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Introduction

The present text covers a lecture course in statistical mechanics that I have taught
to first-year master students at Ecole normale supérieure between 2015 and 2019.
Its fifteen chapters each correspond to one week of the course. I arranged lectures,
tutorials, homeworks and some of the exams that were given over the years into a
single stream. The chapters (weeks) take us from key concepts in probability theory
and statistics to the foundations of statistical mechanics to the van-der-Waals the-
ory, to one-dimensional models, the two-dimensional Ising model, mean-field theory,
Landau theory, Kosterlitz–Thouless theory, the renormalization group, and to some
quantum statistics and the fluctuation–dissipation theorem.

In the text, as in the lectures, I have one goal and one method. The goal is to simply
show all of equilibrium statistical physics to the extent that this can be done without
entering into field theory and detailed renormalization calculations. The method is
to go to full depth, and to roll out all arguments completely. This does not imply that
I always provide full proofs and all-through calculations. Often, I provide simpler
proofs or only computer code that illustrate statements being made. Following this
method, the story of statistical physics unfolds, from the understanding of phases to
the experimental validation of universality and a bit beyond.

I am indebted to five classes of enthusiastic students at Ecole normale supérieure
and to the dream-team of teaching assistents Maurizio Fagotti, Jacopo De Nardis,
Olga Petrova. I also thank Etienne T. Bernard, the collaboration with whom has sharp-
ened my understanding of statistical physics, and influenced the choice of subjects.
I am indebted to Prof. Ingo Peschel who first taught me statistical physics in 1983,
and who now handed over his own lecture notes. I remember from these early days
the excitement of exact solutions, among many other concepts. I am indebted to the
late Prof. Walter Thirring, who first taught me mathematical physics, and who pro-
vided context through detailed, self-consistent calculations. Long ago, I adopted this
approach.
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Lecture 1

Probability theory

In statistical mechanics, probabilities occupy, quite naturally, a central place. They are
also present in daily life. In the present chapter, we present key concepts of the theory
of probabilities. This provides us with a language and an understanding of the nature
of probabilities.

in order to avoid misconceptions that arise from carrying over daily-life concepts
of probabilities to where they do not apply. In Lecture 2, we will do the same for
statistics, before plunging into statistical mechanics proper.

1.1 Probabilities

Probability theory and statistics are both concerned with the relation between data-
generating processes and observed data (see Fig. 1.1, adapted from [1]):

• Probability theory describes properties of observations given a data-generating
process. Such a data-generating process may describe the repeated throwing of
two dice or the Boltzmann probability distribution of statistical physics, itself
related to the time evolution of mechanical systems. It may also correspond
to a process that modifies beliefs about next week’s weather in Paris, or about
the mass of protons given 17 experimental findings and theoretical constraints.
Probabilities appear in everyday-life thinking and decision-making. Humans’
“... judgment and decision-making under uncertainty” [2] is a powerful fac-
tor in social psychology and economics. This insight led to the Nobel prize in
Economics in 2002.1

• Statistics analyzes the observed data from an unknown data-generating process,
and possibly from additional information. In statistical inference, one then tries
to analyze the data-generating process. Statistics makes “hard”, mathematically
proven statements. Nevertheless, each application of statistics to concrete data
is outside of mathematics, as concrete data are not mathematical objects.

1see https://www.nobelprize.org/prizes/economic-sciences/2002/kahneman/
biographical
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Lecture 1. Probability theory

In “Statistics”, one often uses the singular word “a statistic”, which denotes “a
function of the data” (see [1, p 137]). In the literature, we have to watch out for the
difference between “statistic” and “statistics”. Perfect pitch is required to even notice
the difference between “statistics” (as “functions of data”), and statistics, the science
of data.

Figure 1.1: Probability and statistics: a first attempt at a description.

The above definitions imply that if, in statistical physics, we theoretically com-
pute correlation functions of a given hamiltonian (as we will do later, in Section ??),
we are in fact working within probability theory (see Fig. 1.1). Equilibrium statisti-
cal physics, that we will be concerned with in these lectures, is applied probability
theory, and the data-generating process is the Boltzmann distribution. Nevertheless,
the very concept of statistical physics, namely the description of mechanical systems
through probabilities (in other words, randomness) is a proper application of statis-
tics. Let us conclude the introduction of technical terms with that of “stochastics”
(that dates from the 1930s), which relates to random variables indexed by a discrete
or real parameter, that can be taken as time.

On the other hand, reading off the temperature from a thermometer is an appli-
cation of statistics. When, in computational physics, we sample a given probability
distribution, we are in probability theory, but when we analyze the date, even for a
known data-generating process, we have turned into statisticians. In our world of
computer simulation and experiment, data, and of big data, the “statistics” aspects of
“statistical” physics is of great importance.

1.1.1 Axioms of probability theory
Probability theory used to be an ill-defined discipline, and not really a part of core
mathematics. This changed in the early 20th century, when Kolmogorov established
the axioms of probability theory (there are no corresponding axioms of statistics).
The basic concept is that of a sample space, denoted Ω. It is the set of all possible
outcomes of an experiment ω ∈ Ω. ω is called a sample outcome or a realization.
Sample spaces are somewhat in the background in all of probability theory [1], as one
usually considers concentrates on random variables (see Section 1.2). Nevertheless,
they are aways there.

Example of sample spaces are: Two coin tosses, where the sample space is {HH,HT,TH,TT}
and one sample is given by the result of the two coin tosses. This choice of sample
space is not unique, though. For the same problem of the coin toss, one can also
use a much larger set, partitioned into two disjoint subsets, the “Heads” event and
the “Tails” event. The sample space could be the unit interval square with Lebesgue
measure, and any of the quadrants are identified with the {HH,HT,TH,TT}. FIXME
{this comes from Terence Tao post}.
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1.1. Probabilities

Other example: Monte Carlo landing path. A sample is a pebble position (x,y),
and an event is a subset of the square 2).

Events are subsets of the sample space Ω (rather than single elements of the sample
space). A probability is a function P that assigns a real number P(A) to each event A
(that is, to a subset of the sample space, not to an individual sample). Probabilities
must satisfy three axioms:

1. Probabilities are non-negative

P(A)≥ 0 ∀A. (1.1)

2. Probabilities are normalized
P(Ω) = 1. (1.2)

3. Probabilities add up: if A1,A2,A3, . . . are disjoint, then

P(∪Ai) =
∑
P(Ai). (1.3)

The axioms of probability theory assign a probability to an “event”, a subset of sample
space. Only in the case of a discrete state space can this subset be shrunk to a single
point. In statistical physics, this translates to the fact that what will later be called the
Boltzmann weight exp(−βE) is (for a continuous state space Ω that may correspond
to the configuration space of the physical model) each infinitesimal event (subset)
[x,x+ dx ] has Boltzmann probability P∝ exp[−βE(x)]dx .

1.1.2 Interpretation of probabilities
Kolmogorov’s axioms of probability theory provide a theoretical framework for speak-
ing about probabilities, but they do not fix their interpretation. There are two main in-
terpretations of probabilities. One is called the “frequentist” interpretation, and prob-
abilities is the number of times an event happens, whereas the “Bayesian” approach
interpretes probabilities as degrees of belief that a certain outcome takes place. All
the theorems that we will discuss (in particular the inequalities and limit theorems)
rely solely on the axioms, but not on the interpretation we provide for them:

1. In the above die example, with Ω = {1,2,3,4,5,6} and P(1) = · · · = P(6) = 1/6,
we may suppose that the probability 1/6 corresponds to the limiting frequency
of observing a given outcome. In (the field of applied probability theory called)
statistical physics, the frequentist interpretation plays a major role, and all quan-
tities that are computed are explicitly meant to correspond to time averages.

2. The probability that it will rain tomorrow over Paris clearly treats {R,S}, where
R stands for the outcome that there is rain tomorrow, and S that there is no
rain. When we state P(R) = 0.65, this might express our belief about tomor-
row’s weather. In the “belief” interpretation, the statement “The probability
that Einstein drank tea on 1st Nov 1912 is 0.3” makes sense.

2The subset must be measurable (see [1, p. 13]
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Lecture 1. Probability theory

In common language, the words “likelihood” and “probabilities” are almost the
same, and Merriam–Webster online dictionary defines the word “likely” as some-
thing quothaving a high probability of occurring or being true : very probable rain
is likely today. In statistics, likelyhoods (as introduced by R. Fisher in 1923) are no
probabilities (see Section ??, they do not satisfy Kolmogorov’s axioms). Our beliefs
about tomorrow’s weather in Paris are probabilities, not likelihoods.

1.1.3 Independence of events
Two events A and B are independent if

P(AB) = P(A)P(B) (1.4)

A set J of events is independent if for any finite subset:

P

(⋂
i∈J

Ai

)
=
∏
i∈J
P(Ai) (1.5)

Independence has two origins:

1. We may suppose independence, that is, add it by construction. In the previous
example of two coin tosses, with the sample space Ω = {HH,HT,TH,TT}, we
may consider two events. Let E1 correspond to the event that the first toss
realizes a head (E1 = {HH,HT}) and let E2 be the event that the second toss
realizes a tail E2 = {HT,TT}. We have that P(E1) = 1/2 and P(E2) = 1/2 and
P(E1∩E2) = 1/4 = P(E1)P(E2), so thatE1 andE2 are independent. We note that
events with non-zero probabilities cannot be independent if they are disjoint.
Indeed, the independent events E1 and E2 are not disjoint (E1∩E2 = {HT }).

2. Independence may just come out, by accident. Take a single throw of a die,
and consider the events A = {2,4,6},B = {1,2,3,4},AB = {2,4}. If we sup-
pose that each individual throw has probability 1/6, then π(A) = 3/6,π(B) =
4/6,π(AB) = 2/6, which by accident satisfy P(A)PB= (3/6)(4/6) = (2/6) =P(AB).

1.2 Random variables
A random variable ξ : Ω→R is a function (rigorously: a measurable map) that assigns
a real number ξ(ω) to each outcome ω.

Random variable can be discrete or continuous. For the sample space of Fig. ??,
we may define a random variable that assigns the value x= 1 for all ω inside the unit
circle, and x= 0 for all ω inside the square but outside the circle.

For discrete random variables, we can define the probability of a value x as the
probability with which it takes on the value x:

fξ(x) = P [ω ∈ Ω : ξ(ω) = x] (1.6)

and this can be written in short hand (without referring to the sample space), as:

fξ(x) = P(ξ = x) (1.7)

12



1.2. Random variables

In the case of the standard problem, we have fξ(x = 0) = P(ω : ξ(ω = 0) = 1− π/4
Likewise, fξ(x= 1) = P(ω : ξ(ω = 1) = π/4.

Next, we define the cumulative distribution function of a random variable:

Fξ(x) = P(ξ ≤ x) (1.8)

For a discrete random variable, the

Fξ(x) = P(ξ ≤ x) =
∑
xi≤x

fξ(xi). (1.9)

For a discrete random variable, the probability function or probability mass func-
tion is defined as

Probability density of a continuous random variable:

P(a < ξ < b) =
∫ b

a
fξ(x)dx (1.10)

we then have that F (x) =
∫ x
−∞ fξ(t)dt and also that fξ(x) = F ′ξ(x) for all points where

F is differentiable.
When considering random variables, the sample space discussed in Section ??

often appears to not really be there. But it is truly present (see [1, p. 19]), simply
because any statement on probabilities of random variables (such as eq. (1.7)) may be
expanded to a statement on a sample space on which this random variable is defined
(such as eq. (1.6)).

We also note that a discrete random variable can coexist with a continuous sample
space

Examples of random variables

Exponential random variable:
Bernoulli random variable:
Uniform random variable:

1.2.1 Independent random variables
Two random variables ξ,η are independent (written as ξ y η) if ∀A,B, subsets of R,

P(ξ ∈A,η ∈B) = P(ξ ∈A)P(η ∈B) (1.11)

There is a theorem stating: If ξ and η have joint probability distribution fξ,η then:

ξ y η⇔ fξ,η(x,y) = fξ(x)fη(y) (1.12)

(This is Wasserman th 3.30). We sometimes write P(x,y) = P(x)P(y).
Let’s note the sum of independent random variables, through a convolution:

fξ+η(x) =
∫ ∞
−∞

dy fξfη(x−y) (1.13)

FIXME {Explain connection between independence of events and independence
of random numbers. How does the disjointness come into play?}
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Lecture 1. Probability theory

1.2.2 Expectation of a random variable
The “Expectation”, “expected value”, “mean”, “mean value” or or “first moment” of
a random variable is defined as

E(ξ) =
∫
xdFξ(x) =

{∑
xxf(x) if ξ is discrete∫
dxf(x)x if ξ is continuous.

