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In this second lecture, we consider Markov-chain sampling, from the adults’ game
on the Monte Carlo heliport to modern ideas on non-reversibility. We discuss a lot
of theory, but also six ten-line pseudo-code algorithms, none of them approximate,
and all of them as intricate as they are short.
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2 Markov-chain sampling

We discuss Markov chains, initially in a practical context, but then in (almost) full mathematical
rigor. We then walk through an exhibition of algorithms that illustrate some major themes: the
Metropolis algorithm and its modern variants, non-reversibility and continuous-time Markov
processes.
Background material for this second lecture is contained in the book by Levin et al. [2], which

treats the basic theory of Markov chains, transition matrices, mixing and relaxation times. A
recent educational paper with Tartero [3] provides more details on the example algorithms. The
heliport game and the Metropolis–Hastings algorithm are treated in more depth in Ref. [4].
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2.1 Adults on the Monte Carlo heliport

Markov-chain sampling—believe it or not—comes from a game that adults play on the Monte
Carlo heliport in the early evenings, with all the helicopters safely stowed away (see Fig. 2.1).
Up to a rescaling of lengths, it realizes the same sample space Ω□ as the children had on the
beach.

Figure 2.1: Adults throwing pebbles on the Monte Carlo heliport, and computing the number π. The
game always starts at the clubhouse. A curious procedure is followed when a pebble falls
outside the pad.

Adults fling pebbles inside the square but, because of its sheer size, they cannot possible place
pebbles randomly. So they use a different algorithm. They start at the clubhouse (position
(1, 1)),1 and carry along with them as many pebbles as their handbags will hold, then throw a
pebble randomly around them, go to where it has landed, then throw again, and again. When
they throw a pebble outside the square of the heliport, they fetch it and have it placed on top
of the pebble that marked their last position, then continue. To explain exactly what we mean
with the adults’ algorithm, we again resort to pseudo-code (see Alg. 2.1 (markov-pi)).

procedure markov-pi

Nhits ← 0; {x, y} ← {1, 1}
for i = 1, . . . , N :

∆x ← ran(−δ, δ)
∆y ← ran(−δ, δ)
if |x+∆x| < 1 and |y +∆y| < 1: then{

x← x+∆x

y ← y +∆y

if x2 + y2 < 1: Nhits ← Nhits + 1
output Nhits

——

Algorithm 2.1: markov-pi. Markov-chain Monte Carlo algorithm for computing π in the adults’
game. The game starts at the clubhouse; the throwing range δ remains fixed.

At the end of the game, the pattern of pebbles looks weird (see Fig. 2.2), and certainly differs
from that in the children’s game in Lecture 1. However, when the adults count the number of
pebbles inside the circle in the square, they again get a decent—if less precise— approximation
of the number π, (see Table 2.1, and again [4, Sect. 1.1] for the full story). We remember in
this context that probability theory, as codified in the Kolmogoroff axioms, assigns probabilities
in continuous sample spaces not to single samples but to subsets of Ω called events (see Ref. [1,
Chap. 1.3]).

1If they could start at a random position, there would be no point in their game
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Run Nhits Estimate of π

1 3123 3.123
2 3118 3.118
3 3040 3.040
4 3066 3.066
5 3263 3.263

Table 2.1: Results of five runs of Alg. 2.1 (markov-pi) with N = 4000 and a throwing range δ = 0.3

Figure 2.2: Monte Carlo heliport after the game. Piles of pebbles can be seen near the boundaries,
and especially near the corners.

The players on the heliport implement the 1953 Metropolis algorithm [5]. In this lecture, we
will discuss it, prove its correctness, analyze it, then overcome it and confront it with a number
of “beyond-Metropolis” algorithms.

