Markov-chain Monte Carlo: A modern primer 2/2

Werner Krauth
Laboratoire de Physique, Ecole normale supérieure, Paris, France

13 May 2022
CECAM, EPFL Lausanne (Switzerland)
W. Krauth; Oxford University Press (2006)
Statistical mechanics: Algorithms and computations
Work supported by A. v. Humboldt Foundation

Outline Part 2

(1) Convergence theorem-A priori probabilities
(2) Perfect sampling-coupling
(3) (Meta algorithms-extended ensembles)

Markov-chain convergence theorem

For P irreducible and aperiodic, with stationary distribution π :

$$
\max _{x \in \Omega}\|P(x, \cdot)\|_{\mathrm{TV}} \leq C \alpha^{t}
$$

with $C>0$ and $\alpha \in(0,1)$.

- Exponential convergence is everywhere, but C and α are unknown.
- Can we do better?

Converging faster than exponential

(1) Absorbing Markov chain with one absorbing state.

$$
P=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

(2) (Starting with $\pi^{\{0\}}=\pi$.)
(3) Transition matrix $P_{i j}=\pi_{j}$.

$$
\pi_{i}^{\{t+1\}}=\sum_{j} \pi_{j}^{\{t\}} P_{j i}=\underbrace{\sum_{j} \pi_{j}^{\{t\}}}_{=1} \pi_{j}
$$

Convergence in one step, better than exponential.

Metropolis-Hastings algorithm (1/2)

$$
P(a \rightarrow b)=\underbrace{\mathcal{A}(a \rightarrow b)}_{\text {consider } a \rightarrow b} \cdot \underbrace{\mathcal{P}(a \rightarrow b)}_{\text {accept } a \rightarrow b}
$$

Detailed balance:

$$
\begin{gather*}
\pi(a) P(a \rightarrow b)=\pi(b) P(b \rightarrow a) \tag{1}\\
\frac{\mathcal{P}(a \rightarrow b)}{\mathcal{P}(b \rightarrow a)}=\frac{\pi(b)}{\mathcal{A}(a \rightarrow b)} \frac{\mathcal{A}(b \rightarrow a)}{\pi(a)} .
\end{gather*}
$$

This leads to a generalized Metropolis filter

$$
\mathcal{P}(a \rightarrow b)=\min \left[1, \frac{\pi(b)}{\mathcal{A}(a \rightarrow b)} \frac{\mathcal{A}(b \rightarrow a)}{\pi(a)}\right]
$$

Metropolis-Hastings algorithm (2/2)

- Generalized Metropolis filter

$$
\mathcal{P}(a \rightarrow b)=\min \left[1, \frac{\pi(b)}{\mathcal{A}(a \rightarrow b)} \frac{\mathcal{A}(b \rightarrow a)}{\pi(a)}\right]
$$

- $\mathcal{A}(a \rightarrow b)=\pi(b)$ unrealistic
- $\mathcal{A}(a \rightarrow b) \simeq \pi(b)$ realistic, super interesting.
- MCMC equivalent of perturbation theory in theoretical physics.
- Better \mathcal{A} 's \Leftrightarrow larger moves.
- Applications in spin models, bosonic QMC, etc.

Identify good \mathcal{A} 's through machine learning?

Shuffling of cards $1 / 5$

- $\Omega_{n}^{\text {shuffle }}=\{$ Permutations of $\{1, \ldots, n\}\}$
- For $n=3$:
$\Omega_{3}^{\text {shuffle }}=\{1 \equiv\{1,2,3\}, 2 \equiv\{1,3,2\}, 3 \equiv\{2,1,3\}, 4 \equiv$
$\{2,3,1\}, 5 \equiv\{3,1,2\}, 6 \equiv\{3,2,1\}\}$.
- $\pi^{t=0}=\delta(\{1,, \ldots, n\})$ (perfectly ordered set)

Shuffling of cards 2/5

- $\Omega_{3}^{\text {shuffle }}=\{1 \equiv\{1,2,3\}, 2 \equiv\{1,3,2\}, 3 \equiv\{2,1,3\}, 4 \equiv$ $\{2,3,1\}, 5 \equiv\{3,1,2\}, 6 \equiv\{3,2,1\}\}$.

$$
P=\frac{1}{3}\left(\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

Shuffling of cards $3 / 5$

moves

```
procedure top-to-random
input {c
i\leftarrow\operatorname{choice({1,\ldots,n})}
{\mp@subsup{\hat{c}}{1}{},\ldots,\mp@subsup{\hat{c}}{n}{}}\leftarrow{\mp@subsup{c}{2}{},\ldots,\mp@subsup{c}{i}{},\mp@subsup{c}{1}{},\mp@subsup{c}{i+1}{},\ldots,\mp@subsup{c}{n}{}}
output {\mp@subsup{\hat{c}}{1}{},\ldots,\mp@subsup{\hat{c}}{n}{}}
```

- Insert upper card $\left(c_{1}\right)$ behind card i and before card $i+1$
- NB: if $i=1$, put it back on top.