(1.14)

Common symbols in use for the expectation are E(ξ) (or Eξ), 〈ξ〉 or µ or µξ. None of
the denominations or notations is more noble, mathematical, correct, or stately than
the other[1, p. 47]. We use here the word expectation and the symbol E (rather than
〈. . .〉) in order to avoid the confusion with sample means.

Not all random variables have an expectation, but two random variables ξ and η
with finite expectation satisfy

E(ξ+η) = Eξ+Eη or : 〈ξ+η〉= 〈ξ〉+ 〈η〉 (1.15)

and this is true whether or not the random variables are independent.
In addition that the mean of a function of the data is the function of the mean of

the data (aka “rule of the lazy statistician”) is in fact a tiny theorem.

η = r(ξ) (1.16)

Eη = Er(ξ) =
∑

r(x)f(x) =
∫
dxr(x)f(x) (1.17)

The rule is easy to rationalize for discrete random variables with a uniform distribu-
tions. Take for example a die with six equal faces, but paint the numbers 12,22, . . . ,62

onto them. It is clear that the expectation is (12 + · · ·+62)/6 = 91/6. Just like the rule of
eq. (??), the eq. (1.17) is one of the tools of the trade, and simulators and experimental-
ists hand it down from one generation to the next: The same samples (for instance of
the Boltzmann distribution) can be used to compute any observable expectations that
we can compute from the samples. Many other rules and dear habits have however
no mathematical foundation.

Consider a random variable ξ ∼ Exponential(β). What is its mean value E(ξ),
We first note that the distribution is normalized, because of

1
β

∫ ∞
0

dx exp(−x/β) = 1

The mean value of this distibution is µX = β, because of

1
β

∫ ∞
0

dx xexp(−x/β) = β

What is the tail probabilityP (|X−µX | ≥ kσX) (with k≥ 1) forX ∼Exponential(β)?
Compare this tail probability to the bound you obtain from the Chebychev inequality.

The tail probability is exp(−k). Chebychev gives 1/k2. The two functins are the
same for k = 2W (1/2) = 0.703467.., where W is the Product Log (the Lambert W
function) (but our derivation does not apply to this case). For all k≥ 1, the Chebychev
bound is not tight.
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1.2. Random variables

1.2.3 Variance of random variable
The variance of a random variable is defined as

Var(ξ) =
{

Average squared distance
from mean

}
= E

[
(ξ−Eξ)2

]
. (1.18)

Other notations for Var(ξ) are σ2 or σ2
ξ or V (ξ) or V ξ (σ is the standard deviation).

Again, using one or the other notation does not make us into a better person, but
it helps to remember that the variance does not need to exist, that it’s related to the
square, and that it is the square of the standard deviation:

√
Var = standard deviation (1.19)

Also it is useful to remember the two properties (Wasserman Th 4.1):

E(aξ+ b) = aE(ξ) + b (1.20)

Var(aξ+ b) = a2 Var ξ (1.21)

The variance of an exponential random variable ξ is Var=β
2 because Varξ =E

(
ξ2)−

E(ξ)2 and
1
β

∫ ∞
0

dx x2 exp(−x/β) = 2β2

The standard distribution of an exponential random variable ξ is σξ =
√

Var(ξ) =
β.

Variance of sum of independent random numbers

For independent random variables ξi, i= 1, . . . ,N , the following is true:

Var(ξ1 + · · ·+ ξN ) =
{∑N

i=1 Var(ξi)
NVar(ξi) iid random variables

(1.22)

To show this, we may restrict ourselves to random variables ξi with zero expectation,
for which we have:

Var(ξ1 + · · ·+ ξN ) = E
[
(ξ1 + · · ·+ ξN )2

]
=
∑
i,j

E(ξiξj) =
∑
i,j

E(ξi)E(ξj) +
N∑
i=1
E
(
ξ2
i

)
=

N∑
i=1
E
(
ξ2
i

)
. (1.23)

1.2.4 Characteristic function
The characteristic function Φ of a random variable ξ is defined by

Φξ(t) = E
(
eitξ
)
. (1.24)
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Lecture 1. Probability theory

If the random variable has a probability density, this amounts to

Φξ(t) =
∫ ∞
−∞

dx eitxfx, (1.25)

with the probability density given by the characteristic function through an inverse
Fourier transform:

fξ(x) = 1
2π

∫ ∞
−∞

dt e−itxPhit, (1.26)

Some general properties of the characteristic functions are useful to keep in mind:

- Φξ(0) = 1. The total probability is normalized to 1.

- Φξ(t) = Φ∗ξ(−t). This is because the probability density function is real.

- |Φξ(t)| ≤ 1. This is because the absolute value of the integral is bounded from
above by the integral of the absolute value, which is Φξ(0).

- Φaξ+b(t) = eibtΦξ(at). Under a change of variables ξ′= f(ξ), with f(ξ) monotonous,
the probability distribution transforms as follows

πξ′(x) = πξ(f−1(x)
|f ′(f−1(x))| . (1.27)

In particular, under a linear transformation we have

πaξ+b(x) = |a|−1πξ((x− b)/a) (1.28)

and hence

Φaξ+b(t) =
∫

dx eixt|a|−1πξ((x− b)/a) = eibtΦξ(at) . (1.29)

Let ξ1 and ξ2 two independent random variables. The characteristic function of
their sum of n independent random variables can be computed as follows: Since ξ1
and ξ2 are independent, so are eitξ1 and eitξ2 .

Φξ1+ξ2(t) = E
(
eit(x1+x2

)
= E

(
eitx1eitx2

)
= E

(
eitx1

)
E
(
eitx2

)
= Φξ1(t)Φξ2(t) (1.30)

This can be readily generalized to N variables

Φ∑N

i
ξi

(t) =
N∏
i=1

Φξi(t) . (1.31)

The first cumulant κ1 is the expectation. The second cumulant is the variance. The
cumulants are proportional to the coefficients of the series expansion of the logarithm
of the characteristic function. Since the logarithm of a product is the sum of the log-
arithms, the n-th cumulant of the sum of two independent random variables is the
sum of the n-th cumulant of the random variables. In particular, this applies to n= 2,
i.e. to the variance.
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1.2. Random variables

Sum of random variables with uniform distribution. [EASY] Compute the char-
acteristic function of the sum of n random variables ξj with uniform distribution
fξj (x) = 1

2aθH(x+a)θH(a−x), where θH(x+a) is the Heaviside theta
[EASY] Let ξ1 and ξ2 two independent random variables, what is the characteristic

function of their sum? What about the sum of n independent random variables? Since
ξ1 and ξ2 are independent, so are eitξ1 and eitξ2 .

Φξ1+ξ2(t) = E
(
eit(x1+x2

)
= E

(
eitx1eitx2

)
) = E

(
eitx1

)
E
(
eitx2

)
= Φξ1(t)Φξ2(t)

This can be readily generalized to N variables

Φ∑N

i
ξi

(t) =
N∏
i=1

Φξi(t). (1.32)

The characteristic function of fξj is simply given by sin(at)
at , therefore the character-

istic function of the sum of n uniform variables is ( sin(at)
at )n.

Show that the characteristic function of ξ(n) =
∑n
j=1 ξj can be written in the fol-

lowing form:

Φξ(n) = 1
(2ia)n t

−n
n∑
k=0

(
n

k

)
(−1)kei(n−2k)at (1.33)

[Hint 1:] Express the sine functions using complex exponentials (sinx = eix−e−ix
2i )

and use the binomial theorem (a+ b)j =
∑j
k=0

(j
k

)
ajbj−k.

(sin(at)
at

)n
= t−n

(2ia)n (eiat− e−iat)n = t−n

(2ia)n
n∑
k=0

(
n

k

)
[eiat]n−k[−e−iat]k =

t−n

(2ia)n
n∑
k=0

(
n

k

)
(−1)kei(n−2k)at (1.34)

[HARD] Compute the inverse Fourier transform of the characteristic function and
show that the distribution of ξ(n) can be written as [?]

fξ(n) = 1
(n−1)!(2a)n

n∑
k=0

(
n

k

)
(−1)kmax

(
(n−2k)a−x,0

)n−1
. (1.35)

[Hint 1:] Move the sum outside of the integral of the inverse Fourier transform. Warn-
ing: the resulting integrals are divergent, but the divergencies have to simplify, so
don’t worry too much! The finite part of the integrals can be extracted using the
Cauchy principal value, usually denoted by P.V., which, in the case of a singularity at
zero, reads as

P.V.
∫ ∞
−∞

dt f(t) = lim
ε→0+

[∫ −ε
−∞

dt f(t) +
∫ ∞
ε

dt f(t)
]
. (1.36)

[Hint 2:] Compute the (finite part of the) integrals by integrating by parts n− 1
times (note that the original product of sin functions has a zero of order n at t = 0).
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Lecture 1. Probability theory

[Hint 3:] P.V.
∫∞
−∞dt t−1eitb = iπsgn(b). [Hint 4:]

∑n
k=0

(n
k

)
(−1)k(x+k)j = 0 for any x

and integer j = 1, . . . ,n−1.
We must compute

fξ(n)(x) = 1
2π

∫
dt e−ixt 1

(2ia)n t
−n

n∑
k=0

(
n

k

)
(−1)kei(n−2k)at . (1.37)

First, we move the sum outside of the integral and take the principal value

fξ(n)(x) = 1
2π

n∑
k=0

P.V.
∫

dt 1
(2ia)n t

−n
(
n

k

)
(−1)kei((n−2k)a−x)t . (1.38)

Since (sin(at))n has a zero of order n at t = 0, the boundary parts which come from
the integration by parts (taking the integral of t−n and the derivative of the rest) and
which could have given contribution from t = 0 are in fact zero for n−1 consecutive
integration by parts. Thus we find

fξ(n)(x) = 1
2π

n∑
k=0

(
n

k

)
(−1)k ((n−2k)a−x)n−1

(2a)n(n−1)! P.V.
∫

dt t−1ei((n−2k)a−x)t . (1.39)

The integral can be easily evaluated and gives

fξ(n)(x) =
n∑
k=0

(
n

k

)
(−1)k ((n−2k)a−x)n−1

2(2a)n(n−1)! sgn((n−2k)a−x) =

n∑
k=0

(
n

k

)
(−1)k ((n−2k)a−x)n−1

2(2a)n(n−1)! [2θH((n−2k)a−x)−1] =

n∑
k=0

(
n

k

)
(−1)k ((n−2k)a−x)n−1

(2a)n(n−1)! θH((n−2k)a−x) , (1.40)

where in the last step we used the identity in Hint 4 to keep only the term multiplied
by the step function. The proof is concluded noting that xθH(x) = max(x,0).

1.3 Inequalities and their meaning
Inequalities provide important tools in probabilities and statistics. They often pro-
vide simple yet exact statements for finite sums of independent random variables
ξ1 + · · ·+ ξn, rather than for their N →∞ limit. We discuss the truly fundamental
Markov (Section 1.3.1 and Chebychev (Section 1.3.2) inequalities that apply to very
general distributions and to sums of independent random variables, for which the
existence of a finite expectation, or of a finite variance allows one to bound the tail
probabilities. Hoeffding’s inequality (Section 1.3.3) is an example of an inequality for
finite sums bounded random variables, whereas Mill’s inequality (see Section 1.3.4)
is distribution-specific. It applies only to the Gaussian random variable.

As mentioned just above, probabilistic inequalities are for a single random vari-
able or a finite sum of n iid random variables. They allow to reach strong mathe-
matical results, in probability theory and in statistics, without invoking the n→∞
limit.
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1.3. Inequalities and their meaning

1.3.1 Markov’s inequality
Markov’s inequality, for a non-negative random variable with finite mean states that

P(ξ > t)≤ E(ξ)
t

(1.41)

The proof of Markov’s inequality is as follows:

E(ξ) =
∫ ∞

0
dxxf(x) =

∫ t

0
dx xf(x)︸             ︷︷             ︸
≥0

+
∫ ∞
t

dx xf(x)≥ t
∫ ∞
t

dx f(x)︸              ︷︷              ︸
P(ξ>t)

. (1.42)

In eq. (1.41), the difference between the expectation E(ξ) and 0 (the lower limit of the
distribution) is a scale, and the probability to be more than k times above this scale is
less than 1/k (for k ≥ 1). Let’s suppose that household income is non-negative, then
Markov’s inequality states that less than one percent of households have more than
one hundred times the average income. This may appear as a meager consolation.
For Markov’s inequality to hold, the expectation must exist (be finite).