2.1.1 The transition matrix, balance conditions

To discuss the mathematical structure of the adults’ game and other Markov chains, we imagine
its sample space Ω discretized, with a finite number of samples x ∈ Ω. The possible moves,
from x to x′, then have probabilities that constitute a transition matrix P (x, x′). The initial
configuration, at the clubhouse (x, y) = (1, 1) means that the probability distribution π{t=0},
is a Kronecker δ function at (1, 1) and not at all what we want it to be, namely constant on
the landing pad. We study how π{t=0} = δ(1, 1) gives rise to wider and wider distributions
π{t=1}, π{t=2}, . . . , as time evolves, and then becomes flat, in the late stages of the heliport
game, so to say. The connection between time t − 1 and time t is made by what is called a
transition matrix P , which has a double meaning. On the one hand, it encodes a Monte Carlo
algorithm: P (x, x′) is defined as the (conditional) probability to move from x to x′ in one step,
The condition

∑
x′ P (x, x′) = 1 expresses the conservation of probabilities. On the other hand,

the transition matrix gives the relationship between the probability distributions π{t−1} and π{t}

at subsequent time steps t− 1 and t:

π{t}(x) =
∑
x′∈Ω

π{t−1}(x′)P (x′, x). (2.1)

At time t = 0, π{t=0} is a function that we can sample. Most of the time, it is a single
configuration (in our example, it’s a Delta function at the clubhouse).
In order for the distribution π{t} at late times to correspond to the distribution π (in the

example of the heliport, for it to be uniform in the square), we may drop the time indices in
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eq. (2.1), and arrive at the global-balance condition

π(x) =
∑
x′∈Ω

π(x′)P (x′, x) ∀x ∈ Ω, (2.2)

a necessary condition on the transition matrix P (in other words, the Monte Carlo algorithm)
to converge towards π. For a transition matrix that is irreducible, the global-balance condition
is satisfied for a unique stationary distribution π. “Irreducible” means that (for a finite Ω) the
probability to move in a finite time from any x to any x′ is finite.
Any irreducible transition matrix has a unique π, but this distribution is not necessarily the

limit π{t} for t → ∞ for all initial distributions π{0}. Convergence towards π of an irreducible
Markov chain requires that it is aperiodic, that is, that the return times from a configuration
i back to itself {t ≥ 1 : (P t)(x, x) > 0} are not all multiples of a period larger than one. For
irreducible, aperiodic transition matrices, P t = (P t)(x, x′) is a positive matrix for some fixed t,
and the Markov chain converges towards π from any starting distribution π{0}.
In conclusion, Markov chains must satisfy the global-balance condition of eq. (2.2) in order

to converge towards the imposed distribution π. In addition, they must satisfy an—easily
verifiable—irreducibility requirement to make sure that they can go everywhere in the sample
space Ω. Finally, they should be aperiodic, but that is easy to achieve.

2.1.2 Reversible and non-reversible Markov chains

Figure 2.3: Motion of a Markov chain in equilibrium. For a reversible Markov chain in equilibrium,
the trajectory a→ b→ c appears with the same probability as the “reverse” trajectory
c→ b→ a.

Reversible algorithms are those that satisfy the detailed-balance condition

π(x)P (x, x′) = π(x′)P (x′, x) ∀x, y ∈ Ω. (2.3)

Detailed balance implies global balance (eq. (2.3) yields eq. (2.2) by summing over x′, considering
that

∑
x′∈Ω P (x, x′) = 1). The detailed-balance condition imposes that in equilibrium, the path

from x (at time t− 1) to x′ (at time t) is equally likely as the time-reversed path from x′ to x.
This can be extended to paths that are arbitrary long (see Fig. 2.3), and explains why Markov
chains that satisfy the detailed-balance condition are equivalently called reversible.
To set up a reversible transition matrix P for a given distribution π, we may choose

π(x)P (x, x′) ∝ min
[
π(x), π(x′)

]
for x ̸= x′. (2.4)

The right-hand side of Eq. (2.4) is symmetric in x and x′, so that the left-hand side must also
be symmetric. Therefore, detailed balance is automatically satisfied. We divide both sides by
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π(x) and arrive at the equation famously proposed by Metropolis et al. in 1953:

PMet(x, x′) ∝ min

[
1,

π(x′)

π(x)

]
for x ̸= x′. (2.5)

Let us discuss the difference between a transition matrix and a filter in order to make Eq. (2.5)
explicit and remove the proportionality sign. The move from x to x′ ̸= x proceeds in two steps.
A possible move is first proposed with an a priori probability A(x, x′) and is then accepted
or rejected with a filter. In the Metropolis algorithm, the a priori probability is symmetric,
A(x, x′) = A(x′, x), and

