Markov-chain Monte Carlo: A modern primer 2/2

Werner Krauth Laboratoire de Physique, Ecole normale supérieure, Paris, France

13 May 2022 CECAM, EPFL Lausanne (Switzerland)

W. Krauth; Oxford University Press (2006) Statistical mechanics: Algorithms and computations

Work supported by A. v. Humboldt Foundation

Département de Physique École normale supérieure

Outline Part 2

- Convergence theorem—A priori probabilities
- Perfect sampling—coupling
- (Meta algorithms—extended ensembles)

Markov-chain convergence theorem

For P irreducible and aperiodic, with stationary distribution π :

$$\max_{x \in \Omega} ||P(x, \cdot)||_{\mathsf{TV}} \le C\alpha^t$$

with C > 0 and $\alpha \in (0,1)$.

- Exponential convergence is everywhere, but C and α are unknown.
- Can we do better?

Converging faster than exponential

Absorbing Markov chain with one absorbing state.

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- ② (Starting with $\pi^{\{0\}} = \pi$.)
- **3** Transition matrix $P_{ij} = \pi_j$.

$$\pi_i^{\{t+1\}} = \sum_j \pi_j^{\{t\}} P_{ji} = \underbrace{\sum_j \pi_j^{\{t\}}}_{-1} \pi_j$$

Convergence in one step, better than exponential.

Metropolis-Hastings algorithm (1/2)

$$P(a \to b) = \underbrace{\mathcal{A}(a \to b)}_{\text{consider } a \to b} \cdot \underbrace{\mathcal{P}(a \to b)}_{\text{accept } a \to b}.$$

Detailed balance:

$$\pi(a)P(a\to b)=\pi(b)P(b\to a) \tag{1}$$

$$\frac{\mathcal{P}(a \to b)}{\mathcal{P}(b \to a)} = \frac{\pi(b)}{\mathcal{A}(a \to b)} \frac{\mathcal{A}(b \to a)}{\pi(a)}.$$

This leads to a generalized Metropolis filter

$$\mathcal{P}(a o b) = \min \left[1, rac{\pi(b)}{\mathcal{A}(a o b)} rac{\mathcal{A}(b o a)}{\pi(a)}
ight]$$

Département de Physique École normale supérieure

Metropolis–Hastings algorithm (2/2)

Generalized Metropolis filter

$$\mathcal{P}(a o b) = \min \left[1, rac{\pi(b)}{\mathcal{A}(a o b)} rac{\mathcal{A}(b o a)}{\pi(a)}
ight]$$

- $\mathcal{A}(a \to b) = \pi(b)$ unrealistic
- $\mathcal{A}(a \to b) \simeq \pi(b)$ realistic, super interesting.
- MCMC equivalent of perturbation theory in theoretical physics.
- Better \mathcal{A} 's \Leftrightarrow larger moves.
- Applications in spin models, bosonic QMC, etc.

Identify good A's through machine learning?

Shuffling of cards 1/5

- $\Omega_n^{\mathsf{shuffle}} = \{\mathsf{Permutations} \; \mathsf{of} \; \{1, \dots, n\}\}$
- For n=3: $\Omega_3^{\text{shuffle}}=\{1\equiv\{1,2,3\},2\equiv\{1,3,2\},3\equiv\{2,1,3\},4\equiv\{2,3,1\},5\equiv\{3,1,2\},6\equiv\{3,2,1\}\}.$
- $\pi^{t=0} = \delta(\{1, \dots, n\})$ (perfectly ordered set)

Shuffling of cards 2/5

•

•
$$\Omega_3^{\text{shuffle}} = \{1 \equiv \{1, 2, 3\}, 2 \equiv \{1, 3, 2\}, 3 \equiv \{2, 1, 3\}, 4 \equiv \{2, 3, 1\}, 5 \equiv \{3, 1, 2\}, 6 \equiv \{3, 2, 1\}\}.$$

$$P = \frac{1}{3} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Shuffling of cards 3/5


```
procedure top-to-random input \{c_1, \ldots, c_n\} i \leftarrow \text{choice}(\{1, \ldots, n\}) \{\hat{c}_1, \ldots, \hat{c}_n\} \leftarrow \{c_2, \ldots, c_i, c_1, c_{i+1}, \ldots, c_n\} output \{\hat{c}_1, \ldots, \hat{c}_n\}
```

- Insert upper card (c_1) behind card i and before card i+1
- NB: if i = 1, put it back on top.

