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In this third lecture, we consider Markov-chain sampling in an abstract setting
in one dimension. We discuss some theory, but also seven ten-line pseudo-code
algorithms, none of them approximate, and all of them as intricate as they are short.
At the end, we discuss the foundations of statistical mechanics, as seen in a one-
dimensional example.
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2 Markov-chain sampling

2.3 Reversible Markov chains

The material in this section is taken from Ref. [2], which presents a dozen of distinct Markov-
chain Monte Carlo algorithms to sample the Boltzmann distribution of the anharmonic oscillator.
We present two reversible Markov chains (plus a patch) before continuing with two non-reversible
algorithms, in Sec. 2.4. In what follows, we consider the probability distribution

π24(x) = exp
(
−x2/2− x4/4

)
, (2.11)
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This distribution (that we already encountered in Lecture 1) has—in principle—a normalization
factor, but we will not worry about it. The harmonic part of this distribution is referred to as
π2 and the quartic term as π4.

π2(x) = exp
(
−x2/2

)
, π4(x) = exp

(
−x4/4

)
. (2.12)

2.3.1 Metropolis algorithm

Algorithm 2.2 (metropolis) implements the symmetric a priori probability as a uniform dis-
placement ∆ = x′ − x which is as likely as −∆. The Metropolis filter is implemented with a
uniform random number Υ between 0 and 1, which we refer to as a “pebble.” For large times
t, when the initial configuration is forgotten, the algorithm samples π24. In all the following
Markov-chain algorithms, this large t condition is understood.

procedure metropolis

input x (sample at time t)

∆← ran(−δ, δ)
x′ ← x+∆
Υ← ran(0, 1)

if Υ < min

[
1,

π24(x
′)

π24(x)

]
: x← x′

output x (sample at time t+ 1)

——

Algorithm 2.2: metropolis. Sampling π24 with the Metropolis algorithm.

2.3.2 Factorized Metropolis algorithm

The Metropolis algorithm is really famous, but it is not the end of history. A modern variant is
the factorized Metropolis algorithm that we do not discuss here in detail, but only apply to the
anharmonic oscillator, where it is written as:

P fact
24 (x, x′) = min

[
1,

π2(x
′)

π2(x)

]
min

[
1,

π4(x
′)

π4(x)

]
. (2.13)

The factorized Metropolis algorithm satisfies detailed balance:

π24(x)P
fact
24 (x, x′)

∝ π2(x)min

[
1,

π2(x
′)

π2(x)

]
︸ ︷︷ ︸
min[π2(x),π2(x′)]: x⇔x′

π4(x)min

[
1,

π4(x
′)

π4(x)

]
︸ ︷︷ ︸
min[π4(x),π4(x′)]: x⇔x′

∝ π24(x
′)P fact

24 (x′, x), (2.14)

where we have dropped the symmetric a priori probabilityA. Algorithm 2.3 (factor-metropolis)
implements the factorized Metropolis filter: Algorithm 2.3 (factor-metropolis) (which is
naive) can be patched by replacing its random number Υ by two independent random num-
bers Υ2 and Υ4, as shown in Alg. 2.4 (factor-metropolis(patch)). There, a proposed move is
accepted by consensus if all the factors accept it. In Alg. 2.4 (factor-metropolis(patch)), two
independent decisions are taken,1 one for the harmonic and one for the quartic factor, and the

1one can view this as the sampling of two independent Boolean random variables, (see Ref. [6]), of which the
final decision is the conjunction.
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procedure factor-metropolis

input x
∆← ran(−δ, δ)
x′ ← x+∆
Υ← ran(0, 1)

if Υ < min

[
1,

π2(x
′)

π2(x)

]
min

[
1,

π4(x
′)

π4(x)

]
:{

x← x′

output x
——

Algorithm 2.3: factor-metropolis. Sampling π24 naively with the factorized Metropolis filter (see
Ref. [2]).

proposed move is finally accepted only if it is accepted by both factors. The output is identical
to that of Alg. 2.3 (factor-metropolis).

procedure factor-metropolis(patch)

input x
∆← ran(−δ, δ)
x′ ← x+∆
Υ2 ← ran(0, 1) ; Υ4 ← ran(0, 1)

if Υ2 < min

[
1,

π2(x
′)

π2(x)

]
and Υ4 < min

[
1,

π4(x
′)

π4(x)

]
:{

x← x′ (move accepted by consensus)

output x
——

Algorithm 2.4: factor-metropolis(patch). Patch of Alg. 2.3, implementing the consensus principle
(see Ref. [2]).