PMet(x, x′)︸ ︷︷ ︸
transition matrix

= A(x, x′)︸ ︷︷ ︸
a priori probability

Metropolis filter︷ ︸︸ ︷
PMet(x, x′) . (2.6)

For the Metropolis algorithm, a proposed move x→ x′ (with x′ ̸= x) is thus accepted with the
Metropolis acceptance probability

PMet(x, x′) = min

[
1,

π(x′)

π(x)

]
, (2.7)

which is also called the Metropolis filter in order to differentiate it from the transition matrix. If
the move x→ x′ is rejected, the particle remains at x, which determines the diagonal transition
matrix elements P (x, x) and guarantees that

∑
x′ P (x, x′) = 1, in other words, that the transition

matrix is stochastic.
For the transition matrix P of a reversible Markov chain, the matrix Aij = π

1/2
i Pijπ

−1/2
j is

symmetric, as trivially follows from the detailed balance of eq. (2.3). The spectral theorem
then assures that A has only real eigenvalues and that its eigenvectors form an orthonormal
basis. The transition matrix P has the same eigenvalues as A, as well as closely related (right)
eigenvectors: ∑

j∈Ω
π
1/2
i Pijπ

−1/2
j︸ ︷︷ ︸

Aij

xj = λxi ⇔
∑
j∈Ω

Pij

[
π
−1/2
j xj

]
︸ ︷︷ ︸

x̃j

= λ
[
π
−1/2
i xi

]
︸ ︷︷ ︸

x̃i

. (2.8)

The eigenvectors x̃ of P must be multiplied with
√
π to be mutually orthogonal. They provide

a basis on which any initial probability distribution π{0} can be expanded. An irreducible and
aperiodic transition matrix P (reversible or not) has one eigenvalue λ1 = 1, and all others
satisfy |λk| < 1 ∀k ̸= 1. The unit eigenvalue λ1 corresponds to a constant right eigenvector of P
because of the stochasticity condition

∑
j∈Ω Pij = 1, and to the left eigenvector π of P , because

of the global-balance condition of eq. (2.2). Let us consider a reversible transition matrix with
a non-degenerate spectrum (which must be real, as we just showed), then slightly perturb the
elements of P , which will make it non-reversible. As the eigenvalues of a matrix continuously
depends on its elements, it follows that a non-reversible transition matrix may very well have a
real-valued spectrum of eigenvalues.

2.1.3 Metropolis–Hastings algorithm

In Alg. 2.1 (markov-pi), moves (∆x,∆y) are restricted to a small square of edge length 2δ,
the throwing range, and as this throwing range around a position (x, y) is independent of the
position, the a priori probability is symmetric, and even constant (see Fig. 2.4A). The small
square could be replaced by a small disk without bringing in anything new (see Fig. 2.4B). A
more interesting situation arises for asymmetric a priori probabilities: in the triangle algorithm
of Fig. 2.4C, moves are sampled from an oriented equilateral triangle centered at a, with one
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edge parallel to the x-axis. This extravagant choice may lack motivation in the context of the
adults’ game, but contains a crucial ingredient of modern Monte Carlo algorithms, that we will
study in later lectures.

A B C

Figure 2.4: Throwing pattern in Alg. 2.1 (markov-pi) (A), with variants. The triangle algorithm (C )
requires special attention.

The detailed-balance condition of eq. (2.3), in the presence of an asymmetric a priori proba-
bility A(x, x′), such as the triangular one, gives

π(x)A(x, x′)P(x, x′) = π(x′)A(x′, x)P(x′, x′). (2.9)

In this equation, π is given (we want it to be uniform, on the heliport) and so is A (we want it
to be uniform, in an equilateral triangle). The probability of moving from a to b must satisfy
π(a)P(a→ b) = π(b)P(b→ a), so that the acceptance probabilities (the filter) must obey:

PMet–H(x, x′)

PMet–H(x′, x)
=

π(x′)

A(x, x′)
A(x′, x)
π(x)

.

leading to

PMet–H(x, x′) = min

[
1,

π(x′)

A(x, x′)
A(x′, x)
π(x)

]
, (2.10)

also called the Metropolis–Hastings filter, which always requires one to take into consideration
the back move (from x′ to x), when one decides whether one should accept the move from x to
x′.