1.3.2 Chebychev inequality
The Chebychev inequality:

P(|ξ−Eξ| ≥ ε)≤ Var(ξ)
ε2

(1.43)

is one of the fundamental achievements in probability theory, and it is of great im-
portance in statistics. In eq. (1.43), Var(ξ) denotes the variance of the distribution and
E(ξ) its expectation.

To prove Chebychev’s inequality, we may restrict ourselves to a random variable
with zero expectation. Then

Var(ξ) =
∫
dxx2f(x)≥

∫
|x|≥ε

dxx2f(x)≥ ε2
∫
|x|≥ε

dxf(x) = ε2P(|ξ| ≥ ε) (1.44)

It is just as easy to prove Chebychev’s inequality using Markov’s inequality.
For the Chebychev inequality to hold for a given random variable, there is really

only a single condition, the finiteness of its variance. This is one of the very many
examples in probability theory and statistics where the variance has a meaning that
other quantities, for example the mean absolute distance, simply do not have. Natu-
rally, a finite variance requires a finite expectation.

For many distributions, the Chebychev inequality gives a much worse bound for
the tail probability than either the exact tail probability itself, or than sharper inequal-
ities (see for example Hoeffding’s inequality. Nevertheless, it cannot be replaced by
a better inequality without making additional assumptions. To show that the Cheby-
chev inequality is sharp, we consider the “double δ-peak” distribution:

π(x) = 1
2δ(−1) + 1

2δ(1) (1.45)
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Lecture 1. Probability theory

whose variance equals 1. The correct way to refer to this distribution is through the
cumulative distribution function (cdf), which equals

Fξ(x) =


0 for x <−1
1
2 for −1< x≤ 1
1 for x > 1

(1.46)

The variance of this random variable is Var(ξ) = 1,
For this random variable, we have

P(|ξ|> 1− ε) = 1 ∀ε > 0 (1.47)

and at the same time, Chebychev’s inequality yields

P(|ξ|> 1− ε)≤ 1
(1− ε)2 (1.48)

In the limit ε→ 1, this inequality thus becomes sharp at two points, namely at x=±1.
These properties cannot really be improved. It is for example impossible for the

Chebychev inequality to be sharp at all values of x. If this was true, then we would
have that P(|ξ|> x) = c/x2, which would for the probability density function to be
fξ(x) = c/|x|3. However, this random variable has no variance (in other words, the
variance is infinite).

The Chebychev inequality is concerned with the two-sided tail probability of a
random variable, but there exists a one-sided variant of it, called Cantelli inequality.
It is given by

P [ξ−E(ξ)> ε]≤ Var(ξ)
Var(ξ) + ε2

(1.49)

and there are now now absolute values on the left-hand side of the equation.

1.3.3 Hoeffding’s inequality
Hoeffding’s inequality considers bounded independent random variables ξ1, ξ2, . . . , ξn
that all have zero expectation and satisfy ai ≤ ξi < bi. We discuss this particular in-
equality (out of a great number of other ones, certainly also worthy of study), because
it provides an exponential tail probability for a finite sum of bounded random vari-
able, that we will need later.

For every t > 0, Hoeffding’s inequality states:

P(
n∑
i=1

ξi ≥ ε)≤ exp(−tε)
n∏
i=1

exp
[
t2(bi−ai)2/8

]
. (1.50)

The inequality is easy to prove, see [1, p. xxx]). It holds for any t ≥ 0, and in usual
applications one has to find the value of t that provides the best bound. Note also that
there is no absolute value on the left-hand side of eq. (1.50).

Hoeffding’s inequality provides an exponential bound on the tail probability of
the sample mean, but it is much sharper than the Chebychev inequality only if we go
deep into the tails of the distribution, that is, consider large values of ε.
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1.3. Inequalities and their meaning

Hoeffding’s inequality for sums of Bernoulli random variables

An inequality about tail probabilities is not very useful, if we know beforehand that
the random variable is Bernoulli-distributed, that is that it takes on only values 0 (with
probability 1− θ) and 1 (with probability θ. The situation is much more interesting if
we look at the sum of n Bernoulli-distributed random variables, but where we may
ignore the value of θ. Nevertheless it is possible to obtain a powerful estimate, that we
will use a simplified expression of Hoeffding’s inequality, for the special case where
the random variables Xi are i.i.d Bernoulli distributed, and instead of the the sum of
random variables, we consider the sample-mean random variable

ξn = 1/n
n∑
i=1

ξi (1.51)

We formulate Hoeffding’s inequality for P
[
|ξn−θ| ≥ ε

]
(although Hoeffding’s inequal-

ity is for random variables of zero mean, but this can be arranged).
One finds P

[
|ξn−θ| ≥ ε

]
≤ 2e−2nε2

We note that ξk− θ is a random variable with zero mean, as required. We further-
more note that Hoeffding inequality is for the sum of random variables, not for the
mean value. However, the 1/n is innocuous:

P

(
1
n

n∑
i=1

ξi ≥
1
n
ε

)
≤ exp

(
−t 1
n
ε

) n∏
i=1

exp
[
t2(bi−ai)2/8

]
. (1.52)

leads for ε/n→ ε and Bernoulli variables, for which bi−ai = 1, to the probability:

P

(
1
n

n∑
i=1

ξi ≥ ε
)
≤ exp(−tε)exp

[
nt2/8

]
. (1.53)

The rhs is exp
(
−tε+nt2/8

)
. We find the best value of t by deriving. This gives

(n/4)t = ε and for the r.h.s. exponentiall the term −2ε2/n. Therefore, we find that
the tail probability from Hoeffding’s inequality is 2exp

(
−2nε2

)
, that is, exponential in

nε2. Chebychev gives θ(1−θ)/(nε2). We need n∼ 1/ε2 in both cases, but for n� 1/ε2,
Hoeffding is much sharper.

1.3.4 Mill’s inequality, asymptotic expansion of the error func-
tion

For the normal distribution (that is for a random variable η ∼N(0,1):

fη(z) = 1√
2π

exp
(
−z

2

2

)
, (1.54)

the much stronger Mill’s inequality holds. It is given by:

P(|η|> t)<
√

2
π

e−t2/2

t
(Mill’s inequality; normal distribution)
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Lecture 1. Probability theory

Prove Mill’s inequality and generalize it for a Gaussian distribution with zero mean,
but standard deviation σ (Hint: note that P(|z|> t) = 2P(z > t)).

From the definition, we have that

P(|η|> t) = 2P(η > t) =
√

2
π

∫ ∞
t

dz exp
(
−z2/2

)
=√

2
π

exp
(
−t2/2

)∫ ∞
t

dz exp
(
−(z2/2− t2/2)

)
=√

2
π

exp
(
−t2/2

)∫ ∞
t

dz exp
[
−1

2(z+ t)(z− t)
]
<√

2
π

exp
(
−t2/2

)∫ ∞
t

dz exp[−t(z− t)] =√
2
π

exp
(
−t2/2

)∫ ∞
0

duexp[−tu]

and Mill’s inequality follows immediately. For a Gaussian with standard deviation
σ, one simply changes P(|z| > t) into P(|z| > tσ). The rhs of the above eqs remains
unchanged.

Here is a derivation of Mill’s inequality that gives the exact value of the corrective
term:

We use:
exp

(
−z2/2

)
=−1

z

d
dz exp

(
−z2/2

)
(1.55)

from which it follows that

d
dz

[1
z

exp
(
−z2/2

)]
=
[ d

dz

(1
z

)]
exp

(
−z2/2

)
︸                             ︷︷                             ︸

− 1
z2 exp(−z2/2)

+ 1
z

d
dz exp

(
−z2/2

)
︸                     ︷︷                     ︸
−exp(−z2/2)

(1.56)

Integrating both sides from t to∞ and multiplying with
√

2/π gives√
2
π

∫ ∞
t

dze−z2/2︸                     ︷︷                     ︸
P(|z|>t)

=
√

2
π

1
t
e−z2/2−

√
2
π

∫ ∞
t

dz
1
z2 e−z2/2︸                         ︷︷                         ︸

>0

(1.57)

To expand the final integral in its turn, we simply multiply eq. (??) on both sides by
1/z2 to obtain

−
∫ ∞
t

1
z2 e−z2/2 =− 1

t3
e−t2/2 + 3

∫ ∞
t

1
z4 e−z2/2 (1.58)

from which follows the asymptotic expansion√
2
π

∫ ∞
t

dze−z2/2︸                     ︷︷                     ︸
P(|z|>t)

∼
√

2
π

e−t2/2

t

[
1 +

∞∑
n=1

(−1)n 1 ·3 · · ·(2n−1)
t2n

]
. (1.59)

We note that for fixed t the sum on the right-hand side diverges, because for large n,
(2n−1) eventually gets bigger than t2.

confidence the
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1.4. Convergence of random variables

Figure 1.2: Error Asymptotic (several terms of the Mill’s inequality)

1.4 Convergence of random variables
We consider sequences of random variables ξ1, ξ2, . . . , and address the question of
their convergence towards a random variable ξ.

Two cases are the most important to consider. First, one considers the convergence
of the random variables where ξn is the sample mean of iid random variables. This
is called the law of large numbers, and one usually studies its “weak-law” version.
This was sufficient when there was less data-watching on computers. computer. In
this section, we will explain the strong law of large numbers and why this is relevant
to be understood this in our daily work with data.

The second point that we want to make is about the central limit theorem. This
theorem (that we often know from highschool) states that the sum of random vari-
ables (for iid random variables with the only condition, that their variances exist)
converge to a Gaussian random variable. The central limit theorem thus appears as
an asymptotic statement, valid only in the n→∞ limit. However, we will discuss
a very simple additional condition (on the third absolute moment) which quantifies
the difference with the Gaussian (that the distribution will converge to) for any finite
value of n. This is the Berry–Esseen theorem (with many extensions) that we will
discuss in Section ??.

1.4.1 Different types of convergence of random variables

Figure 1.3: modes of convergence

There are different ways in which convergence can take place

1. Convergence in probability: This is, as we have already discussed for the Cheby-
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Lecture 1. Probability theory

chev inequality, ξn
in prob.−−−−→ ξ:

P(|ξn− ξ|> ε)→ 0 (1.60)

for every ε > 0 as n→∞. Convergence in probability is defined for a sequence
of random variables that converge towards another random variable, not for
the distributions converging towards another probability distribution. This is
complicated, as the ξn and the ξ are (normally) by no means independent. The
situation is easier to grasp if the limiting distribution is concentrated on a point.
Then the convergence in probability means that the probability distribution of
ξn for a given value of n becomes more and more concentrated around this point
as n→∞.

2. Almost sure convergence (we restrict ourselves here to almost sure convergence
towards a constant-mass distribution): Suppose that the sequence ξn of partial
sums almost surely converges towards a constant µ. Just as for convergence in
analysis, this means that for an individual sequence ξn with n= 1,2, . . . , and for
every ε, there exists an n′, such that ξn remains within the window µ± ε for all
n≥ n′.
In frequentist interpretation, this means that the number of paths that go out of
a window of size ε for all later k goes to zero.

3. Convergence in quadratic mean: Expectation value E
[
(ξn− ξ)2

]
→ 0 for n→∞.

Again this means that the random variables ξn themselves converge towards ξ

4. Convergence in distribution:

lim
n→∞

Fn(t) = F (t) (1.61)

for all t for which F is continuous. Convergence in distribution is much easier
to visualize for an extended distribution than the three other concepts.

Almost sure convergence implies convergence in probability, and this implies con-
vergence in distribution (see Fig. 1.3). The implication arrows are shown The different
types of convergence (almost sure, in probability, in distribution) have been illus-
trated with specific computer programs (see [3]).

1.4.2 Law(s) of large numbers
Socalled weak law of large numbers: Consider ξ1, . . . , ξN iid (independent and iden-
tially distributed) random variables ξ1, . . . , ξN with finite mean Eξ. It satisfies:

ξn = 1
n

n∑
i

ξi
in prob.−−−−→ Eξ (1.62)

By the definition of convergence in probability, this means

P(|ξn−µ|> ε)→ 0∀ε (1.63)
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1.4. Convergence of random variables

Proof by Chebychev inequality (for finite variance of ξ, which is not necessary).