Shuffling of cards 4/5


```
\begin{array}{l} \textbf{procedure top2random-stop} \\ \textbf{input} \; \{c_1, \dots, c_n\} \\ c_{\text{first-n}} \leftarrow c_n \\ \textbf{for} \; t = 1, 2, \dots \; \textbf{do} \\ \begin{cases} \tilde{c}_1 \leftarrow c_1 \\ \{c_1, \dots, c_n\} \leftarrow \texttt{top2random}(\{c_1, \dots, c_n\}) \\ \textbf{if} \; (\tilde{c}_1 = c_{\text{first-n}}) \; \; \textbf{break} \end{cases} \\ \textbf{output} \; \{c_1, \dots, c_n, t\} \end{array}
```

- Perfect sample (!).
- Expected running time: $n \log n$.

Shuffling of cards 5/5


```
\begin{array}{l} \mathbf{procedure} \ \mathbf{direct}\text{-shuffle} \\ \mathbf{input} \ \{c_1,\dots,c_n\} \\ \mathbf{for} \ t=1,\dots,n \ \mathbf{do} \\ \quad \left\{ \begin{array}{l} i \leftarrow \mathsf{choice}(\{n-t+1,\dots,n\}) \\ \{c_1,\dots,c_n\} \leftarrow \{c_2,\dots,c_i,c_1,c_{i+1},\dots,c_n\} \end{array} \right. \\ \mathbf{output} \ \{c_1,\dots,c_n\} \end{array}
```

- Running time: n.
- Running time: n.
- Standard algorithm for generating random permutations.

Markov chain (traditional view)

- Configuration c_t , move δ_t .
- Set $t_0 = 0$.

Markov chain (random maps), coupling 1/4

- Each configuration has its move at each time step.
- Coupling (Doeblin, 1930s).

Markov chain (random maps), coupling 2/4

```
pos=[]
for stat in range(10000):
    posit=set(range(N))
    for t in range(1000000):
        posit = set[[min(max(b + random.randint(-1, 1), 0), N - 1) for b in posit])
        if len(posit) == 1: break
    pos.append(posit.pop())
```

- Position of coupling not uniform.
- Coupling time larger than mixing time.

Markov chain (random maps), coupling 3/4

• Histogram of coupling position.

Markov chain (random maps), coupling 4/4

- Each configuration has its move at each time step.
- Coupling (Doeblin, 1930s).

Coupling from the past 1/8

- Starting an MCMC simulation at $t = -\infty$
- Propp & Wilson (1997)


```
pos = []
for statistic in range(100000):
    all arrows = {}
    time_tot = 0
    while True:
        time_tot -= 1
        arrows = [random.randint(-1, 1) for i in range(N)]
        if arrows[0] == -1: arrows[0] = 0
        if arrows[N - 1] == 1: arrows[N - 1] = 0
        all_arrows[time_tot]=arrows
        positions=set(range(0, N))
        for t in range(time_tot, 0):
            positions = set([b + all_arrows[t][b] for b in positions])
            if len(positions) == 1: break
        if len(positions) == 1: break
```

- Starting an MCMC simulation at $t = -\infty$
- Propp & Wilson (1997)

Coupling from the past 3/8

- Starting an MCMC simulation at $t = -\infty$
- Propp & Wilson (1997)

Coupling from the past 4/8

• Coupling position (in the past) non-uniform)


```
for statistic in range(10000):
  all arrows = \{\}
  time tot = 0
  while True:
     time tot -= 1
     old pos = set(range(0, N))
     arrows = [random.randint(-1, 1) for i in range(N)]
     if arrows[0] == -1: arrows[0] = 0
     if arrows[N-1] == 1: arrows[N-1] = 0
     all arrows[time tot] = arrows
     positions = set(range(N))
     for t in range(time tot, 0):
        positions = set([b + all_arrows[t][b] for b in positions])
     if len(positions) == 1: break
  a=positions.pop()
  pos.append(a)
```

• Dictionary of random maps going back in time.

Coupling from the past 6/8

- Starting an MCMC simulation at $t = -\infty$
- Propp & Wilson (1997)

Coupling from the past 7/8

- Perfect sample at t = 0, starting from $t = -\infty$
- Propp & Wilson (1997)

Département de Physique École normale supérieure

Coupling from the past 8/8

• Try it yourself!

