Tutorial 6, Statistical Mechanics: Concepts and applications 2019/20 ICFP Master (first year)

Botao Li, Valentina Ros, Victor Dagard, Werner Krauth
Tutorial exercises

I. ISING MODEL IN $D \geq 2$ - THE PEIERLS ARGUMENT

1. Peierls argument for the Ising model in $D>2 \quad$ C. Bonati, Eur. J. Phys. 35, 035002 (2014)

The model: Consider a classical Ising ferromagnet, defined for spins $\sigma \in\{+1,-1\}$:

$$
\begin{equation*}
E=-J \sum_{(i, j)} \sigma_{i} \sigma_{j}-h \sum_{i} \sigma_{i} \tag{1}
\end{equation*}
$$

where J is assumed to be positive and we set the applied magnetic field h to zero. We define the average magnetization per lattice site as

$$
\begin{equation*}
m=\frac{1}{N} \sum_{i} \sigma_{i}=\frac{N_{+}-N_{-}}{N}=1-2 \frac{N_{-}}{N} \tag{2}
\end{equation*}
$$

where N is the total number of spins and $N_{ \pm}$is the number of ± 1 spins. In $D \geq 2$, this system undergoes a phase transition at the critical temperature T_{c}. In the paramagnetic phase $\left(T>T_{c}\right)$, the average magnetization in thermodynamic limit $\langle m\rangle$ vanishes, whereas in the ferromagnetic phase $\left(T<T_{c}\right)$ it does not. The Peierls argument allows one to show that $\left\langle N_{-}\right\rangle / N<1 / 2-\epsilon$ (for every $N)$ in ferromagnetic phase, from which it follows that $\langle m\rangle>0$. The argument in $D=2$ has been presented in the lecture: in this exercise we generalize it to the case $D>2$.
Peierls argument for the Ising model in $D \geq 3$: Consider a three dimensional cubic lattice of dimensions $N^{1 / 3} \times N^{1 / 3} \times N^{1 / 3}$. The Peierls contours are in this case surfaces, but their construction proceeds along the same lines as in the two dimensional case.
(a) Label an arbitrary Peierls surface by γ_{S}^{i}, where S is the surface area measured in units of elementary squares. Show that for a fixed spin configuration, the following bound holds:

$$
\begin{equation*}
N_{-} \leq \sum_{S \geq 6, \text { even }} \sum_{i=1}^{N(S)} V\left(\gamma_{S}^{i}\right) X\left(\gamma_{S}^{i}\right) \tag{3}
\end{equation*}
$$

where $X\left(\gamma_{S}^{i}\right)$ is non-zero iff γ_{S}^{i} belongs to the configuration, $V\left(\gamma_{S}^{i}\right)$ is the volume enclosed by the Peierls surface and $N(S)$ the total number of surfaces or area S.
: In a fixed configuration, each negative spin is enclosed within at least one Peierls surface, but the latter can include also positive spins (see Fig. 1 of Bonatti's paper for a $D=2$ example). Thus the sum of the volumes enclosed in all Peierls surfaces gives an upper bound to N_{-}.
(b) Give an upper bound on the volume inside a surface $V\left(\gamma_{S}^{i}\right)$ as a function $V(S)$ depending only the surface area S.
: Let \mathcal{R} be the smallest parallelogram containing the surface γ_{S}^{i}. Its edges x_{1}, x_{2}, x_{3} must satisfy $x_{i} \leq S / 4$, and each x_{i} can be at most $(S-2) / 4$. This gives:

$$
\begin{equation*}
V\left(\gamma_{S}^{i}\right) \leq \max _{x_{i} \leq(S-2) / 4} x_{1} x_{2} x_{3} \leq \max _{x_{1} \leq S / 4} x_{1} \max _{x_{2} \leq S / 4} x_{2} \max _{x_{3} \leq S / 4} x_{3}=\left(\frac{S}{4}\right)^{3} \tag{4}
\end{equation*}
$$

(c) Find an upper bound $X(S)$ on the thermal average $\left\langle X\left(\gamma_{S}^{i}\right)\right\rangle$.
: With exactly the same argument as for $D=2$ we get:

$$
\begin{equation*}
\left\langle X\left(\gamma_{S}^{i}\right)\right\rangle \leq \frac{\sum_{c \in \mathscr{C}} e^{-\beta E(c)}}{\sum_{\bar{c} \in \overline{\mathscr{C}}} e^{-\beta E(\bar{c})}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
E(c)=E(\bar{c})+2 J S \tag{6}
\end{equation*}
$$

