors and are thus the same in all inertial reference frames. The program

can hence be used directly with the lab-frame velocities.

procedure pair-collision

input {xk,xl} (particles in contact: |xk − xl| = 2σ)

input {vk,vl}
∆x ← xk − xl

ê⊥ ← ∆x/|∆x|
∆v ← vk − vl

v′
k ← vk − ê⊥(∆v ··· ê⊥)

v′
l ← vl + ê⊥(∆v ··· ê⊥)

output {v′
k,v

′
l}

——

Algorithm 4.3: pair-collision. Computing the velocities of disks (spheres) k and l after an elastic
collision (for equal masses).

4.1.2 Chaos

Algorithm 4.1 (event-disks) is entirely deterministic, and we may think that it actually com-
putes the positions and velocities of N hard disks at time t from the values at time t = 0. But
this is not really the case. It suffices to run the program at different precision levels 2 in order

2this is easy to implement in the NumPy extension of Python.

4



Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

to see that we can really compute positions and velocities up to a handful of collisions. Little
errors in the numerical computations blow up inexorably, and change the sequence of collisions.
This is manifestation of chaos that, in our case, is caused by the convex curvature of the disks.

4.1.3 Observables

t = 0

a

0 Tt t = T

Figure 4.5: Density at position y computed the hard way, by following the entire trajectory

It can be computed exactly for given particle trajectories between times t = 0 and t = T :{
y-density
at y = a

}
= ηy(a) =

1

T

∑
intersections i
with gray strip

in Fig. 4.5

1

|vy(i)|
. (4.3)

In Fig. 4.5, there are five intersections (the other particles must also be considered). At each
intersection, 1/|vy| must be added, to take into account the fact that faster particles spend
less time in the interval [a, a + da], and thus contribute less to the density at a. A more
leisurly approach consists in simpy analyzing stroboscopic pictures, that is, intervals. This is
the approach we also use for the Monte Carlo algorithm.

η

0
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 η

y 
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)

y−coordinate a

Figure 4.6: Projected density at position y, which is not constant.

4.2 Maxwell distribution, thermostats, Boltzmann distribution

4.2.1 Equal-probability principle for velocities

An obvious differences between molecular dynamics and Monte Carlo consists in that the former
has positions and velocities whereas the latter only has positions. We just considered half of the
problem, and it is not only the positions that satisfy an equal-probabability condition (under the
given constraints) but also the velocities. As we discussed in Lecture 3, positions and velocities
are in statistical mechanics distributed independently, both with respect to their Boltzmann
distribution

5
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4.3 Hard disks—Boltzmann dynamics

We enter into the discussion of statistical mechanics proper, in the case of the hard-disk model,
where things are easier than for general case, that we will sketch in Lecture 5. The basic property
that we can study is the equal-probability principle, that means that configurations with the
same statistical weight have the same probability.

4.3.1 Equal-probability principle, direct-disk sampling

In the hard-disk case,

π(x1, . . . ,xN ) =

{
1 if configuration legal

0 otherwise
, (4.4)

which, as in lecture 1, is to be understood with a Cartesian measure dx1, . . . ,xN on both sides.
The sampling algorithm consists in the following Algorithm 4.4 (direct-disks) is one of a

procedure direct-disks

1 for k = 1, . . . , N :
xk ← ran(xmin, xmax)
yk ← ran(ymin, ymax)
for l = 1, . . . , k − 1:{

if dist (xk,xl) < 2σ: goto 1 (reject sample—tabula rasa)

output {x1, . . . ,xN}
——

Algorithm 4.4: direct-disks. Direct sampling for N disks of radius σ in a fixed box.

number of direct-sampling algorithms for this system, of which some are even fast, in the limit
N →∞. The tabula rasa aspect of it can be understood easily.

Monte Carlo

random deposition

Figure 4.7: Difference between Monte Carlo sampling and the algorithm for random sequential
deposition.