Shuffling of cards 4/5


```
procedure top2random-stop
input \(\left\{c_{1}, \ldots, c_{n}\right\}\)
\(c_{\text {first-n }} \leftarrow c_{\mathrm{n}}\)
for \(t=1,2, \ldots\) do
    \(\left\{\begin{array}{l}\tilde{c}_{1} \leftarrow c_{1} \\ \left\{c_{1}, \ldots, c_{n}\right\} \leftarrow \text { top2random }\left(\left\{c_{1}, \ldots, c_{n}\right\}\right)\end{array}\right.\)
    if \(\left(\tilde{c}_{1}=c_{\text {first-n }}\right)\) break
output \(\left\{c_{1}, \ldots, c_{n}, t\right\}\)
```

- Perfect sample (!).
- Expected running time: $n \log n$.

Shuffling of cards $5 / 5$


```
procedure direct-shuffle
input \(\left\{c_{1}, \ldots, c_{n}\right\}\)
for \(t=1, \ldots, n\) do
    \(\{i \leftarrow \operatorname{choice}(\{n-t+1, \ldots, n\})\)
    \(\left\{\left\{c_{1}, \ldots, c_{n}\right\} \leftarrow\left\{c_{2}, \ldots, c_{i}, c_{1}, c_{i+1}, \ldots, c_{n}\right\}\right.\)
output \(\left\{c_{1}, \ldots, c_{n}\right\}\)
```

- Running time: n.
- Running time: n.
- Standard algorithm for generating random permutations.

Markov chain (traditional view)

- Configuration c_{t}, move δ_{t}.
- Set $t_{0}=0$.

Markov chain (random maps), coupling 1/4

- Each configuration has its move at each time step.
- Coupling (Doeblin, 1930s).

Markov chain (random maps), coupling 2/4

```
pos=[]
for stat in range(10000):
    posit=set(range(N))
    for t in range(1000000):
        posit = set([min(max(b + random.randint(-1, 1), 0), N - 1) for b in posit])
        if len(posit) == 1: break
    pos.append(posit.pop())
```

- Position of coupling not uniform.
- Coupling time larger than mixing time.

Markov chain (random maps), coupling 3/4

- Histogram of coupling position.

Markov chain (random maps), coupling 4/4

- Each configuration has its move at each time step.
- Coupling (Doeblin, 1930s).

Coupling from the past $1 / 8$

- Starting an MCMC simulation at $t=-\infty$
- Propp \& Wilson (1997)

Coupling from the past $2 / 8$

```
pos = []
for statistic in range(100000):
    all_arrows = {}
    time_tot = 0
    while True:
        time_tot -= 1
        arrows = [random.randint(-1, 1) for i in range(N)]
        if arrows[0] == -1: arrows[0] = 0
        if arrows[N - 1] == 1: arrows[N - 1] = 0
        all_arrows[time_tot]=arrows
        positions=set(range(0, N))
        for t in range(time_tot, 0):
            positions = set([b + all_arrows[t][b] for b in positions])
            if len(positions) == 1: \overline{break}
            if len(positions) == 1: break
```

- Starting an MCMC simulation at $t=-\infty$
- Propp \& Wilson (1997)

Coupling from the past $3 / 8$

- Starting an MCMC simulation at $t=-\infty$
- Propp \& Wilson (1997)

Coupling from the past 4/8

- Coupling position (in the past) non-uniform)

Coupling from the past $5 / 8$

```
for statistic in range(10000):
    all_arrows = {}
    time_tot = 0
    while True:
        time_tot -= 1
        old_pos = set(range(0, N))
        arrows = [random.randint(-1, 1) for i in range(N)]
        if arrows[0] == -1: arrows[0] = 0
        if arrows[N - 1] == 1: arrows[N - 1] = 0
        all_arrows[time_tot] = arrows
        positions = set(range(N))
        for t in range(time_tot, 0):
            positions = set([b + all_arrows[t][b] for b in positions])
        if len(positions) == 1: break
    a=positions.pop()
    pos.append(a)
```

- Dictionary of random maps going back in time.

Coupling from the past $6 / 8$

- Starting an MCMC simulation at $t=-\infty$
- Propp \& Wilson (1997)

Coupling from the past $7 / 8$

- Perfect sample at $t=0$, starting from $t=-\infty$
- Propp \& Wilson (1997)

Coupling from the past $8 / 8$

- Try it yourself!