Substituting this into the above inequality we get

$$
\left\langle X\left(\gamma_{L}^{i}\right)\right\rangle \leq \frac{e^{-2 J \beta L} \sum_{c \in \mathscr{C}} e^{-\beta E(\bar{c})}}{\sum_{\bar{c} \in \overline{\mathscr{C}}} e^{-\beta E(\bar{c})}}
$$

where the two sums are equal to each other because for a given surface, for every configuration c, there is exactly one configuration \bar{c}. This results in the following upper bound on $\left\langle X\left(\gamma_{S}^{i}\right)\right\rangle$:

$$
\begin{equation*}
\left\langle X\left(\gamma_{S}^{i}\right)\right\rangle \leq X(S) \equiv e^{-2 J \beta S} \tag{7}
\end{equation*}
$$

(d) Derive an upper bound on the number $N(S)$ of closed surfaces of area S.
: This is obtained bounding the number of ways in which a closed surface of size S can be built by combining S faces of unit area. At the first step, the first face can be placed around any of the N lattice sites, in 3 possible orientations. At any subsequent step n, one additional face is attached to each of the s_{n} links left open at the previous step: for each added face there are at most 3 possible orientations. This is iterated until the step \bar{n} such that $1+\sum_{n=2}^{\bar{n}} s_{n}=S$. Therefore we get:

$$
\begin{equation*}
N(S) \leq N \frac{3^{S}}{S} \tag{8}
\end{equation*}
$$

where the additional factor of S in the denominator accounts for the different possible choices of which is the first one out of the S faces.
(e) Use the quantities you calculated to write down an expression for $\left\langle N_{-}\right\rangle$, which will be proportional to a sum over surface areas S . The final result should be of the form $\left\langle N_{-}\right\rangle \leq N f_{3}(x)$ where $x=9 e^{-4 J \beta}$ and $f_{3}(x)$ is a continuous function of x.
: Combining all estimates one gets

$$
\begin{equation*}
\left\langle N_{-}\right\rangle \leq \sum_{S \geq 6, \text { even }} V(S) N(S) X(S)=\frac{N}{4^{3}} \sum_{S \geq 6, \text { even }} S^{2}\left(3 e^{-2 \beta J}\right)^{S} \tag{9}
\end{equation*}
$$

Writing $S=2 k$ we get

$$
\begin{equation*}
\left\langle N_{-}\right\rangle \leq \frac{N}{16} \sum_{k \geq 3} k^{2}\left(9 e^{-4 \beta J}\right)^{S}=\frac{N}{16}\left[\sum_{k \geq 1} k^{2} x^{k}-x-4 x^{2}\right] \tag{10}
\end{equation*}
$$

Using that

$$
\begin{equation*}
\sum_{k \geq 1} k^{2} x^{k}=\frac{x(1+x)}{(1-x)^{3}} \tag{11}
\end{equation*}
$$

one gets $\left\langle N_{-}\right\rangle \leq N f_{3}(x)$ with

$$
\begin{equation*}
f_{3}(x)=\frac{x^{3}}{16(1-x)^{3}}\left(9-11 x+4 x^{2}\right) \tag{12}
\end{equation*}
$$

(f) Use the same reasoning to arrive at a similar result for the general $D>3$ case.
: In D dimensions, let γ_{H}^{i} denote a Peierls hypersurface of area H. The bounds generalize to:

$$
\begin{equation*}
V\left(\gamma_{H}^{i}\right) \leq V(H)=\left(\frac{H}{2(D-1)}\right)^{D}, \quad N(H) \leq D N \frac{3^{H}}{3 H} \tag{13}
\end{equation*}
$$

and $\left\langle X\left(\gamma_{H}^{i}\right)\right\rangle \leq X(H)=e^{-2 J \beta H}$, so that

$$
\begin{equation*}
\left\langle N_{-}\right\rangle \leq \frac{N D}{6(D-1)^{D}} \sum_{k \geq D} k^{D-1} x^{k} \tag{14}
\end{equation*}
$$

and the sum is convergent.
(g) Why cannot the Peierls argument be applied to the one dimensional Ising model?
: In $D=1$ the domains are segments of length H : while $V(H)$ and $N(H)$ grow with $H, X(H)=$ $e^{-4 \beta J}$ does not: the upper-bound is thus a diverging series.