Var(
∑
i

ξi) = nσ2 (1.64)

Var( 1
n

∑
i

ξi = 1
n
σ2→ 0 (1.65)

is actually a distribution with zero variance in the n→∞ limit

P(|ξn > ε)<Var/(nε2) (1.66)

Now, in order to have finite precision Var/(nε2) = 0.05 from which follows ε∼ 1/
√
n.

It was originally believed that (pairwise) independence was necessary for the LLN
to hold. Markov saw that this was not correct, and proceeded to construct a coun-
terexample. This was the first “Markov” chain [4, p23].

The weak law of large numbers is independent of the interpretation of probabili-
ties (frequentist, Bayesian), but it appears that without the weak law of large numbers,
the frequentist interpretation would make little sense.

In this context, it is of great importance that the law of large numbers, discovered
by Borel, applies to practically all the sequences that are described by the weak law
For iid variables, the strong law of large numbers tells us that Let ξ1, ξ2, . . . be IID. if
µ = E|X1| <∞, then 〈Xn〉 → µ almost surely. What this means is best discussed in
terms of partial sums:

• The weak law states that the probability distribution of partial sums, at time n,
become more and more peaked. It makes no statement on the behavior of each
individual partial sum, as a function of n.

• The strong law of large numbers states that, for any ε there is an n, so that the
partial sums do not move out of the window E(ξ)± ε for all n′ > n.

Just about all partial sum of iid random variables satisfy the strong law of large
numbers. It is the author’s firm opinion that anyone analyzing data (which are often
time series) must understand the subtle difference between weak law and strong law.

1.4.3 Central limit theorem

ξn = 1√
n

(ξ1 + · · ·+ ξn) (1.67)

Famous theorem by Gnedenko and Kolmogorov: iid finite variance necessary and
sufficient convergence in distribution to gaussian. Proof is easy if we suppose fur-
thermore that E(ξi) = 0 and all powers finite. (see [5, p. 54]).

Central limit theorem for uniform random variables

FIXME {See the TD for detailed text}

1. Verify the validity of the central limit theorem for the sum of variables with
uniform distribution (you can work with the characteristic function).
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Hint 1: log sin t
t =

∑∞
n=1

(−1)nB2n
2n(2n)! (2t)2n, where the coefficientsBn are known as “Bernoulli

numbers”, B0 = 1, B2 = 1
6 , B4 =− 1

30 , et cetera.

The characteristic function of ξ̃ = ξ(n)
√
n

= 1√
n

∑n
j=1 ξj is given by

φξ̃(t) = φξ(j)(t/
√
n) =

(√
n

sin(at/
√
n)

at

)n
= exp

(
n log

(√
n

sin(at/
√
n)

at

))
=

exp
( ∞∑
j=1

n1−j (−1)jB2j
2j(2j)! (2at)2j

)
= exp

(
−(at)2

6 +O(1/n)
)
. (1.68)

In the limit n→∞ this approaches the characteristic function of a Gaussian with
mean zero and variance a2/3.

2. Stable distributions. Definition: A non-degenerate distribution πξ is a stable
distribution if it satisfies: let ξ1 and ξ2 be independent copies of a random vari-
able ξ (they have the same distribution πξ). Then πξ is said to be stable if for
any constants a > 0 and b > 0 the random variable aξ1 + bξ2 has the distribution
πcξ+d for some constants c > 0 and d.

3. [MEDIUM] Prove that the Gaussian πξ(x) = 1√
2πσ e−

(x−µ)2

2σ2 is a stable distribution.
Remember the propriety of the generating functions

Φaξ+b(t) = eibtΦξ(at) (1.69)

The generating function φ(G)(t) of a Gaussian distribution is given by

Φ(G)(t) = e−(2σ2)t2 (1.70)

We consider the characteristic function of the sum of the two random variables
aξ+bξ, which we know to be given by the product of the characteristic functions
of the single (Gaussian) distributions

Φaξ+bξ(t) = Φ(G)
aξ (t)Φ(G)

bξ (t) = e−(2σ2)t2(a2+b2) = Φ(G)√
a2+b2ξ

(t) (1.71)

We have then shown that the distribution of the sum of the two Gaussian ran-
dom variables aξ + bξ is a Gaussian distribution of the variable cξ with c =√
a2 + b2. Therefore the Gaussian distribution is stable.

4. [EASY] Consider a characteristic function of the form

Φξ(t) = exp
(
itµ− (c0 + ic1fα(t))|t|α)

)
, (1.72)

with 1 ≤ α < 2. Show that fα(t) = sgn(t), for α , 1, and f1(t) = sgn(t) log |t|
produce stable distributions. These are also known as Lévy distributions, after
Paul Lévy, the first mathematician who studied them.
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1.4. Convergence of random variables

As before we consider the conbination of two random variables with a Lévi distribution
has the characteristic function

Φaξ1+bξ2(t) = exp
(
it(a+ b)µ− (c0 + ic1fα(t))|(a+ b)1/αt|α) .

)
(1.73)

If α , 1 this is mapped into the same distribution by the transformation t→ (a+
b)−1/αt and µ→ (a+ b)1/α−1µ. For α = 1 the transformation is t→ (a+ b)−1t
and µ→ µ− c1

α log(a+ b).
[EASY] Find a distinctive feature of the Lévy distributions.

The second cumulant

κ2 = (−i)2∂2
t logΦ(t)

∣∣∣
t=0
∼ sign(t)|t|α−2 + . . .

∣∣∣
t=0

=∞ (1.74)

as α < 2, it diverges.

5. [EASY] Assumes α , 1 and show that, in order to be Φξ(t) the Fourier trans-
form of a probability distribution, the coefficient c1 can not be arbitrarily large;
determine its maximal value.

Hint 1: One can show (MEDIUM-HARD) that the inverse Fourier transform of (1.84) has
the tails

πξ(x) |x|�1−−−→ Γ(1 +α)
2π|x|1+α

(
c0 sin πα2 − c1sgn(x)cos πα2

)
. (1.75)

The probability distribution must be positive or equal to zero, therefore the co-
efficients of the tails of the Lévi distributions must be positive. Since

πξ(x) |x|�1−−−→ Γ(1 +α)
2π|x|1+α

(
c0 sin πα2 − c1sgn(x)cos πα2

)
(1.76)

we find
|c1|< c0

∣∣∣tan πα2

∣∣∣ (1.77)

FIXME { Compute the difference between the asymptotic value and the finite-
n value for a random variable with finite third moment. This can bring out the
Berry–Esseen theorem [6, 7]}

Berry–Esseen theorem

We know that for iid random variables, the existence of the second moment (that is,
of the variance) is paramount to the convergence of the sum of the random variables
divided by

√
n towards a Gaussian (see eq. (1.67)). The natural question about the

speed of this convergence is answered by the Berry–Esseen theorem, a classic result
in the theory of probabilities:

sup
z
|P(zn ≤ z)−Φ(z)|< cE

E|ξ−Eξ|3√
n
√

Varξ3 (1.78)

where cE is a constant. We see that the convergence is controlled by the third absolute
moment of the random variable: E|ξ−Eξ|3, divided by a power of its variance.
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Lecture 1. Probability theory

Figure 1.4: Cumulative distribution function for the sum of n = 12 Bernoulli-distributed iid random
variables with θ = 0.2, cumulative distribution function of a Gaussian random variable with the same
mean value and variance, and their Kolmogorov distance, that is, the maximum of the differences
between the two (shown in red). This maximum scales as 1/

√
n for n→∞, because the Bernoulli

distribution has a finite third absolute moment (see the Berry-Esseen theorem of eq. (??)).

Figure 1.5: Berry-Esseen probability for a sum of Bernoulli random variables with parameter θ and
for n = 12. It is plotted the length of the maximum distance (the length of the red interval, plotted in
Fig. ?? for θ = 0.2, for all θ between 0 and 1. This is the blue curve. It is compared with the theoretical
orange curve, which corresponds to eq. (1.79) with the constant eq. (1.80) proven in [?]. The other
curve is a tighter limit which is valid only for 1/3< θ < 2/3, also proven in [?].
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1.5. Stable distributions

We will take a look at the Berry–Esseen theorem for a sum of Bernoulli random
variables. In this case, the third absolute moment is: (1−θ)3θ+θ3(1−θ).

For the Bernoulli variables, the above equation becomes

sup
z
|P(zn ≤ z)−Φ(z)|< cE

θ2 + (1−θ)2√
nθ(1−θ)

, (1.79)

where it is clear that the right-hand side of eq. (1.78) is unbounded for θ approaching
zero or one. In contrast, the constant cE can be bounded. Decade-long research has
culminated in strict bounds for general distributions, and a tight result for the case of
Bernoulli variables. Theorem 1 of [?], proves for example that

cE =
√

10 + 3
6
√

2π
(1.80)

This is a statement valid for all n, and it is illustrated for n= 12 in Fig. 1.4 and Fig. 1.5.
All this means that the Gnedenko–Kolmogorov theorem assures of convergence

to the Gaussian distribution for iid variables under the condition that the variance is
finite. But then the rate of convergence can be arbitrarily bad. On the other hand,
if there is one more power of moment, namely the absolute third moment, than the
convergence is for all n at a speed 1/

√
n. So the situation is analogous to the situation

for the weak law of large numbers, and the Chebychev inequality. The Bernoulli
distribution appears as a bad case, already.

1.5 Stable distributions
Definition: A non-degenerate distribution fξ is a stable distribution if it satisfies: let
ξ1 and ξ2 be independent copies of a random variable ξ (they have the same distribu-
tion fξ). Then πξ is said to be stable if for any constants a > 0 and b > 0 the random
variable aξ1 + bξ2 has the distribution πcξ+d for some constants c > 0 and d.

[MEDIUM] Prove that the Gaussian πξ(x) = 1√
2πσ e−

(x−µ)2

2σ2 is a stable distribution.
Remember the propriety of the generating functions

Φaξ+b(t) = eibtΦξ(at) (1.81)

The generating function φ(G)(t) of a Gaussian distribution is given by

Φ(G)(t) = e−(2σ2)t2 (1.82)

We consider the characteristic function of the sum of the two random variables aξ+bξ,
which we know to be given by the product of the characteristic functions of the single
(Gaussian) distributions

Φaξ+bξ(t) = Φ(G)
aξ (t)Φ(G)

bξ (t) = e−(2σ2)t2(a2+b2) = Φ(G)√
a2+b2ξ

(t) (1.83)

We have then shown that the distribution of the sum of the two Gaussian random
variables aξ+bξ is a Gaussian distribution of the variable cξ with c=

√
a2 + b2. There-

fore the Gaussian distribution is stable.
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Lecture 1. Probability theory

[EASY] Consider a characteristic function of the form

Φξ(t) = exp
(
itµ− (c0 + ic1fα(t))|t|α)

)
, (1.84)

with 1 ≤ α < 2. Show that fα(t) = sgn(t), for α , 1, and f1(t) = sgn(t) log |t| produce
stable distributions. These are also known as Lévy distributions, after Paul Lévy, the
first mathematician who studied them. As before, we consider the combination of
two random variables with a Lévi distribution has the characteristic function

Φaξ1+bξ2(t) = exp
(
it(a+ b)µ− (c0 + ic1fα(t))|(a+ b)1/αt|α) .

)
(1.85)

If α , 1 this is mapped into the same distribution by the transformation t → (a+
b)−1/αt and µ→ (a+ b)1/α−1µ. For α = 1 the transformation is t→ (a+ b)−1t and
µ→ µ− c1

α log(a+ b).
[EASY] Find a distinctive feature of the Lévy distributions. The second cumulant

κ2 = (−i)2∂2
t logΦ(t)

∣∣∣
t=0
∼ sign(t)|t|α−2 + . . .

∣∣∣
t=0

=∞ (1.86)

as α < 2, it diverges.
[EASY] Assumes α , 1 and show that, in order to be Φξ(t) the Fourier transform of

a probability distribution, the coefficient c1 can not be arbitrarily large; determine its
maximal value.

[Hint 1:] One can show (MEDIUM-HARD) that the inverse Fourier transform of
(1.84) has the tails

fξ(x) |x|�1−−−→ Γ(1 +α)
2π|x|1+α

[
c0 sin πα2 − c1sgn(x)cos πα2

]
, . (1.87)

The probability distribution must be positive or equal to zero, therefore the coef-
ficients of the tails of the Lévi distributions must be positive. Since

fξ(x) |x|�1−−−→ Γ(1 +α)
2π|x|1+α

[
c0 sin πα2 − c1sgn(x)cos πα2

]
, (1.88)

we find
|c1|< c0

∣∣∣tan πα2

∣∣∣ (1.89)

In lecture 1 and tutorial 1, we discussed and derived Lévy distributions: Universal
(stable) distributions that have infinite variance. A good example for producing such
random variables is from uniform random numbers between 0 and 1, ran(0,1) taken
to a power −1 < γ < −0.5. Such random numbers are distributed according to a
distribution

fξ(x) =
{

α
x1+α for 1< x <∞
0 else

(1.90)

where α = −1/γ (you may check this by doing a histogram, and read up on this in
SMAC book).