2.3.3 More reversible Markov-chain algorithms . . .

A number of other reversible Markov chains for sampling π24 are discussed in Ref. [2].

2.4 Non-reversible Markov chains

In a tradition that started with the Metropolis algorithm many decades ago, Markov chains
are normally designed with the restrictive detailed-balance condition, although they are only
required to satisfy global balance. In this section, we illustrate more recent attempts to overcome
the detailed-balance condition in a systematic way, within the framework of “lifted” Markov
chains. Background and references can be found in [2].

2.4.1 Lifting and the zig-zag algorithm

The Metropolis algorithm proposes positive and negative displacements ∆ for the anharmonic
oscillator with symmetric a priori probabilities (see Alg. 2.2 (metropolis)). The filter then
imposes that the net flow vanishes, so there will be as many particles going from x to x + ∆
as in the reverse direction, even if, say, π(x) ≪ π(x +∆). To break detailed balance and only
satisfy global balance, (while keeping π24 as a stationary distribution), we first suppose that
the positions x lie on the grid {. . . ,−2∆,−∆, 0,∆, 2∆, . . . }, with moves allowed only between
nearest neighbors. Each configuration x is duplicated into a forward-moving one {x,+1}, and a
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Figure 2.1: Discretized lifted Metropolis algorithm for the anharmonic oscillator. The flow into the
lifted configuration {x,+1} is indicated [see Eq. (2.18)].

backward-moving one {x,−1}. From a lifted configuration {x, σ}, the lifted Metropolis algorithm
proposes only a forward move if σ = 1, and only a backward move if σ = −1. In summary,

P lift({x, σ}, {x+ σ∆, σ}) = min

[
1,

π24(x+ σ∆)

π24(x)

]
, (2.15)

where σ = ±1. When this move is rejected by the Metropolis filter, the algorithm flips the
direction and instead moves from {x, σ} to {x,−σ}:

P lift({x, σ}, {x,−σ}) = 1−min

[
1,

π24(x+ σ∆)

π24(x)

]
. (2.16)

This algorithm clearly violates detailed balance as there is thus no backward flow for σ = +1
and no forward flow for σ = −1. On the other hand, the lifted Metropolis algorithm satisfies
the global-balance condition with the ansatz

πlift
24 ({x, σ}) =

1

2
π24(x) for σ = ±1. (2.17)

For example, the flow into the lifted configuration {x,+1} satisfies

π24({x,+1})
= π24({x−∆,+1})P lift({x−∆,+1}, {x,+1})
+ π24({x,−1})P lift({x,−1}, {x,+1}). (2.18)

The two contributions on the right-hand side of Eq. (2.18) correspond on the one hand to the
accepted moves from {x−∆,+1}, and on the other hand to the lifted moves from {x,−1}, when
the move from {x,−1} toward {x − ∆,−1} is rejected (see Fig. 2.1). Equation (2.18) can be
transformed into

π24(x) = π24(x−∆)min

[
1,

π24(x)

π24(x−∆)

]
+ π24(x)

{
1−min

[
1,

π24(x−∆σ)

π24(x)

]}
, (2.19)

which is identically satisfied. We have shown that the lifted Metropolis algorithm satisfies the
global-balance condition for the ansatz of Eq. (2.17), which splits π24(x) equally between {x,+1}
and {x,−1}. The sequence π{t} will actually converge to this stationary distribution.
In the lifted Metropolis algorithm, the particle, starting from x0 = 0, climbs uphill in direction

σ until a move is rejected by the filter, when it remains at its current position but reverses
its velocity to −σ. The following downhill moves, again without rejections, are followed by
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another uphill climb, and so on, criss-crossing between the two wings of the potential U24. It
outputs configurations {x, σ} such that, remarkably, the x-component samples π24. This curious
algorithm is implemented in Alg. 2.5 (lifted-metropolis), where we (almost) silently replaced
the fixed grid of positions by a sampling of ∆.

procedure lifted-metropolis

input {x, σ} (lifted sample at time t)

∆← ran(0, δ) (δ > 0)

x′ ← x+ σ∆ (x′ in direction σ from x)

Υ← ran(0, 1)

if Υ < min

[
1,

π24(x
′)

π24(x)

]
: x← x′

else: σ ← −σ
output {x, σ} (lifted sample at time t+ 1)

——

Algorithm 2.5: lifted-metropolis. Non-reversible lifted version of Alg. 2.2 (metropolis). The
x-positions that are output by this program sample π24 (see Ref. [2]).