2.2 Reversible Markov chains

The material in this section is taken from Ref. [3], which presents a dozen of distinct Markov-
chain Monte Carlo algorithms to sample the Boltzmann distribution of the anharmonic oscillator.
We present two reversible Markov chains (plus a patch) before continuing with two non-reversible
algorithms, in Sec. 2.3. In what follows, we consider the probability distribution

π24(x) = exp
(
−x2/2− x4/4

)
, (2.11)

This distribution (that we already encountered in Lecture 1) has—in principle—a normalization
factor, but we will not worry about it. The harmonic part of this distribution is referred to as
π2 and the quartic term as π4.

π2(x) = exp
(
−x2/2

)
, π4(x) = exp

(
−x4/4

)
. (2.12)

2.2.1 Metropolis algorithm

Algorithm 2.2 (metropolis) implements the symmetric a priori probability as a uniform dis-
placement ∆ = x′ − x which is as likely as −∆. The Metropolis filter is implemented with a
uniform random number Υ between 0 and 1, which we refer to as a “pebble.” For large times
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t, when the initial configuration is forgotten, the algorithm samples π24. In all the following
Markov-chain algorithms, this large t condition is understood.

procedure metropolis

input x (sample at time t)

∆← ran(−δ, δ)
x′ ← x+∆
Υ← ran(0, 1)

if Υ < min

[
1,

π24(x
′)

π24(x)

]
: x← x′

output x (sample at time t+ 1)

——

Algorithm 2.2: metropolis. Sampling π24 with the Metropolis algorithm.

2.2.2 Factorized Metropolis algorithm

The Metropolis algorithm is really famous, but it is not the end of history. A modern variant is
the factorized Metropolis algorithm that we do not discuss here in detail, but only apply to the
anharmonic oscillator, where it is written as:

P fact
24 (x, x′) = min

[
1,

π2(x
′)

π2(x)

]
min

[
1,

π4(x
′)

π4(x)

]
. (2.13)

The factorized Metropolis algorithm satisfies detailed balance:

π24(x)P
fact
24 (x, x′)

∝ π2(x)min

[
1,

π2(x
′)

π2(x)

]
︸ ︷︷ ︸
min[π2(x),π2(x′)]: x⇔x′

π4(x)min

[
1,

π4(x
′)

π4(x)

]
︸ ︷︷ ︸
min[π4(x),π4(x′)]: x⇔x′

∝ π24(x
′)P fact

24 (x′, x), (2.14)

where we have dropped the symmetric a priori probabilityA. Algorithm 2.3 (factor-metropolis)
implements the factorized Metropolis filter: Algorithm 2.3 (factor-metropolis) (which is

procedure factor-metropolis

input x
∆← ran(−δ, δ)
x′ ← x+∆
Υ← ran(0, 1)

if Υ < min

[
1,

π2(x
′)

π2(x)

]
min

[
1,

π4(x
′)

π4(x)

]
:{

x← x′

output x
——

Algorithm 2.3: factor-metropolis. Sampling π24 naively with the factorized Metropolis filter (see
Ref. [3]).

naive) can be patched by replacing its random number Υ by two independent random num-
bers Υ2 and Υ4, as shown in Alg. 2.4 (factor-metropolis(patch)). There, a proposed move is
accepted by consensus if all the factors accept it. In Alg. 2.4 (factor-metropolis(patch)), two
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independent decisions are taken,2 one for the harmonic and one for the quartic factor, and the
proposed move is finally accepted only if it is accepted by both factors. The output is identical
to that of Alg. 2.3 (factor-metropolis).

procedure factor-metropolis(patch)

input x
∆← ran(−δ, δ)
x′ ← x+∆
Υ2 ← ran(0, 1) ; Υ4 ← ran(0, 1)

if Υ2 < min

[
1,

π2(x
′)

π2(x)

]
and Υ4 < min

[
1,

π4(x
′)

π4(x)

]
:{

x← x′ (move accepted by consensus)

output x
——

Algorithm 2.4: factor-metropolis(patch). Patch of Alg. 2.3, implementing the consensus principle
(see Ref. [3]).