1. Is the probability distribution of eq. (1.90) normalized for γ = −0.8 (that is α =
1.25), is it normalized for γ =−0.2 (that is α= 5)?
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1.6. Homework 1

2. What is the expectation of the probability distribution for the above two cases,
and what is the variance?

3. Write a (two-line) computer program for generating the sum of 1000 random
numbers with γ = −0.2, and plot the empirical histogram of this distribution
(that is, generate 1000 times the sum of 1000 such random numbers. Interpret
what you observe. For your convenience, you may find a closely related pro-
gram on WK’s website. Modify it so that it solves the problem at hand, and
adapt the range in the drawing routine. Produce output and discuss it.

4. Write a (two-line) computer program for generating the sum of 1000 random
numbers with γ = −0.8, and plot the empirical histogram of this distribution.
Interpret what you observe. For your convenience, please take the closely re-
lated program from WK’s website. Modify it so that it solves the problem at
hand, and adapt the range in the drawing routine. Produce output and discuss
it.

1.6 Homework 1

1.6.1 Rényi’s formula for the sum of uniform random num-
bers, variations

In tutorial 1, you derived Rényi’s formula for the sum of uniform random numbers
between -1 and 1:

πn(x) =

 1
2n(n−1)!

∑[n+x
2 ]

k=0 (−1)k
(n
k

)
(n+x−2k)n−1 for |x|< n

0 else
(1.91)

1. Compute the variance of the distribution of eq. (1.91) for n = 1, that is for uni-
form random numbers between -1 and 1.

2. Compute the variance of Rényi’s distribution for general n (Hint: this can be
computed in 1 minute, if you use a result presented in the lecture).

3. Implement eq. (1.91) in a computer program for general n. For your conve-
nience, you will find such a computer program on WK’s website. This program
also computes P (X > ε). Download this program and run it (in Python2). No-
tice that you may change the value of n in this program.

4. Modify the program (plot) so that it compares Pn(X > ε) to the upper limit
given by the Chebychev inequality (Attention: you may modify Chebychev’s
inequality to take into account that πn(x) is symmetric around x= 0). Comment.

5. Modify the program (plot) so that it compares Pn(ξ > ε) to the Cantelli inequal-
ity:

P [ξ−E(ξ)> ε]≤ Var ξ
Var ξ+ ε2

(1.92)

(note that there are now no absolute values). Comment.
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Lecture 1. Probability theory

6. Modify the program so that it compares P(ξ > ε) to Hoeffding’s inequality. Ho-
effding’s inequality considers a probability distribution with zero expectation
and ai ≤ ξi < bi (we will later take constant bounds a and b, but in fact, they may
depend on i). For every t > 0, it states:

P(
n∑
i=1

ξi ≥ ε)≤ exp(−tε)
n∏
i=1

exp
[
t2(bi−ai)2/8

]
. (1.93)

Is Hoeffding’s inequality always sharper than the Chebychev inequality, that is,
is Hoeffding with the best value of t better than Chebychev for all ε? What
is the asymptotic behavior for ε→∞ behavior of Hoeffding’s inequality, and
why does it satisfy such a stringent bound if the Chebychev inequality does not
achieve it? Return a plot that contains, next to πn(x) and its integral Pn(X > ε),
the comparison with Chebychev, Cantelli, and Hoeffding.
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Lecture 2

Statistics

Figure 2.1: Four operations in statistics: “Enumeration” (snap-shotting), summary, comparison, and
inference.

We remember from Lecture 1 that probability theory attempts to describe the
properties of outcome given a data generating process, while statistics attempts to
make statements about the process that generates the data. However, this is not all
that statistics is about.

Statistics: “Given the outcomes, what can we say about the process that generated
them?” (see Fig. ??) but, as pointed out by Efron, it is more precise to state statistics is
the science of (finite amounts) of data, and it can be broken up into four concepts.

As stressed by Efron 1982[8], we can often add to this statement: “Given the out-
comes, how can we summarize data?”

The simplest operation that can be done with data is to keep them all, and look
at them. This naive treatment, that one can call “enumeration”, is very common. It
consists in looking at individual data (or sets of data). Many research papers present
a snapshot of “typical” data, and an explanation of the phenomena that one sees in
them.

simply consists in obtaining the data and carrying them around with us. What
appears a very basic approach to data is part of many publications (which love to
show “snapshots”.
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Lecture 2. Statistics

Summarization is an often overlooked aspect of data treatment. It consists in de-
scribingN data not throughN pictures of them, but through a summary, often a finite
(and small) set of parameters of a statistical model. The inference problem is the ques-
tion of how well the summary that worked for N data points would fare if we had a
much larger number of data points. Also: What would be the parametes of the infi-
nite data set, if we only have a finite number of them. “Comparison” is the opposite
of the summary: We try to take the data and try to separate them (for example into
two sets) to make differences appear. Again with reference to an infinite pool, we
pose the question (of hypothesis testing) whether the two sets are indeed different.

Probability theory and statistics are the same when there is an infinite number
of data (having all the data allows to construct the probability distribution), and of-
tentimes, statistics can be understood as an attempt (sometimes a quite desperate
attempt) to make an infinite number of data from a finite number ofdata.

Finally, it is useful
Note: Mathematical definition: “A statistic” means “a function of data”.

2.1 Parametric statistics

2.1.1 Models in statistics
In mathematics, a (statistical) model is defined as a set F of distributions. If this set
can be described by a finite number of parameters θ = {θ1, . . . ,θk}:

F = {f(x,θ) : θ ∈Θ}, (2.1)

(where Θ is some parameter space) then F is a parametric model. Otherwise it is
termed nonparametric.

We notice that in mathematics, the definition of what constitues a model is clear-
cut. In physics, we have a much harder time with this: We can define precisely the
Ising model, the XY model, the standard model of fundamental interactions, the
hard-sphere model, etc, but generally are inprecises about what a “model in physics”
actually means. For statistical-physics models, the understanding of the role of mod-
els has come from the renormalization group (see Section ??). In a dramatic change
to what was believed, say, before the 1970s, where the role of models in statistical
physics was likened to what can be called “toy-models”, statistical-physics model are
now understood to exactly describe the long-wavelength behavior of entire classes of
physical systems. One given class can comprise very different physical systems as,
for example, classical spin systems and superconductors.

Parametric statistics poses the question of what justifies the use of parametric
models (see [1, p. 119]). The response to this (good) question is surprisingly com-
plex. Efron [8] (see Fig. 2.1)

One of the reasons is that much of statistics is “descriptive”. This means that it is

• In some cases, it can be proven, or is otherwise reasonable. For binary data, we
can for example sometimes prove that the data come from a Bernoulli distri-
bution. We can also have some information on the data, for example we might
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2.1. Parametric statistics

know that it decays exponentially. For the velocity distribution in a gas, we may
know that the distribution is a Gaussian, but we do not know the temperature,
that is, the width of the distribution

• As stressed by Efron, we have to do something with data: After enumeration
(keeping all the data in our pocket), we need to summarize them.

• If we have summarized them, we can actually use the summarization to gener-
ate infinite amounts of data. This means that the parametric model can always
be used for estimation.

• Non-parametric models don’t constrain the data as the parametric model, but
they also do not add any supplementary information that we might have.

If maximum likelihood estimation acts as if the maximum likelihood summary is ex-
actly true, how can the theory provide an assessment of estimation error? The answer
is simple but ingenious (Efron 1982, section 5).

2.1.2 Method of moments
This is a point estimate, even though the very idea of a point estimate is not as strict
as it may seem: As soon as you have your parameter θ, you immediately have an
infinite number of samples (or of sets of samples).

This is what the physicist knows: Let us suppose we Θ : Θ1, . . . ,Θk, which makes
k parameters. From these parameters, we now go to the moments of the distribution

αj = E
(
ξj
)

for j = 1, . . .k (2.2)

and we compare these moments of the distribution to the

α̂j = 1
n

∑
i

ξji . (2.3)

The method-of-moment estimator is that which satisfies:

α1(Θ1, . . . ,Θk) = α̂1 (2.4)
...

...

αk(Θ1, . . . ,Θk) = α̂k (2.5)

Example: Bernoulli distribution

The Bernoulli distribution has a single parameter, namely θ, so that:

α1 = E(ξ) = θ, (2.6)

α̂1 = 1
n

∑
i

ξi, (2.7)
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Lecture 2. Statistics

from which follows θn = 1
n

∑
i ξi. As we know that Bernoulli-distributed random vari-

ables have a finite expectation value (in addition to a finite variance), so that they sat-
isfy the weak law of large numbers, we see automatically that the method of moments

is consistent in this case (that is θn
in prob.−−−−→ θ).

We will get back to this interesting case for two reasons: One to show what we
actually learn from pn for finite n.

Example: Gaussian distribution

Properties of the method of moments

Properties of the method of moments. If the stuff actually works, then

1. Θ̂n exists

2. Θ̂n→Θ, which means that it is consistent.

3. It is asymptotically normal, which means that it can be used, in principle prin-
ciple principle, to obtain confidence intervals.

With all these nice properties, the method of moments has problems. Although it is
consistent, it is not optimal. It requires higher moments of the distribution to exist.
Also, it is not reparametrization independent: that is, if we describe our probability
distribution through angles and radii rather than (x,y) pairs, we will get different
results.

FIXME {I would suppose that the theorem of the lazy statistician makes that the
above statement is not true for a function that only depends on a single parameter,
that is, for the Bernoulli distribution).}

2.1.3 Maximum likelihood estimation
The maximum likelihood estimation, created single-handledy by the statistician/bi-
ologist Ronald Fisher (1890-1962) addresses the problem of estimating parameters of
the family of ... The method is a point estimate, and it is quite fishy.

Let us suppose we have 15 data points.
FIXME {Avoid examples} Suppose that we have n data points x1,x2,x3, , ...,xn

(these points are real numbers between −∞ and ∞), and we know that they are
drawn from a Gaussian distribution with unknown values of the variance σ2 and
the mean value 〈x〉:

p(x) = 1√
2πσ2

exp(−(x−〈x〉)2/(2σ2)). (2.8)

What is the maximum likelihood estimator for the mean value 〈x〉 and variance σ2 of
this Gaussian distribution from the data?

Hint1 Remember that the likelihood function is given by p(x1)p(x2)....p(xn).

Hint2 If you use the log likelihood function, explain why this can be done.
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2.2. Non-parametric statistics

Carefully explain your calculation.
Note: L(α) is not a probability distribution.

Maximum likelihood and data summarization

Fisher information

2.2 Non-parametric statistics

2.2.1 Glivenka–Cantelli theorem
This theorem states, very simply and in full generality, that if ξ1, . . . , ξn ∼ F , then

sup
x
|F̂n(x)−F (x)| → 0 (2.9)

where the convergence is in probability. This theorem is just the tip of the iceberg.

2.2.2 DKW inequality

P

[
sup
x
|F(x)− F̂n(x)|> ε

]
≤ 2exp

(
−2nε2

)
(2.10)

FIXME {Please take a look at the fact sheet of week 3, that discusses a paper by Mas-
sart [9].}

2.2.3 The bootstrap
A bootstrap is a loop of sturdy material, often leather, fixed to the top line of shoes,
above their heels. Holding on to both your bootstraps, you will lift yourself up into
the air. This is called “boot-strapping” 1. More generally, boot-strapping describes
super-simple solutions to problems that appear hopeless: Lifting yourself over a river
when there is no bridge (simply pull on the bootstraps and up you go), extracting
yourself and your horse out of a swamp (simply hold on to your horse and pull on
your pony-tails), starting a computer—that needs an operating system to run—after
the operating system crashed (simply “reboot” your computer).

As we discussed repeatedly, the separation of probability theory and of statistics
lies in the 1/

√
n factor related to the finite number of data. The bootstrap method

turns a finite number of samples into an infinite number, by simply using the cumu-
lative density F̂ (x) instead of the unknown F (x). The strategy consists in placing all
the samples in a barrel, and in taking data. It finds its mathematical justification in
the DWK inequality (and many other statements). However it is even more clever.

