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Outline Part 2

1 Convergence theorem—A priori probabilities
2 Perfect sampling—coupling
3 (Meta algorithms—extended ensembles)



Markov-chain convergence theorem

For P irreducible and aperiodic, with stationary distribution π:

maxx∈Ω||P(x , ·)||TV ≤ Cαt

with C > 0 and α ∈ (0, 1).
Exponential convergence is everywhere, but C and α are
unknown.
Can we do better?



Converging faster than exponential

1 Absorbing Markov chain with one absorbing state.

P =

0 1 0
0 0 1
0 0 1


2 (Starting with π{0} = π.)
3 Transition matrix Pij = πj .

π
{t+1}
i =

∑
j

π
{t}
j Pji =

∑
j

π
{t}
j︸ ︷︷ ︸

=1

πj

Convergence in one step, better than exponential.



Metropolis–Hastings algorithm (1/2)

P(a → b) = A(a → b)︸ ︷︷ ︸
consider a→b

· P(a → b)︸ ︷︷ ︸
accept a → b

.

Detailed balance:

π(a)P(a → b) = π(b)P(b → a) (1)

P(a → b)

P(b → a)
=

π(b)

A(a → b)

A(b → a)

π(a)
.

This leads to a generalized Metropolis filter

P(a → b) = min

[
1,

π(b)

A(a → b)

A(b → a)

π(a)

]



Metropolis–Hastings algorithm (2/2)

Generalized Metropolis filter

P(a → b) = min

[
1,

π(b)

A(a → b)

A(b → a)

π(a)

]
A(a → b) = π(b) unrealistic
A(a → b) ≃ π(b) realistic, super interesting.
MCMC equivalent of perturbation theory in theoretical physics.
Better A’s ⇔ larger moves.
Applications in spin models, bosonic QMC, etc.

Identify good A’s through machine learning?



Shuffling of cards 1/5

Ωshuffle
n = {Permutations of {1, . . . , n}}

For n = 3:
Ωshuffle

3 = {1 ≡ {1, 2, 3}, 2 ≡ {1, 3, 2}, 3 ≡ {2, 1, 3}, 4 ≡
{2, 3, 1}, 5 ≡ {3, 1, 2}, 6 ≡ {3, 2, 1}}.
πt=0 = δ({1, , . . . , n}) (perfectly ordered set)



Shuffling of cards 2/5

Ωshuffle
3 = {1 ≡ {1, 2, 3}, 2 ≡ {1, 3, 2}, 3 ≡ {2, 1, 3}, 4 ≡

{2, 3, 1}, 5 ≡ {3, 1, 2}, 6 ≡ {3, 2, 1}}.

P =
1
3



1 0 1 1 0 0
0 1 0 0 1 1
1 1 1 0 0 0
0 0 0 1 1 1
1 1 0 0 1 0
0 0 1 1 0 1





Shuffling of cards 3/5

Insert upper card (c1) behind card i and before card i + 1
NB: if i = 1, put it back on top.



Shuffling of cards 4/5

Perfect sample (!).
Expected running time: n log n.



Shuffling of cards 5/5

Running time: n.
Running time: n.
Standard algorithm for generating random permutations.



Markov chain (traditional view)
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Configuration ct , move δt .
Set t0 = 0.



Markov chain (random maps), coupling 1/4
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Each configuration has its move at each time step.
Coupling (Doeblin, 1930s).



Markov chain (random maps), coupling 2/4

Position of coupling not uniform.
Coupling time larger than mixing time.



Markov chain (random maps), coupling 3/4

Histogram of coupling position.



Markov chain (random maps), coupling 4/4
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Each configuration has its move at each time step.
Coupling (Doeblin, 1930s).