2.2.3 More reversible Markov-chain algorithms . . .

2.3 Non-reversible Markov chains

In a tradition that started with the Metropolis algorithm many decades ago, Markov chains
are normally designed with the restrictive detailed-balance condition, although they are only
required to satisfy global balance. In this section, we illustrate more recent attempts to overcome
the detailed-balance condition in a systematic way, within the framework of “lifted” Markov
chains. Background and references can be found in [3].

2.3.1 Lifting and the zig-zag algorithm

Figure 2.5: Discretized lifted Metropolis algorithm for the anharmonic oscillator. The flow into the
lifted configuration {x,+1} is indicated [see Eq. (2.18)].

The Metropolis algorithm proposes positive and negative displacements ∆ for the anharmonic
oscillator with symmetric a priori probabilities (see Alg. 2.2 (metropolis)). The filter then
imposes that the net flow vanishes, so there will be as many particles going from x to x + ∆
as in the reverse direction, even if, say, π(x) ≪ π(x +∆). To break detailed balance and only
satisfy global balance, (while keeping π24 as a stationary distribution), we first suppose that
the positions x lie on the grid {. . . ,−2∆,−∆, 0,∆, 2∆, . . . }, with moves allowed only between
nearest neighbors. Each configuration x is duplicated into a forward-moving one {x,+1}, and a

2one can view this as the sampling of two independent Boolean random variables, (see Ref. [6]), of which the
final decision is the conjunction.
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backward-moving one {x,−1}. From a lifted configuration {x, σ}, the lifted Metropolis algorithm
proposes only a forward move if σ = 1, and only a backward move if σ = −1. In summary,

P lift({x, σ}, {x+ σ∆, σ}) = min

[
1,

π24(x+ σ∆)

π24(x)

]
, (2.15)

where σ = ±1. When this move is rejected by the Metropolis filter, the algorithm flips the
direction and instead moves from {x, σ} to {x,−σ}:

P lift({x, σ}, {x,−σ}) = 1−min

[
1,

π24(x+ σ∆)

π24(x)

]
. (2.16)

This algorithm clearly violates detailed balance as there is thus no backward flow for σ = +1
and no forward flow for σ = −1. On the other hand, the lifted Metropolis algorithm satisfies
the global-balance condition of Eq. (2.2) with the ansatz

πlift
24 ({x, σ}) =

1

2
π24(x) for σ = ±1. (2.17)

For example, the flow into the lifted configuration {x,+1} satisfies

π24({x,+1})
= π24({x−∆,+1})P lift({x−∆,+1}, {x,+1})
+ π24({x,−1})P lift({x,−1}, {x,+1}). (2.18)

The two contributions on the right-hand side of Eq. (2.18) correspond on the one hand to the
accepted moves from {x−∆,+1}, and on the other hand to the lifted moves from {x,−1}, when
the move from {x,−1} toward {x − ∆,−1} is rejected (see Fig. 2.5). Equation (2.18) can be
transformed into

π24(x) = π24(x−∆)min

[
1,

π24(x)

π24(x−∆)

]
+ π24(x)

{
1−min

[
1,

π24(x−∆σ)

π24(x)

]}
, (2.19)

which is identically satisfied. We have shown that the lifted Metropolis algorithm satisfies the
global-balance condition for the ansatz of Eq. (2.17), which splits π24(x) equally between {x,+1}
and {x,−1}. The sequence π{t} will actually converge to this stationary distribution.
In the lifted Metropolis algorithm, the particle, starting from x0 = 0, climbs uphill in direction

σ until a move is rejected by the filter, when it remains at its current position but reverses
its velocity to −σ. The following downhill moves, again without rejections, are followed by
another uphill climb, and so on, criss-crossing between the two wings of the potential U24. It
outputs configurations {x, σ} such that, remarkably, the x-component samples π24. This curious
algorithm is implemented in Alg. 2.5 (lifted-metropolis), where we (almost) silently replaced
the fixed grid of positions by a sampling of ∆.