More seriously, the bootstrap is a non-parametric method for going fromN =finite
to N =∞ (Wasserman: For estimating standard errors and computing confidence
intervals). The method is so general that it can also be used with parametric methods.

1Advice: don’t wave to your friends back on the ground. With your hands off your shoes, you will
fall down instantly
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Lecture 2. Statistics

Let
Tn = g(X1, . . . ,Xn) (2.11)

be a “statistic” (that is, a function of the data). Suppose we want to know the vari-
ance Var(Tn). Then simply replace F → F̂n, that is, replace the true but unknown
distribution F by the empirical function F̂n that adds 1/n at each data point. The real
ingenious trick here is that we always draw n points.

2.2.4 The jackknife
The jackknife is a T

2.3 Bayes’ Statistics and the interpretation of prob-
abilities

2.4 The children on the beach problem
Interval from Chebychev: P(|∆ > ε| < Var/ε2. This leads to p = Var/(Nε2) or to
ε = σ/

√
Np and using the estimate σ < 1/2 leads to the conservative estimate ε =

1√
N

1/(2√p).
For Hoeffding, we have p= 2exp

(
−2Nε2

)
, which sounds a lot sharper then Cheby-

chev. It likewise leads to the estimate ε = 1√
N

√
− log (p/2)/2. As shown in Fig. 2.2,

we see that Chebychev is better than Hoeffing for large p, as for example the 68%
confidence interval that is used in physics, but it is of course much better for smaller
p.

Figure 2.2: Comparison of Hoeffding and Chebychev for the children’s game.

Brown Cai DasGupta discuss the standard interval. This means that one supposes
that the binomial distribution is described approximately by a Gaussian normal dis-
tribution, and that the variance is indeed given by p̂(1− p̂) This leads to what is called
the standard error bar z(...)/

√
n
√
p̂q̂. We can now do two plots

• Brown Cai DasGupta

• Wasserman p 65 (with Hoeffding)
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2.5. Homework 02

2.5 Homework 02
In lecture 02, we treated the maximum likelihood approach as one of the key methods
for estimating the parameters of a distribution. Here we treat two examples. The
second one was of great historical importance on the battlefields of WW2 although it
proved necessary to go one step farther than we will do here.

2.6 Uniform distribution
Preparation

What follows, a preparation for Section 2.7, is described in Wasserman as a hard ex-
ample “that many people find confusing”. It will not confuse You!

Application

Suppose a uniform distribution between 0 and θ, and consider k samples drawn from
this distribution.

• What is the likelihood function L(θ) given x1, . . .xk? (Hint: suppose that “the
probability to sample xi” is 1/θ. The 1/θ factor is “physically” clear). Plot L(θ).

• What is the maximum-likelihood estimator of θ given x1, . . . ,xk, that is, the sam-
ples?

• Comment your finding.

2.7 German tank problem (Frequentist approach)
This example has been of considerable importance, first in WW2, then in the theory
of statistics. It is the discrete version of Section 2.6.

2.7.1 Preparation
Consider N balls numbered 1,2,3, ....,N , and take k out them (urn problem without
putting them back). What is the probability pN (m) that the largest of them is equal to
m?

Hint0 How many ways are there to pick k (different) balls out of N?

Hint1 To solve this simple combinatorial problem, consider thatmmust be contained
in k,k+ 1,k+ 2, ....N .

Hint2 Count the number of ways to pick (k−1) balls so that they are smaller than m.

Carefully explain your calculation.
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2.7.2 Application

From an urn with an unknown number N of balls (tanks), the following k = 4 balls
were drawn (without putting them back):

1,2,4,14

What is the maximum likelihood estimator of the total number N of balls (tanks)
(based on the probability distribution of the sample maximum m, here 14) that are
contained in the urn (destroyed tanks left on the battlefield)?

The (disappointing) result of the maximum likelihood estimator (here in the fa-
mous "German tank problem") points to one of the limitations of the maximum like-
lihood method, namely that it presents a bias. Comment on this property. A trick
allows to arrange the situation. In simple terms it consists in supposing that the mean
of the intervals between the first ball and zero, the second and the first ball, the third
and the second... etc is probably as large as the interval between the largest ball and
N .

2.8 German tank problem (Bayesian approach)

The Bayesian approach treats the total number N of the balls (tanks) as a random
variable, and it has been much studied in the literature. But to start, simply write a
program for k = 4 that samples N from a discretized exponential distribution with
parameter λ. Then sample k different balls from this distribution, if possible.

2.8.1 Maximum

Numerically compute the probability distribution of all the N for which the largest
of the k = 4 balls is equal to 14 (see previous example). Do this by sampling: Sample
N , then sample k = 4 balls, and enter N into a histogram if the largest of the 4 balls is
equal to 14.

Plot this distribution (histogram), its expectation and variance for different values
of λ. For your convenience you find the Python program, already 95% written, on the
course website. Modify it (to compute the expectation and variance as a function of
λ), and run it.

2.8.2 Total sample

Numerically compute the probability distribution of all the N for which the k = 4
balls exactly equal 1,2,4,14. Plot this distribution (histogram), its mean value and
variance for different values of λ. Do these distribution differ (empirically) from the
ones in Section 2.8.1? For your convenience, the Python program on the course web-
site already contains the crucial modification. Is the outcome different from the one
of the maximum version (Section 2.8.1)?
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2.9 Midterm2017

2.9.1 Method of moments and Maximum likelihood
Consider n independent samples X1, . . . ,Xn drawn from a uniform distribution with
bounds a and b, where a and b are unknown parameters and a < b.

X1, . . . ,Xn ∼Uniform(a,b) (2.12)

1. Explain what a method-of-moments estimator is. For n samples X1, . . . ,Xn

and a probability distribution π depending on k parameters (θ1, . . . ,θk), the
method-of-moments estimator is the value θ̂ such that the k lowest moments
αj =

∫
xjπ(x,θ)dx agree with the sample moments α̂j =

∑n
i=1X

j
i . This is a sys-

tem of k equations with k unknowns. The method of moments is not optimal,
and sometimes the moments of the distribution do not exist, although the sam-
ple moments always exist. But the method of moments is easy to use.

2. Find the method-of-moments estimator for a and b. We need to solve

1
b−a

∫ b

a
xdx= α̂1

1
b−a

∫ b

a
x2dx= α̂2 (2.13)

equationequationequationequatioequationequation equation equation equation
equation equation equation equation equation equation equationn Therefore
we have (a+ b)/2 = α̂1 and 1

3(b3− a3)/(b− a) = 1
3(a2 + ab+ b2) = α̂2, one finds

b= α̂1 +
√

3
√
α̂2− α̂1

2 and a= α̂1−
√

3
√
α̂2− α̂1

2.

3. Explain the essence of maximum-likelihood estimation, and discuss the dif-
ference between a likelihood and a probability. Using the same definitions as
above, the likelihood function is defined as the product over the probabilities
L(θ) =

∏n
i=1π(Xi,θ), and the maximum likelihood estimator is the value of the

parameters θ that maximizes this value, as a function of the data.

4. Find the maximum-likelihood estimator â and b̂. Because of the normalization
(b− a), the maximum likelihood estimator is largest if the interval (b− a) is
smallest. Therefore, b= max(Xi) and a= min(Xi).

2.10 Interval tests for the Bernoulli distribution
Statistics is the science of data and their data-procuding processes. As mentioned, the
goal of descriptive statistics is often “summarization”, that is, the characterization of
often vast amounts of data with few numbers. Examples are the maximum likelihood
summary of data (see [8]) and the five-figure summary (the minumum, the maximum,
the median, the first quartile (25%) and the last quartile (75%) of data).

In contrast to descriptive statistics, the theorems of statistical inference rely on
conditions for the data-producing process. All these conditions translate, on a one-
to-one basis, into corresponding assumptions about real data. These conditions are
usually:
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Figure 2.3: Standard interval.. Connect to the reference [10] [11]

Figure 2.4: Hoeffding interval ... connect to the reference...
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2.10. Interval tests for the Bernoulli distribution

Independence of random variable

Identity of distribution distribution This is the question of whether the random vari-
ables come from the same distribution

Existence of moments of random variables

Type of distribution Because of the existence of limit theorems, this condition is some-
times confounded with the one of how close one is to the limit distribution, at
is, a Gaussian or one of Lévy’s stable laws.

In statistical physics, we in addition have the problem of the finite-size scaling to-
wards the thermodynamic limit. This means that while the distribution FNξ of the
random variables of an finite system (for example, with N particles or spins) is sam-
pled, one is interested in the properties of the data-generating process (that is, the
physical system) for N →∞.

2.10.1 Frequentist vs. Bayesian statistics
We now consider an example of the sample space Ω consisting of the square (x,y) with
x ∈ [−1,1] and y ∈ [−1,1]. Pebbles (see [5]) are randomly thrown into this square pro-
ducing the samples ω. Bernoulli-distributed random variable ξ equal one if |(x,y)ξ|<
1 and 0 otherwise. Clearly, the parameter θ equals π/4, but the trouble is that we
totally forgot the value of Pythagoras’ number, but threw 4000 independent random
variables.

xξi =
{

1 with probability θ
0 with probability 1−θ

(2.14)

The result of 4000 independent throws was 3156 “hits”, where the pebble landed
inside the circle, and the remaining 844 “no-hits”, where it ended up outside. We sup-
pose that the data ξi are i.i.d random variables, we also know that they are Bernoulli,
and that their variance θ(1−θ)≤ 1/4.

If we insist on a 0.95 covering interval, we will have a covering interval of width
0.282 (that is 0.141 to the left and to the right).

If we now use the standard normal approximation of the Bernoulli distribution

and the maximum-likelihood approximation of the standard deviation 1/
√
θ̂(1− θ̂)

we suppose that in our example we have
√
θ̂(1− θ̂) = 0.408 and the Gaussian error in-

terval for p= 0.05 equals 1.96×0.408/
√

4000 = 0.0126444, which is a whole lot smaller
than the 0.141 covering element, and this, for the same data. Now, let us check, for
some data how good the covering interval of all these approximations really is. To do
so, we use numerical simulation in the following way: For a very fine grid of values
of θ, we do a Bernoulli experiment, and compute the value θ̂ as well as the error bar
(confidence interval) computed by each of the methods. For added generality, we do
not simply test this outcome for a given value of n, but rather as a function of n.

We can also use the Hoeffding estimate, where we have p= 2exp
(
−2Nε2

)
, which

sounds a lot sharper then Chebychev. It likewise leads to the estimate ε= 1√
N

√
− log (p/2)/2.
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Lecture 3

Statistical mechanics: Foundations

Will be included shortly
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Lecture 4

Phases and phase transitions: Van
der Waals theory

We write down a few very general rules:

• The thermodynamic state of any homogeneous body in equilibrium is specified
by two thermodynamic quantities, for example by the energyE and the volume
V

• Not all choices of the two thermodynamic quantities correspond to homoge-
neous bodies.

• Such states that can be simultaneously in equilibrium and that may touch are
called phases.

(check LL 81)
For two phases to be in equilibrium, there are three conditions:

• T1 = T2 Thermal equilibrium

• P1 = P2 Mechanical equilibrium

• µ1 = µ2 Chemical equilibrium (stable composition).

The chemical equilibrium stems from the rule that (macroscopically speaking)

∂S

∂N1
= ∂S1
∂N1

+ ∂S2
∂N2

∂N2
∂N1

= ∂S1
∂N1

− ∂S2
∂N2

= 0 (4.1)

Because we have TdS = dE −µdN while T and E are constant, this implies µ1 = µ2.
(check LL 25)
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Lecture 5

1D models and the transfer matrix

In this lecture, we introduce to the statistical physics of one-dimensional systems,
starting from two examples, the one-dimensional gas of hard spheres, and the one-
dimensional Ising model with next-neighbor interactions. These models are both ex-
actly solvable. In finding the solutions, we will introduce to a fundamental concept
called “Transfer Matrix”. We will show that these models exist only in a single phase,
so that there cannot be a phase transition. Mathematically, this feature of the exact
solution derives from basic properties of the transfer matrix, via two fundamental
theorems. A physical argument will also be developed, namely the analysis of do-
main walls. As often, the well-understood and exactly solved cases are very closely
related to hard problems: We will analyze the Ising model with long-range interac-
tions which, understood by Thouless, became the starting point of the now famous
Kosterlitz–Thouless theory.

Figure 5.1: N = 4 one-dimensional hard spheres of radius σ on an interval of lengthL, without periodic
boundary conditions. Many of the properties of this model can be solved analytically. The position x of
each sphere is that of its center, so that σ < x < L−σ.