2.4.2 Event-driven Markov processes

Markov chains in continuous time are called Markov processes. To approach these, we consider
Algorithm 2.5 (lifted-metropolis) with a grid of positions {. . . ,−2∆,−∆, 0,∆, 2∆, . . . } and
nearest-neighbor moves. In Alg. 2.5 (lifted-metropolis), we thus input a fixed ∆ and scrap
the line ∆ ← ran(0, δ), then study it in the limit of small ∆. We rescale time such that
a displacement ±∆ is itself undertaken in a time interval ∆. The particle in the anharmonic
oscillator thus moves with unit absolute velocity, whose sense is reversed when there is a rejection.
The downhill moves are all accepted, and even uphill moves are accepted with a probability close
to one. We may simulate each of these steps, but it’s preferable to sample the position of the
next rejection. As an example, let us consider a sequence of uphill moves in positive direction
from x = 0. The probability for accepting an entire sequence of n subsequent uphill moves, at
positions 0,∆, . . . , (n− 1)∆, and then rejecting the move n+ 1, is

P(0→ xev) = e−β∆U24(0)···∆U24[(n−1)∆]︸ ︷︷ ︸
n accept

[
1− e−β∆U24(n∆)

]
︸ ︷︷ ︸

reject, expand to 1st order

→ βe−βU24dU24. (2.20)

In the small-∆ limit, the rejection is here expanded to first order, and ∆U is replaced by dU .
In our example of the anharmonic oscillator starting at x = 0, all the increments of ∆U24 up
to position x add up to the potential U24(x). Equation (2.20) indicates that the value of U24

at which the velocity is reversed follows an exponential distribution in U24. Remembering from
Lecture 1 how to sample an exponential random variable, we obtain

U24(xev) = −β−1 log ran(0, 1) , (2.21)

which can be inverted as U24(xev) = x2ev/2 + x4ev/4, with

xev = σ

√
−1 +

√
1− 4β−1 log ran(0, 1). (2.22)

Algorithm 2.6 (zig-zag) implements this event-driven, continuous-time, Markov process and
manages to move forward and backward. The equal-time samples again sample the Boltzmann
distribution π24 (see Fig. 2.2).
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procedure zig-zag

input {x, σ}, t (lifted sample with σx ≤ 0 )

xev ← σ
√
−1 +

√
1− 4β−1 log ran(0, 1) (see Eq. (2.22))

tev ← t+ |xev − x|
for t∗ = int(t) + 1, . . . , int(tev):{

print x+ σ(t∗ − t) (equal-time samples)

x← xev; σ ← −σ; t← tev (“zig-zag”)

output {x, σ}, t
——

Algorithm 2.6: zig-zag. Continuous-time, event-driven version of Alg. 2.5 (lifted-metropolis).‘
The x-positions output by the print statement sample π24 (see Ref. [2]).

Figure 2.2: Zig-zag algorithm (continuous-time event-driven lifted Metropolis chain). (a): The particle
swings about the origin, turning around at positions xev [sampled by Eq. (2.22)]. (b):
Piecewise deterministic constant-velocity trajectory. Particle positions are sampled at
equal time steps (see Ref. [2]).

2.4.3 More non-reversible Markov-chain algorithms...

There are many more ideas in Markov-chain Monte Carlo (for a starter, try Ref. [2]), even if
we restrict ourselves, as we did here, to true samplers of π, without any correction, in the limit
of large times. From our modest beginnings, we already see a world of infinite possibilities.

3 Maxwell distribution, thermostats, Boltzmann distribution

In Lecture 2, and in the present Lecture 3, we were concerned with more and more adhoc
Markov chains which sample a given distribution π24 or a distribution π2. These distributions
were connected to potentials, for example π24 was connected to the potential U24. Here, we
address the question of how the Boltzmann distribution π24 actually arises from the potential
U24. This leads us to molecular dynamics with a heat bath. In molecular dynamics (as applied
to our simple one-dimensional model), there is a position and a velocity whereas in Monte Carlo,
we only saw the position x. We will deepen our understanding in a special case, in Lecture 4,
so what we discuss here is only a preview.