4.3.2 Markov-disk sampling (reversible)

We now consider a reversible Markov-chain algorithm for four hard disks in a box.

4.4 Asakura–Oosawa interaction, the fifth force in nature

We discuss the famous Asakura–Oosawa interaction [1], of fundamental importance in biology
and soft condensed matter (as for example the physics of polymers).

6
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a a (+ move) b

a a (+ move) b

Figure 4.8: Markov-disk algorithm for hard spheres in a box.

procedure markov-disks

input {x1, . . . ,xN} (configuration a)

k ← nran (1, N)
δxk ← {ran(−δ, δ) , ran(−δ, δ)}
if disk k can move to xk + δxk: xk ← xk + δxk

output {x1, . . . ,xN} (configuration b)

——

Algorithm 4.5: markov-disks. Generating a hard-disk configuration b from configuration a using a
Markov-chain algorithm (see Fig. 4.8).

4.4.1 The random-clothes-pins model

The random-clothes-pin model [2, Chap. 6] consists in what the name indicates: N clothes-pins
(see Fig. 4.9) on a washing line, positioned randomly, as fully defined by Alg. 4.6 (naive-pin).

2σ

x

Figure 4.9: A single clothes-pin in side view (left) and in front view (right). The model is equivalent
to one-dimensional hard disks with radius σ.

This model is readily identified as a one-dimensional hard-sphere model with hard-wall bound-
ary conditions. In addition Alg. 4.6 (naive-pin) is but a one-dimensional version of the direct-
sampling algorithm for hard disks. We can do much better than Alg. 4.6 (naive-pin) to sample
the positions, namely write the direct-sampling method, implemented in Alg. 4.7 (direct-pin).
It suffices to realize that on a line of length L with N clothes-pins of diameter 2σ, there is
L − 2Nσ of free space. Miraculously, sampling N random numbers ran(0, L− 2Nσ), sorting
them, then adding back in the 2σ for the clothes-pins is a correct algorithm, although the sort
routine, coming out of nowhere, may make us think.
The above algorithms sample the integral:

ZN,L,=

∫ L

0
dx1 · · ·

∫ L

0
dxN π(x1, . . . , xN ), (4.5)

where π = 1 if the configuration is legal and π = 0 otherwise. The previous transformation

7
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0 L

Figure 4.10: N = 15 clothes-pins on a washing line of length L.

0

1

2

L0

de
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it
y 
π
(x

)

position x

Figure 4.11: Density at position x, obtained by Alg. 4.6 (naive-pin)

0 Lx

add k add N − k − 1

Figure 4.12: Computing the probability of having a clothes-pin at position x.

8



Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

from the clothes-pins on a line of length L to points on a line of length L− 2Nσ shows that the
partition function must equal:

ZN,L =

{
(L− 2Nσ)N if L > 2Nσ

0 otherwise
. (4.6)

procedure naive-pin

1 for k = 1, . . . , N :
xk ← ran(σ, L− σ)
for l = 1, . . . , k − 1:{

if |xk − xl| < 2σ: goto 1 (reject sample—tabula rasa)

output {x1, . . . , xN}
——

Algorithm 4.6: naive-pin. Direct-sampling algorithm for N pins of width 2σ on a segment of length
L (see Alg. direct-disks).

procedure direct-pin

for k = 1, . . . , N :{
ỹk ← ran(0, L− 2Nσ)

{y1, . . . , yN} ← sort[{ỹ1, . . . , ỹN}]
for k = 1, . . . , N :{

xk ← yk + (2k − 1)σ
output {x1, . . . , xN}
——

Algorithm 4.7: direct-pin. Rejection-free direct-sampling algorithm for N pins of width 2σ on a
line segment of length L.