5.1 One-dimensional hard spheres
The one-dimensional hard-sphere model is exactly solvable (its thermodynamics and
some of its structural properties can be obtained in closed form). We will compute the
equation of state, check the equivalence of ensembles, introduce to the virial expan-
sion, and compute (what amounts to) correlation functions. In a nutshell, the model
can be mapped to non-interacting particles. Nevertheless, the model has non-trivial
correlation functions, that are so intricate that not all is known analytically about
them.
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Lecture 5. 1D models and the transfer matrix

We consider, as in Fig. 5.1, N one-dimensional spheres in a box of finite volume
(length)Lwithout any other interaction than the hard-sphere repulsion. Spheres have
velocities and positions, but the momenta can be integrated out in the partition func-
tion, so that only the configurational integral remains.

5.1.1 One-dimensional hard spheres - partition function
We can write down the partition function of this system is given by

ZN,L =
∫ L−σ

σ
dx1· · ·

∫ L−σ

σ
dxNf(x1, . . . ,xN ), (5.1)

where the Boltzmann weight f satisfies

f(x1, . . . ,xN ) = f(xP1 , . . . ,xPN ) =
{

1 if legal
0 otherwise

Note that π is symmetric under permutations. One often multiplies the partition func-
tion of eq. (5.1) by a factor 1/N !, in order to avoid the socalled Gibbs paradox. The
question of the presence or not of this factor 1/N ! is very interesting, and it has noth-
ing to do with quantum mechanics, see [?]. We will just leave it out.

5.1.2 Free energy by mapping to non-interacting particles
The statistical weight f , as discussed, and also the integration domain, are totally
symmetric under permutations (P1 . . .PN ) that each indicate a certain ordering of
particle indices. We are free to choose one of the N ! permutations (for example
x1 < x2 <,. . . ,< xN , and multiply the integral with this same factor N !:

ZN,L =N !
∫ L−σ

σ
dx1· · ·

∫ L−σ

σ
dxNf(x1, . . . ,xN )Θ(x1, . . . ,xN ) (5.2)

(the function Θ is equal to one if x1 < x2 < · · ·< xN and zero otherwise). Now, let us
change variables x→ y in the integral as follows:

y1 = x1−σ, . . . , yk = xk− (2k−1)σ, . . . , yN = xN − (2N −1)σ,

This transformation simply shrinks the radius of each sphere to zero, and the y1, . . . ,yN
are non-interacting points on an interval of length L−2Nσ. We obtain the integral

ZN,L =N !
∫ L−2Nσ

0
dy1· · ·

∫ L−2Nσ

0
dyNΘ(y1, . . . ,yN ), (5.3)

Look at this integral: the bounds for y1,y2, . . . are again symmetric, and we can undo
the trick that brought us from eq. (5.1) to eq. (5.2) by suppressing the ordering of
the variables y and also the factor N !. We arrive at the partition function of N non-
interacting particles:

ZN,L =
∫ L−2Nσ

0
dy1· · ·

∫ L−2Nσ

0
dyN =

{
(L−2Nσ)N if L > 2Nσ
0 otherwise

. (5.4)
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We may rewrite the partition function in terms of the density ρ= 2σN/L

ZN,ρ =
{
LN (1−ρ)N if ρ < 1
0 otherwise

. (5.5)

We see that this is an analytic function for all N and all ρ, and even that the free
energy per sphere − logZ/N is an analytic function, so that this model has no phase
transition at finite density.

5.1.3 Partition function, Transfer-matrix derivation

Figure 5.2: Transforming three hard spheres on an interval of length L into two intervals (one of length
x−σ, and one of length L−x−σ) separated by a wall (represented by the center sphere, at position
x). Allowing for all possible x yields the partition function.

FIXME {This is a recursive solution, rather than a transfer-matrix one??} The sec-
ond derivation of the one-d hard-sphere partition function uses a transfer-matrix
strategy. Let us first compute the partition function for N = 1 (without invoking
eq. (5.4)). Evidently it is given by Z1,L = L− 2σ (of course only if L ≥ 2σ). It is zero
otherwise. Now we immediately go from one to three spheres (see Fig. 5.2). The
center sphere can be transformed into a wall. We find that

Z3,L =
∫ L−3σ

3σ
dx Z1,x−σZ1,L−x−σ (5.6)

=
∫ L−3σ

3σ
dx (x−3σ)(L−x−3σ) (5.7)

= 1
6(L−6σ)3 (5.8)

= 1
3!(L−2Nσ)3 (5.9)

The general case is relegated to the homework session of this lecture. It consists in
cutting up the partition function for N + 1 spheres into a partition function for N −1
spheres in front of a wall (represented by sphere N ) and a lone sphere N + 1.
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5.1.4 Pressure and the equivalence of ensembles

As we have in our possession the partition function ZN,L = (L−2Nσ)N , we can com-
pute the pressure:

βP = ∂ logZ
∂L

=N
∂

∂L
[N log (L−2Nσ)] (5.10)

= N

L−2Nσ = N

L(1−ρ) , (5.11)

where ρ is the density (the fraction 2Nσ/L of space occupied by the spheres). The
eq. (5.11) is an analytic function, even in the limit N →∞, so that there is no phase
transition in the one-dimensional hard-sphere model in one dimension. The com-
pressibility

κ=− 1
L

∂V

∂P
(5.12)

is always positive (in a finite system as well as in the limit of L,N →∞. As discussed
in Lecture 4, this condition is a necessary stability condition in an infinite system but
it does not hold in a finite system, because of the possible presence of interfaces.

Our calculation, so far, has been in the NV T ensemble, where of course the role
of the volume is played by the length L (we are in one dimensions), and where the
temperature is irrelevant because we deal with hard spheres (π equals 0 or 1 at all
temperatures). But this gives an equation of state, where the control parameter is the
volume (in other words L), and we put it on the x-axis. We can compute the behavior
in other ensembles, for example at constant chemical potential and pressure, but let
us check, for the time being, the constant pressure (NPT ) ensemble (see [5, chap??]).
In constant pressure, but variable volume L, the partition function is:

ZNP =
∫
dLe−βPLZN,L (5.13)

=
∫ ∞

2Nσ
dL e−βPL (L−2Nσ)N︸             ︷︷             ︸

set L′=L−2Nσ

(5.14)

=
∫ ∞

0
dL′e−βP (L′+2Nσ)L′N = (5.15)

In the NPT ensemble, the volume L is an observable, and we can compute its expec-
tation value:

〈L−2Nσ〉= · · ·= N + 1
βP

, (5.16)

so that we obtain

P = N + 1
〈L−2Nσ〉 , (5.17)

which is almost the same as eq. (5.11). Task: For added symmetry, formulate eqs (5.17)
and (5.11) such that both contain a mean value.
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5.1.5 The virial expansion

An ideal gas satisfies PV = NRT or, in our variables of the one-dimensional hard-
sphere gas, it satisfies βPL/N = 1. This is nothing but the limit of eq. (5.11) in the
small-density limit ρ→ 0. The corrections to the ideal-gas behavior for physical sys-
tems in higher dimensions, and in particular for hard-sphere models, have fascinated
generations of physicists, starting with Boltzmann, in 1874. In the one-dimensional
hard-sphere gas, we can of course compute:

βPL/N = 1
1−ρ = 1 +ρ+ρ2 . . . (5.18)

= 1 +B
1
L

+C
1
L2 ... (5.19)

(the above equation is interpreted as a function of the volume L at fixed N ). The
coefficient B = 2Nσ is the second “virial” exponent. As mentioned in the lecture,
Boltzmann computed the fourth virial coefficent for three-dimensional hard spheres,
and it took half a century to check that his calculation was correct. It was believed that
the virial expansion of eq. (5.19) allowed one to access the behavior of real systems,
but this was not really true. In the one-dimensional hard-sphere gas, we can

1. compute all the virial coefficients,

2. prove that the virial expansion actually converges for all ρ < 1.

This is much more than we can usually achieve.

5.1.6 The probability to be at position x

Computing [5] the probability π(x) to be at x, for N one-dimensional hard spheres on
an interval of length L, is represented by the statistical weight of having a sphere at x
and then k more spheres to the left of x and N−1−k spheres to its right. As, initially,
we have to choose one sphere out of N to put it at x and then k spheres out of the
remaining N −1, x is given by the sum of the statistical weights of putting k disks to
the left (in the remaining left interval of length x−σ) and the N −1 remaining disks
to the right (length of interval L−x−σ):

π(x) =
N−1∑
k=0

1
ZN,L

(
N −1
k

)
Zk,x−σZN−1−k,L−x−σ︸                                                ︷︷                                                ︸
πk(x)

. (5.20)

The function π(x) is easy to write down, and also to evaluate numerically (this is
done in a program on a web site. You must to make sure that both cases in eq. (5.4)
are implemented, that is, that ZN,L = 0 if L < 2Nσ. (see Fig. 5.3). For ρ < 1/2, there
is a central region, where the density π(x) is strictly independent of x. You can check
this out numerically, but to prove it is really complicated [?].
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Figure 5.3: Probability to be at x in the one-dimensional hard-sphere gas. It is computed by placing a
first sphere at position x and by asking about the statistical weight of all possible configurations of k
spheres to the left and N −1−k spheres to the right.

5.1.7 Hard spheres on a ring of length L, correlation functions

One might think that in the problem of one-dimensional hard spheres, all we did was
to consider boundary effects close to a wall. After all, in the center of the system,
the density is constant. This reasoning is wrong: The probability to be at a point x is
closely related to the correlation function at distance x (that is, the probability to have
two disks a distance x apart).

5.2 One-dimensional Ising model

5.2.1 Partition function, Transfer-matrix derivation h = 0
We consider the Ising model in one dimensions (Ising chain), for the moment without
a magnetic field. The hamiltonian (the energy) of the system is given by

H =−J
N−1∑
i=1

σiσi+1. (5.21)

Open boundary conditions

Let us first compute the partition function for two sites (N = 2) without periodic
boundary conditions. It is given by the following four configurations and the par-
tition function is the sum of their statistical weights:

Z2 =
∑↑↑ eβJ
↑↓ e−βJ
↓↑ e−βJ
↓↓ eβJ

= 2
(
eβJ + e−βJ

)
= 4cosh (βJ) . (5.22)

In a typical “transfer-matrix” approach, we can now move from the partition func-
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5.2. One-dimensional Ising model

tion with N −1 spins to the partition function with N spins and find:

ZN =
∑ . . . ↑ ↓ = 1

2ZN−1 exp(−βJ)
. . . ↑ ↑ = 1

2ZN−1 exp(βJ)
. . . ↓ ↓ = 1

2ZN−1 exp(βJ)
. . . ↓ ↑ = 1

2ZN−1 exp(−βJ)

= 2
(
eβJ + e−βJ

)
= 4cosh (βJ) (5.23)

where each of the boxes contains all the configurations of N − 1 spins with the spin
N−1 oriented as indicated. We notice that the basic symmetry between up and down
spins requires that the partition function of a system of N−1 spins with the final spin
in up position is simply 1

2ZN−1. We find

ZN = ZN−1 [2cosh (βJ)] = Z2 [2cosh (βJ)]N−2 = 2[2cosh (βJ)]N−1 (5.24)

so that one has

F =−kT logZN = 1
β

[log2 + (N −1) log [2cosh (βJ)]] . (5.25)

Clearly this is an analytic function at all temperatures and there is no phase transition.
We used in eq. (5.23) that the partition function Z↓N−1 = . . . ↓ was the same as

Z↑N−1 = . . . ↑ . More generally, we have that

Z↑N = Z↑N−1× ↑↑+Z↓N−1× ↓↑ (5.26)

Z↓N = Z↑N−1× ↑↓+Z↓N−1× ↓↓, (5.27)

where we remember that Z↑N is the partition function of the Ising model with the
restriction that the final spin (spin N ) is “up”. We write eq. (5.27) as[

Z↑N
Z↓N

]
=
[

eβJ e−βJ
e−βJ eβJ

]
︸                ︷︷                ︸
Transfer Matrix T

[
Z↑N−1
Z↓N−1

]
(5.28)

where the 2×2 matrix here is called the transfer matrix. Clearly we have:[
Z↑N
Z↓N

]
= TN−1

[
Z↑1
Z↓1

]
(5.29)

With Z↑1 = Z↓1 = 1, you easily check the value of eq. (??) for Z2.