Hard-sphere simulation (traditional)

Hard-sphere simulation (birth-and-death)

a

move

$$
Z=\sum_{N=0}^{\infty} \lambda^{N} \int \ldots \int \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{N} \pi\left(x_{1}, \ldots, x_{N}\right)
$$

- $\pi(a)=\lambda \pi(b)$
- Death probability (per particle, per time interval): $1 \mathrm{~d} t$
- Birth probability (per unit square): $\lambda \mathrm{d} t$

Poisson distribution (number n of events per unit time):

$$
\pi_{\Delta t=1}(n)=\frac{\lambda^{n} \mathrm{e}^{-\lambda}}{n!}
$$

Poisson distribution (number n of events per time $d t$):

$$
\pi_{\mathrm{d} t}(n)=\frac{(\lambda \mathrm{d} t)^{n} \mathrm{e}^{-\lambda \mathrm{d} t}}{n!} \Longrightarrow \pi_{\mathrm{d} t}(1)=\lambda \mathrm{d} t, \pi_{\mathrm{d} t}(2)=0
$$

Poisson waiting time: Probability that next event after time t :

$$
\begin{aligned}
& \mathbb{P}(t)=(1-\lambda \mathrm{d} t), \ldots,(1-\lambda \mathrm{d} t) \lambda \mathrm{d} t \\
& \mathbb{P}(t)=\underbrace{\overbrace{(1-\lambda \mathrm{d} t) \rightarrow(1-\lambda \mathrm{d} t)}^{\sum \mathrm{d} t=t}}_{\mathrm{e}^{-\lambda t}} \lambda \mathrm{~d} t
\end{aligned}
$$

...can be sampled with $t=(-\log \operatorname{ran}[0,1]) / \lambda$

Birth-and-death (principle 1)

- N spheres, each of them may die.
- a new sphere may be born (but there may be problems).
- rate for next event: $N+\lambda$.
- $\mathbb{P}($ death $) \propto N$ and $\mathbb{P}($ birth $) \propto \lambda$, reject if overlap.

Birth-and-death (implementation 1)

- start with $N=0$ spheres
- Go to next-event time: - logran/(N+ $)$ (in steps of 1)
- sample random number ran $[0,1]$: if smaller than $\lambda /(\lambda+N)$: add a disk (reject if overlap), otherwise delete a disk.
NB: Check configuration at integer time steps, for sampling.

Birth-and-death (principle 2)

- N spheres, each of them knows when it will die (sad) rate=1.
- a new sphere may be born (but there may be problems) rate $=\lambda$.

Birth-and-death (implementation 2)

- start with $N=0$ spheres.
- Advance to next birth time : - log ran $[0,1] / \lambda$ (in steps of 1).
- If no rejection, install death time - log ran[0, 1]

Birth-and-death (principle 3)

- Hyptothetical spheres are born with rate $=\lambda$, and they die with rate 1.
Check later whether all this pans out correctly.

Birth-and-death (implementation 3)

Birth-and-death (implementation 3)

- Can be made into a perfect sampling algorithm
- Wilson (2000)

Birth-and-death (implementation 3)

- Bernard et al. (2010)
- Dynamical phase transition

Hard-sphere simulation (traditional)

Algorithm remains correct if displacement random in box.

Path coupling $1 / 4$

a

b

- At low density, any two configurations of spheres a and z can be connected through a path of length $<2 N$ as follows: $a \rightarrow b \rightarrow c \rightarrow \ldots . . \rightarrow z$, where any two neighbors differ only in 1 sphere.
- MC algorithm: Take random sphere, place it at random position anywhere in the box.
Kannan et al. (2003)

Path coupling 2/4

- MC algorithm: Take random sphere, place it at the same random position for both copies.
- $p(1 \rightarrow 0)$: Pick 1 , move to where it fits in both copies

$$
p(1 \rightarrow 0) \geq \frac{1}{N}\left[1-\frac{N-1}{N} 4 \eta\right]
$$

- $p(1 \rightarrow 2)$: Pick $2 \ldots N$ move near to 1_{A} or 1_{B}.

$$
p(1 \rightarrow 2) \leq \frac{N-1}{N}\left[\frac{8}{N} \eta\right]
$$

- \Longrightarrow for $\eta<1 / 12$: further coupling likely.

Path coupling 3/4

- MC algorithm: Take random sphere, place it at the same random position for both copies.
- $p(1 \rightarrow 0)$: Pick 1 , move to where it fits in both copies

$$
p(1 \rightarrow 0) \geq \frac{1}{N}\left[1-\frac{N-1}{N} 4 \eta\right]
$$

- $p(1 \rightarrow 2)$: Pick $2 \ldots N$ move near to 1_{A} or 1_{B}.

$$
p(1 \rightarrow 2) \leq \frac{N-1}{N}\left[\frac{8}{N} \eta\right]
$$

- \Longrightarrow for $\eta<1 / 12$: further coupling likely.

Path coupling 4/4

- Bernard et al. (2010)
- Damage-spreading dynamical phase transition

Helmuth et al. (2020)

Conclusions

Strategies for overcoming the limitations of MCMC

- Larger moves-faster convergence
- Exact-sampling approaches from MCMC