We may want to check whether the output of Alg. 4.7 (direct-pin) is indeed the same as
that of Alg. 4.6 (naive-pin). Instead, let us obtain the distribution of Fig. 4.11 analytically.
Clearly, the probability π(x) is given by the total statistical weight of adding k clothes-pins to
the left, and N − k − 1 clothes-pins to the right of the pin at x (see Fig. 4.12), and this gives:

π(x) =

N−1∑
k=0

1

ZN,L

(
N − 1

k

)
Zk,x−σZN−1−k,L−x−σ︸ ︷︷ ︸
πk(x)

. (4.7)

where, fortunately, we defined ZN,L even if one cannot fit N clothes-pins into the space L. We
may plot eq. (4.7), and convince ourselves that it reproduces Fig. 4.11. The walls thus do attract
the clothes-pins. The density there is 4 times larger than in the bulk. It is as if the pins had
been glued to the post! Asakura and Oosawa, in a famous paper of 1954 [1], understood that
the interaction that we see in Fig. 4.11 is real, and not just a mathematical artifact. To use a
drastic statement: replace the clothes-pins by red blood cells, and the two posts by the inner
linings of our arteries. The purely entropic attraction of blood cells to the walls (plus some
minor details) is what creates heart attacks.
Nevertheless, one might argue that the attraction of the clothes-pins with the walls is but a

boundary effect. That this is not true can be seen by placing N pins onto a ring with periodic
boundary conditions (see Fig. 4.13). We see that the attraction of the pins to the wall is the
same as the mutual attraction of neighboring particles. They also attract each other strongly.

9
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x x
′

≡

0 x
′′

L
′

Figure 4.13: Mapping between a pair of clothes-pins on a circle and a single clothes-pin on a washing
line.

In conclusion, we have in this section studied the random-clothes-pin model, but have left out
one detail, namely Markov-chain Monte Carlo algorithms. This detail has blossomed into its
own field [3, 4]. Nevertheless, we have encountered a curious interaction between particles, even
if they have no interaction except that of steric hard spheres. We have come up with a curious
direct-sampling algorithm which generalizes in some cases to higher dimensions.

4.4.2 Depletion: pictures in one and higher dimensions

a b

Figure 4.14: Halos at work in the random clothes-pins model for N = 1. (a): Halos are attached to
the sticks and to the pin, and they do not overlap. (b): Overlapping halos leave more
space for the next pin.

The interpretation of the curious interaction between two clothes-pins relies on the concept
of a halo. A pin, at position x—the center of the pin—does not allow another pin to lie in the
interval [x − σ, x + σ], because of the wooden material of the pin, but in addition two other
intervals [x − 2σ, x − σ], and [x + σ, x + 2σ], the halo. Halos are attached to the posts, in
addition to the pins, but they behave strangely. For example, two halos can overlap, leaving
more space for the others (see Fig. 4.14). (which are made of polymers, where depletion is the
dominant interaction) polymers. Entropic interactions may also extend beyond soft-condensed-
matter physics, as some string theorists have argued [4], with concepts of “emergent gravity”
potentially mirroring our emergent “clothes-pin” depletion interaction.

Figure 4.15: Halos in a system of two-dimensional hard disks

4.4.3 Pressure

Unrelated to the above depletion interaction, we wish to discuss the concept of pressure, a fun-
damental, yet tricky thermodynamic quantity. We may give two representations of the pressure:

1. The (kinetic) pressure is what results, in the system of four hard disks in a square box of
length 1, from the bangs of the disks in molecular dynamics at the walls, averaged over
time and weighted with a factor 2v⊥, the velocity normal to the wall.

10
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Figure 4.16: Volume changes. Grinding the corners does not reduce the number of configurations with
a tiny reduction in volume, but all the other changes can be related to the pressures Px

and Py.