Coupling from the past 1/8
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t≃−∞ t0 t0+τcoup t=0
(now)

Starting an MCMC simulation at t = −∞
Propp & Wilson (1997)



Coupling from the past 2/8

Starting an MCMC simulation at t = −∞
Propp & Wilson (1997)



Coupling from the past 3/8
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Starting an MCMC simulation at t = −∞
Propp & Wilson (1997)



Coupling from the past 4/8

Coupling position (in the past) non-uniform)



Coupling from the past 5/8

Dictionary of random maps going back in time.



Coupling from the past 6/8
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Starting an MCMC simulation at t = −∞
Propp & Wilson (1997)



Coupling from the past 7/8

Perfect sample at t = 0, starting from t = −∞
Propp & Wilson (1997)



Coupling from the past 8/8
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Try it yourself!



Hard-sphere simulation (traditional)



Hard-sphere simulation (birth-and-death)

Z =
∞∑

N=0

λN

∫
· · ·

∫
dx1 . . . dxNπ(x1, . . . , xN)

π(a) = λπ(b)

Death probability (per particle, per time interval): 1dt
Birth probability (per unit square): λdt



Poisson distribution

Poisson distribution (number n of events per unit time):

π∆t=1(n) =
λne−λ

n!

Poisson distribution (number n of events per time dt):

πdt(n) =
(λdt)ne−λdt

n!
=⇒ πdt(1) = λdt, πdt(2) = 0

Poisson waiting time: Probability that next event after time t:

P(t) = (1 − λdt), . . . , (1 − λdt)λdt

P(t) =

∑
dt=t︷ ︸︸ ︷

(1 − λdt) → (1 − λdt)︸ ︷︷ ︸
e−λt

λdt

...can be sampled with t = (− log ran[0, 1])/λ



Birth-and-death (principle 1)

N spheres, each of them may die.
a new sphere may be born (but there may be problems).
rate for next event: N + λ.
P(death) ∝ N and P(birth) ∝ λ, reject if overlap.



Birth-and-death (implementation 1)

start with N = 0 spheres
Go to next-event time : − log ran/(N + λ) (in steps of 1)
sample random number ran[0, 1]: if smaller than λ/(λ+ N):
add a disk (reject if overlap), otherwise delete a disk.

NB: Check configuration at integer time steps, for sampling.



Birth-and-death (principle 2)

N spheres, each of them knows when it will die (sad) rate=1.
a new sphere may be born (but there may be problems) rate
= λ.



Birth-and-death (implementation 2)

start with N = 0 spheres.
Advance to next birth time : − log ran[0, 1]/λ (in steps of 1).
If no rejection, install death time − log ran[0, 1]



Birth-and-death (principle 3)

Hyptothetical spheres are born with rate = λ, and they die
with rate 1.

Check later whether all this pans out correctly.



Birth-and-death (implementation 3)



Birth-and-death (implementation 3)

Can be made into a perfect sampling algorithm
Wilson (2000)



Birth-and-death (implementation 3)

Bernard et al. (2010)
Dynamical phase transition



Hard-sphere simulation (traditional)

Algorithm remains correct if displacement random in box.



Path coupling 1/4

At low density, any two configurations of spheres a and z can
be connected through a path of length < 2N as follows:
a → b → c → ..... → z , where any two neighbors differ only in
1 sphere.
MC algorithm: Take random sphere, place it at random
position anywhere in the box.

Kannan et al. (2003)



Path coupling 2/4

MC algorithm: Take random sphere, place it at the same
random position for both copies.
p(1 → 0): Pick 1, move to where it fits in both copies

p(1 → 0) ≥ 1
N

[
1 − N − 1

N
4η

]
p(1 → 2): Pick 2 . . .N move near to 1A or 1B .

p(1 → 2) ≤ N − 1
N

[
8
N
η

]
=⇒ for η < 1/12: further coupling likely.



Path coupling 3/4
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Path coupling 4/4

Bernard et al. (2010)
Damage-spreading dynamical phase transition

Helmuth et al. (2020)



Conclusions

Strategies for overcoming the limitations of MCMC
Larger moves—faster convergence
Exact-sampling approaches from MCMC