Periodic boundary conditions

The Ising chain of N spins with periodic boundary conditions is the same as an Ising
chain on N + 1 spins with open boundary conditions and two additional conditions:

1. If spin 1 is ↑, then spin N + 1 is ↑.

2. If spin 1 is ↓, then spin N + 1 is ↓.
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(Next week, you’ll need full understanding of the above sentence in a much more
complicated setting, so don’t hesitate to spend 20 minutes having the above sink in:
With the two conditions, we have N independent spins, and spin N + 1 is simply
glued onto spin 1, making the two to be one and the same.) We can impose these
two condition separately by considering only Z↑N+1 for the case where [Z↑1 ,Z

↓
1 ] = [1,0]

and by considering only Z↓N+1 for the case where [Z↑1 ,Z
↓
1 ] = [0,1]. We find that the

partition function is given by

Z
period
N = (TN )(1,1) + (TN )(2,2) = Tr

(
TN

)
(5.30)

where Tr stands for the trace of the matrix, the sum of its diagonal elements. TN is the
N th power of the matrix T . In eq. (5.30), one first takes the N th power of the matrix,
then sums the diagonal elements.

5.2.2 Ising partition function (finite field)
If we consider the short-range Ising model in a magnetic field, then the hamiltonian
is given by

H =−J
N−1∑
i=1

σiσi+1−h
N∑
i=1

σi (5.31)

and we may write the magnetic-field dependent term as 1
2h(σi+σi+1), altough that is

not a big deal. In any case, the transfer matrix is[
eβ(J+h) e−βJ
e−βJ eβ(J+h)

]
(5.32)

Example: For a two-site Ising chain with periodic boundary conditions, square the
matrix and take the trace, and then check that this corresponds to the naive sum over
the four terms. This is a useful exercise for next week. The outcome is

TrZ2 = e2β(J+h) + e−2βJe2β(J−h)e−2βJ . (5.33)

Also, using for a matrix
[
a b
c d

]
that the eigenvalues are

λ1,2 = 1
2
(
a+d±

√
a2 +d2‘ + 4bc−2ad

)
(5.34)

and using that the partition function with periodic boundary conditions is ZN = λN1 +
λN2 ... you easily compute the free energy. One can also compute m = −1/N∂F/∂h =
. . . and one easily finds, with “un coup de Mathematica”,

m= sinh (βh)√
sinh2 (βh) + e−4βJ

(5.35)

so that one obtains m= 0 for h→ 0 for all temperatures T .
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5.2.3 Spin correlations
The two-point function 〈sisi+`〉 can be computed within the transfer-matrix formal-
ism with the insertion of (−σz)’s:

〈sisi+`〉= tr[T iσzT `σzTN−i−`]
Z

→ λ−`+ 〈λ+|σzT `σz|λ+〉

= 〈λ+|σz|λ+〉2 +
(λ+
λ−

)−`
| 〈λ+|σz|λ−〉 |2 (5.36)

The first term is nothing but the magnetization per unit length, so the connected cor-
relation is given by

〈sisi+`〉−〈si〉〈si+`〉=
(λ+
λ−

)−`
| 〈λ+|σz|λ−〉 |2 (5.37)

and the correlation length is

ξ =
(
log λ+

λ−

)−1
. (5.38)

We note that the correlation length depends on the subleading eigenvalue of the trans-
fer matrix. Again, this is quite general.

More explicitly we find

ξ =

log
cosh(βJh) +

√
sinh2(βJh) + e−4βJ

cosh(βJh)−
√

sinh2(βJh) + e−4βJ

−1

i=

2arctanh

√
sinh2(βJh) + e−4βJ

cosh(βJh)

−1

. (5.39)

5.3 Absence of phase transition in one-dimensional
statistical systems

We discuss two reasons why in one-dimensional statistical-physics systems a phase
transition is often absent. One of the reasons is mathematical: The transfer matrix is
irreducible, so that its dominant eigenvalue is non-degenerate (there is only a single
one of them). Furthermore, one can prove that if the matrix elements are analytic
functions, then so must be the largest eigenvalue. The second reason is more qualita-
tive, often wrong, but essential to be known. It is related to domain walls.

5.3.1 Frobenius–Perron Theorem
The result obtained in Section 5.2.1 is in fact rather general, indeed one can show
that models with finite-dimensional transfer matrices can have phase transitions only
if there are forbidden (infinite energy) configurations. This is a consequence of two
theorems. The first is known as Perron-Frobenius theorem:
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Theorem 5.3.1 Let A be an irreducible matrix with non-negative elements; the maximum
eigenvalue is positive and non-degenerate.

We remind that a matrixM is reducible if and only if it can be placed into block upper-
triangular form by simultaneous row/column permutations. Clearly, a matrix with
strictly positive elements is automatically irreducible.

P tMP =
(
X Y
0 Z

)
, (5.40)

where P is a permutation matrix and X and Z are square matrices.
The second useful theorem is a well-known result in complex analysis. It can be

expressed as follows:

Theorem 5.3.2 If T (β) is a complex matrix with elements analytic functions of β, the eigen-
values are (branches) of analytic functions of β with algebraic singularities only localized at
the points at which eigenvalues split or coalesce [].

In statistical physics, the elements of the transfer matrix are generally exponen-
tials, therefore, if any configuration is allowed, all the elements of a finite transfer
matrix are nonzero and the matrix is in turn irreducible. By the Frobenius–Perron
theorem, the leading eigenvalue is non-degenerate and, from Theorem 5.3.2, turns
out to be an analytic function of β. This explains why the simplest one-dimensional
(classical) models do not exhibit phase transitions. In this argument it is of impor-
tance that the transfer matrix in a one-dimensional system does not itself depend on
N . This changes in more than one dimension, or for long-ranged interactions.

5.3.2 Domain walls in the 1D Ising model (local interactions)
Domain walls are excitations where the system of Ising spins is separated into one
part with all up spins, followed by a part with all down spins. However, it is easy to
see that the energy of a domain wall is J , but the entropy of a domain wall (entropy:
Logarithm of the number of microstates), the log of the number of possibilities, which
is L/a, where L is the system size and a = 1 the lattice parameter. We find that the
free energy is

∆F ∼−kT log
(
L

a

)
(5.41)

which is negative. It is therefore favorable to add a domain wall, or two domain walls,
and destroy the ferromagnetic ground state. We should be warned that domain wall
(or spin wave) arguments are in general easy, and very often they turn out to be
wrong.

5.3.3 Domain walls in the 1D Ising model with 1/r2 interac-
tions

Notable work on the one-dimensional Ising model with 1/r2 interaction (all spins
interacting, but with an energy decreasing with the square of the distance) is due to
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Fisher et al (1972)[12]. There was also the influential mathematical proof by Dyson[13],
which showed that for interactions decaying slower than 1/r2, there had to be a phase
transition, however this did not clear up the situation of the 1/r2 interaction.

Of particular interest is the two-page 1969 article by Thouless[14], which uses spin
waves to explain that something unexpected must happen for the 1/r2 Ising model.
This work cleared the way for the establishment of Kosterlitz–Thouless theory. In-
deed, the one-dimensional Ising model with a 1/r2 interaction undergoes such a tran-
sition. There is also important work by Kosterlitz [15].

Figure 5.4: Phase diagram of long-range Ising models in D dimensions with interaction 1/rD+σ

(Illustration from a talk by Synge Todo, Univ of Tokyo)

This is an example of where the domain wall argument is not easy, and (as much
research has shown) not wrong. It goes back to Thouless[14]. Consider a hamiltonian
with interactions

H =−
∑
i,j

σiσj
(i− j)2 (5.42)

The cost of a domain wall at position x is

E = J

∫ x−a/2

0

∫ L

x+a/2

dx1 dx2
(x1−x2)2 (5.43)

Integrating this energy twice, one may see that the energy of a domain wall on a
system of length Lwith lattice parameter a is logL/a. (This precise calculation will be
the object of Homework 06). Both the energy of a domain wall and its entropy now
scale like logL. At low temperature, it becomes unfavorable to put a domain wall,
while at high temperature, domain walls are favored. This result of Thouless[14] has
been confirmed by much further research. See Fig. 5.4 for the general situation of
long-range Ising models in D dimensions.
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Lecture 6

Two-dimensional Ising model:
From Ising to Onsager (Transfer
matrix 2/2)

in this lecture, we introduce, on the one hand, to the Peierls argument[16] that proved
the existence of a phase transition at finite temperature in the Ising model (this week’s
TD elaborates on this theme. ). On the other hand, we concentrate on the transfer-
matrix solution famously obtained by Onsager in 1944[17]. Our discussion relies on
the first part of a 1964 review paper by Schultz, Mattis, and Lieb[18, pp 856-862], and
a few pages in the book by Plischke and Birgersen[19, pp 184-189], although much of
our presentation is our own.

6.1 Peierls argument
The Ising model, in the 1920s and 1930s, was a rather marginal subject of study,
whose motivation changed several times until Heisenberg clarified the connection
with quantum mechanics: The local spins in it would correspond to electronic spins.
Nevertheless, it was believed that the model was too simple to “explain” ferromag-
netism as it (was believed) to not have spontaneous magnetization. This belief was
shattered in 1936 with Peierls’ paper[16], who proved rigorously that at small but fi-
nite temperature, a configurarion of the two-dimensional Ising model with N spins
had permanent magnetization. To cite the master (p. 479):

We show that at sufficiently low temperatures the area enclosed by closed
boundaries and cut off by open ones is only a small fraction of the total
area. Hence the majority of the magnets must be of equal sign and the
model corresponds to our definition of a ferromagnet.

Peierls provided an early “duality” argument, which is also the straightforward
generalization of the entropy argument for domain walls. Consider a configurations
as shown in Fig. ??. Consider now a single domain enclosing spins of a certain species
(either “+” or “-”). At the domain boundary, spins of different sign meet. This means
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that each boundary element costs an energy of 2J . Roughly, if the boundary of a
single domain has length L, then it comes with a Boltzmann factor exp(−2βL) or
in other words λL where λ = exp(−2β). (Small λ correspond to large β, thus small
temperatures.) On the other hand, if there is a boundary at a certain position, there
are (less than) 4 possibilities go on, making that the partition function is

Z =
∑
L

(4λ)L = 1
1−4λ if 4λ < 1 (6.1)

It follows that the probabilities of boundaries of length L starting from a given point
are like

(1−4λ)(4λ)L (6.2)

We show that at sufficiently low temperatures the area enclosed by closed boundaries
and cut off by open ones is only a small fraction of the total area. Hence the majority
of the magnets must be of equal sign and the model corresponds to our definition of
a ferromagnet. and the number of boundaries of length L in a system of N spins is

Z(L) = N

L
(4λ)L (1−4λ). (6.3)

The total area enclosed is smaller than

Thus it follows rigorously that for sufficiently low temperatures the Ising
model in two dimensions shows ferromagnetism and the same holds a
fortiori also for the three-dimensional model.

We can make the following comments:

• See this week’s TD for the generalization of Peierls’argument to higher dimen-
sions.

• The point in the argument is that ferromagnetism sets in at a small finite tem-
perature in the limit N →∞. It is of course child’s play to show that at T = 0
the ground state of the Ising model is ferromagnetic.

• For hard spheres in two and higher dimensions, a rigorous mathematical argu-
ment for the existence of an ordered state at high density (but below the close-
packing density) is missing.

6.2 Onsager solution for the two-dimensional Ising
model

6.2.1 Transfer matrix for the 2×M Ising model
Following up on last week’s treatment of the transfer matrix, we consider the trans-
fer matrix for the M × 2 Ising model for arbitrary M . In the lecture, we do not con-
sider periodic boundary conditions in the “short” (the “′′y) dimension (see this week’s
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homework), but will be able to look at periodic boundary conditions in x as discussed
in Lecture 06. Material is covered in Schulz, Mattis and Lieb [?, pp 856-863], where
we leave the second part (pp. 863-871) for another time. Material in this lecture is also
treated in Plischke and Bergerson [19, 184-189], of which pp 190-199 is left out.

Analysis of V1 and of V2 for a width M of spins in the y direction

• V2 describes the interactions in th horizontal direction.

• V2(k, l) = exp[(M −2n)K], where n is the number of different spins in states k
and l.

• V1 describes the interactions in the vertical direction.

• V1 is a diagonal matrix (!)

V1(k,k) = exp[K ( # equal links−# unequal links)] (6.4)

• Periodic boundary conditions are super easily incorporated, and the above ma-
trix is OK for any value of My.

• If we use V2V1 instead of V 1/2
1 V2V

1/2
1 , we would have a non-symmetric transfer

matrix, but the same trace.
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