3.0.1 Thermostats and the Boltzmann distribution

We consider the anharmonic oscillator as an isolated system that conserves the total energy. In
between the turning points −xmax and xmax the kinetic energy (with the mass equal to unity)
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Figure 3.1: Isolated anharmonic oscillator

is 1
2(dx/dt)

2, and conservation of energy can be written as

E =
1

2

(
dx

dt

)2

+ U24(x)⇔
dx

dt
= ±

√
2 [E − U24(x)], (3.1)

which gives

dt = ±

√
1

2 [E − U24(x)]
dx. (3.2)

To simulate the isolated anharmonic oscillator, we could numerically integrate the first-order
ordinary differential equation on the right of Eq. (3.1) over a quarter period and then piece
together the entire trajectory of Fig. 3.2a. However, this method is specific to one-dimensional
dynamical systems. To reflect the general case, we numerically integrate Newton’s law for the
force F :

F = m
d2x(t)

dt2
, with F = −dU24

dx
= −x− x3. (3.3)

By substituting the time differential dt by a very small finite interval ∆t, appropriate for stepping
from t to t+∆t, and to t+ 2∆t, and so on, we obtain

x(t+∆t) = x(t) + v(t)∆t, (3.4)

v(t+∆t) = v(t)− (x+ x3)∆t. (3.5)

procedure isolated-dynamics

input x, v, t
t← t+∆t
x′ ← x+ v∆t
v ← v −

(
x+ x3

)
∆t

x← x′

output x, v, t
——

Algorithm 3.1: isolated-dynamics. Naive integration of Newton’s equations for the isolated
anharmonic oscillator (see Fig. 3.2).
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Figure 3.2: Trajectory of the isolated anharmonic oscillator

The outcome of this simulation corresponds not at all to the Boltzmann distribution.

3.0.2 Molecular dynamics with a thermostat

We return to the Newtonian dynamics of the anharmonic oscillator [2], but we take it out of
isolation and have it interact with an infinite bath of hard spheres via thermostat (see Fig. 3.3.)

Figure 3.3: Anharmonic oscillator coupled to a heat bath

Statistical mechanics teaches us that the particles in the heat bath are Maxwell-distributed
(we will discuss this point more in detail in Lecture 4).

π(v)dv ∝ e−βv2/2dv, (3.6)

This is exactly the same problem as the sampling of positions on the surface of a hypersphere.
Particles that hit the thermostat behave differently. In particular, because the thermostat lies

at a fixed position (up to an infinitesimal interval), its velocity follows the distribution

π∗(v)dv = β|v|e−βv2/2dv, (3.7)

often called the Maxwell boundary condition. It differs by the prefactor β|v| from the Maxwell
distribution of one velocity component. The velocity distribution of the thermostat in Eq. (3.7)
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can be sampled as

v = ±

√
−2 log ran(0, 1)

β
, (3.8)

(it is an exponential distribution of the random variable v2).

procedure thermostat-dynamics

input x, v, t
x′ ← x+ v∆t
t← t+∆t
Υ← ran(0, 1)
if x · x′ < 0 and Υ < 1/2:{

v ← −sign(v)
√
−2β−1 log ran(0, 1) (see Eq. (3.8))

else:{
v ← v − (x+ x3)∆t
x← x′

output x, v, t
——

Algorithm 3.2: thermostat-dynamics. Naive solution of Newton’s equations for the anharmonic
oscillator with the semi-permeable thermostat at x = 0 (see Fig. 3.4).

Figure 3.4: Trajectory of the anharmonic oscillator coupled to a heat bath.

Output of Alg. 3.2 (thermostat-dynamics) can be histogrammed to see that the distribution
of positions is exactly (up to discretization errors in ∆t) the Boltzmann distribution of the
anharmonic oscillator, proving (experimentally but by our own means) that the Boltzmann
distribution describes a subsystem interacting with a heat bath. But what about the distribution
of velocities? As we only give our particle a kick at x = 0, we’d surely suppose that it runs
out of steam as it climbs up the potential. But this is not the case, and Fig. 3.5 illustrates it
by histogramming probability distributions of the velocities at different values up the hill. As
statistical mechanics dictates, we have independence of distributions of positions and velocities.
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