2. The (thermodynamic) pressure is what results from the fundamental relation: In statistical
mechanics, the pressure P is given by the change of the free energy with the system volume:

βP =
∂ log Z

∂V
= lim

V ′→V

1

V − V ′
Z − Z ′

Z
, (4.8)

with Z the partition function and Z ′ ≡ Z(V ′). For hard disks and related models, the rightmost
fraction in eq. (5.4) expresses the probability that a sample in the original box of volume V is
eliminated in the box of reduced volume V ′ < V (see Fig. 5.8a-c). In rift-pressure estimators [5],
the volume V of an Lx × Ly box is reduced by removing an infinitesimal vertical or horizontal
slab (a “rift”), yielding the components Px and Py of the pressure.
The wall rift in Fig. 4.16 is not the most efficient estimator for the pressure but it offers an

opportunity to check in one dimension, where we can compute, on the one hand, the pressure
using eq. (5.4) and, on the other hand, realize that the configurations that disappear with a
wall rift are precisely those with a clothes-pin all the way to the right. Their number is directly
related to the density at the wall, and we computed it! EDMD wall-rift estimator:

βPx =
1

2Lyτsim

∑
w:(i,±êx)

2

|v⊥(i)|
(4.9a)

=

〈
2

|v⊥wall|

〉 n̂±êx
wall︷ ︸︸ ︷

1

2Lyτsim

∑
w:(i,±êx)

1 (4.9b)

=
2
√
π√∑
v2i

Γ(N + 1
2)

Γ(N)
n̂±êx
wall (4.9c)

N→∞−→
√

2πβmn̂±êx
wall . (4.9d)

Here is the kinematic EDMD estimator

Px =
1

2Lyτsim

∑
w:(i,±êx)

2m|v⊥wall| (4.10a)

= 2m
〈
|v⊥wall|

〉
n̂±êx
wall (4.10b)

=
mR
√
π

N

Γ(N + 1
2)

Γ(N)
n̂±êx
wall , (4.10c)

N→∞−→
√
2πβmn̂±êx

wall , (4.10d)

The distribution of the velocity perpendicular to a wall is derived from the surface element on

11
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the hypersphere of radius R =
√
v21 + · · ·+ v2n in n = 2N dimensions:

dΩ = Rn−1 sinn−2 ϕ1 sin
n−3 ϕ2 . . . sin ϕn−2dϕ1 . . . dϕn−1, (4.11)

where ϕ1, . . . , ϕn−2 ∈ [0, π] and ϕn−1 ∈ [0, 2π], and where only v1 = R cos ϕ1 is expressed in
terms of a single angle. It is thus convenient to identify v1 with v⊥wall. The radius R of the
hypersphere at the microcanonical energy E = mR2/2 is related to the inverse temperature in
the canonical ensemble as R2 = 2N/(mβ). With the integrals

A =

∫ π

0
dϕ1| cos ϕ1| sinn−2 ϕ1 =

2

n− 1
,

B =

∫ π

0
dϕ1 sin

n−2 ϕ1 =
√
π
Γ[(n− 1)/2]

Γ(n/2)
,

(4.12)

this yields: 〈
1

|v⊥wall|

〉
=

1

R

B

A
=

√
π

R

Γ(N + 1
2)

Γ(N)

N→∞−→
√

πmβ

2
, (4.13a)

〈
|v⊥wall|

〉
= R

B

2NA
=

R
√
π

2N

Γ(N + 1
2)

Γ(N)

N→∞−→
√

π

2mβ
, (4.13b)

where in the limit N →∞ the ratio of the Γ functions approaches
√
N . The relative perpendic-

ular velocities ∆v⊥ij (the projection of the relative velocity vi−vj perpendicular to the interface
separating disks i and j at their collision) is, similarly:〈

1

|∆v⊥ij |

〉
=

√
2π

R

Γ(N + 1
2)

Γ(N)

N→∞−→
√

πmβ, (4.14a)

〈
|∆v⊥ij |

〉
=

R
√
π√

2N

Γ(N + 1
2)

Γ(N)

N→∞−→
√

π

mβ
. (4.14b)
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