2.3.2 Event-driven Markov processes

Markov chains in continuous time are called Markov processes. To approach these, we consider
Algorithm 2.5 (lifted-metropolis) with a grid of positions {. . . ,−2∆,−∆, 0,∆, 2∆, . . . } and
nearest-neighbor moves. In Alg. 2.5 (lifted-metropolis), we thus input a fixed ∆ and scrap
the line ∆ ← ran(0, δ), then study it in the limit of small ∆. We rescale time such that
a displacement ±∆ is itself undertaken in a time interval ∆. The particle in the anharmonic
oscillator thus moves with unit absolute velocity, whose sense is reversed when there is a rejection.
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procedure lifted-metropolis

input {x, σ} (lifted sample at time t)

∆← ran(0, δ) (δ > 0)

x′ ← x+ σ∆ (x′ in direction σ from x)

Υ← ran(0, 1)

if Υ < min

[
1,

π24(x
′)

π24(x)

]
: x← x′

else: σ ← −σ
output {x, σ} (lifted sample at time t+ 1)

——

Algorithm 2.5: lifted-metropolis. Non-reversible lifted version of Alg. 2.2 (metropolis). The
x-positions that are output by this program sample π24 (see Ref. [3]).

The downhill moves are all accepted, and even uphill moves are accepted with a probability close
to one. We may simulate each of these steps, but it’s preferable to sample the position of the
next rejection. As an example, let us consider a sequence of uphill moves in positive direction
from x = 0. The probability for accepting an entire sequence of n subsequent uphill moves, at
positions 0,∆, . . . , (n− 1)∆, and then rejecting the move n+ 1, is

P(0→ xev) = e−β∆U24(0)···∆U24[(n−1)∆]︸ ︷︷ ︸
n accept

[
1− e−β∆U24(n∆)

]
︸ ︷︷ ︸

reject, expand to 1st order

→ βe−βU24dU24. (2.20)

In the small-∆ limit, the rejection is here expanded to first order, and ∆U is replaced by dU .
In our example of the anharmonic oscillator starting at x = 0, all the increments of ∆U24 up
to position x add up to the potential U24(x). Equation (2.20) indicates that the value of U24

at which the velocity is reversed follows an exponential distribution in U24. Remembering from
Lecture 1 how to sample an exponential random variable, we obtain

U24(xev) = −β−1 log ran(0, 1) , (2.21)

which can be inverted as U24(xev) = x2ev/2 + x4ev/4, with

xev = σ

√
−1 +

√
1− 4β−1 log ran(0, 1). (2.22)

Algorithm 2.6 (zig-zag) implements this event-driven, continuous-time, Markov process and
manages to move forward and backward. The equal-time samples again sample the Boltzmann
distribution π24 (see Fig. 2.6).

procedure zig-zag

input {x, σ}, t (lifted sample with σx ≤ 0 )

xev ← σ
√
−1 +

√
1− 4β−1 log ran(0, 1) (see Eq. (2.22))

tev ← t+ |xev − x|
for t∗ = int(t) + 1, . . . , int(tev):{

print x+ σ(t∗ − t) (equal-time samples)

x← xev; σ ← −σ; t← tev (“zig-zag”)

output {x, σ}, t
——

Algorithm 2.6: zig-zag. Continuous-time, event-driven version of Alg. 2.5 (lifted-metropolis).‘
The x-positions output by the print statement sample π24 (see Ref. [3]).
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Figure 2.6: Zig-zag algorithm (continuous-time event-driven lifted Metropolis chain). (a): The particle
swings about the origin, turning around at positions xev [sampled by Eq. (2.22)]. (b):
Piecewise deterministic constant-velocity trajectory. Particle positions are sampled at
equal time steps (see Ref. [3]).

2.3.3 More non-reversible Markov-chain algorithms...

There are many more ideas in Markov-chain Monte Carlo (for a starter, try Ref. [3]), even if
we restrict ourselves, as we did here, to true samplers of π, without any correction, in the limit
of large times. From our modest beginnings, we already see a world of infinite possibilities.
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