Hard-sphere simulation (traditional)

Département de Physique École normale supérieure

Hard-sphere simulation (birth-and-death)

$$Z = \sum_{N=0}^{\infty} \lambda^{N} \int \cdots \int dx_{1} \dots dx_{N} \pi(x_{1}, \dots, x_{N})$$

- $\pi(a) = \lambda \pi(b)$
- Death probability (per particle, per time interval): 1 dt
- Birth probability (per unit square): λdt

Département de Physique École normale supérieure

Poisson distribution

Poisson distribution (number *n* of events per unit time):

$$\pi_{\Delta t=1}(n) = \frac{\lambda^n e^{-\lambda}}{n!}$$

Poisson distribution (number n of events per time dt):

$$\pi_{\mathrm{d}t}(n) = \frac{(\lambda \mathrm{d}t)^n \mathrm{e}^{-\lambda \mathrm{d}t}}{n!} \implies \pi_{\mathrm{d}t}(1) = \lambda \mathrm{d}t, \pi_{\mathrm{d}t}(2) = 0$$

Poisson waiting time: Probability that next event after time t:

$$\mathbb{P}(t) = (1 - \lambda dt), \dots, (1 - \lambda dt) \lambda dt$$

$$\mathbb{P}(t) = \underbrace{\frac{\sum dt = t}{(1 - \lambda dt)} \lambda dt}$$

...can be sampled with $t = (-\log ran[0,1])/\lambda$

Birth-and-death (principle 1)

- N spheres, each of them may die.
- a new sphere may be born (but there may be problems).
- rate for next event: $N + \lambda$.
- $\mathbb{P}(\text{death}) \propto N$ and $\mathbb{P}(\text{birth}) \propto \lambda$, reject if overlap.

Birth-and-death (implementation 1)

- start with N = 0 spheres
- ullet Go to next-event time : $-\log {
 m ran}/(N+\lambda)$ (in steps of 1)
- sample random number ran[0,1]: if smaller than $\lambda/(\lambda+N)$: add a disk (reject if overlap), otherwise delete a disk.

NB: Check configuration at integer time steps, for sampling.

Birth-and-death (principle 2)

- N spheres, each of them knows when it will die (sad) rate=1.
- a new sphere may be born (but there may be problems) rate $= \lambda$.

Birth-and-death (implementation 2)

- start with N = 0 spheres.
- Advance to next birth time : $-\log ran[0,1]/\lambda$ (in steps of 1).
- If no rejection, install death time $-\log ran[0,1]$

Birth-and-death (principle 3)

• Hyptothetical spheres are born with rate $=\lambda$, and they die with rate 1.

Check later whether all this pans out correctly.

Birth-and-death (implementation 3)

Birth-and-death (implementation 3)

- Can be made into a perfect sampling algorithm
- Wilson (2000)

Birth-and-death (implementation 3)

- Bernard et al. (2010)
- Dynamical phase transition

Hard-sphere simulation (traditional)

Algorithm remains correct if displacement random in box.

Département de Physique École normale supérieure

Path coupling 1/4

- At low density, any two configurations of spheres a and z can be connected through a path of length < 2N as follows: $a \rightarrow b \rightarrow c \rightarrow \rightarrow z$, where any two neighbors differ only in 1 sphere.
- MC algorithm: Take random sphere, place it at random position anywhere in the box.

Kannan et al. (2003)

Path coupling 2/4

- MC algorithm: Take random sphere, place it at the same random position for both copies.
- $p(1 \rightarrow 0)$: Pick 1, move to where it fits in both copies

$$p(1\to 0)\geq \frac{1}{N}\left[1-\frac{N-1}{N}\frac{4\eta}{}\right]$$

• $p(1 \rightarrow 2)$: Pick 2... N move near to 1_A or 1_B .

$$p(1 \to 2) \le \frac{N-1}{N} \left[\frac{8}{N} \eta \right]$$

• \implies for $\eta < 1/12$: further coupling likely.

Path coupling 3/4

- MC algorithm: Take random sphere, place it at the same random position for both copies.
- $p(1 \rightarrow 0)$: Pick 1, move to where it fits in both copies

$$p(1\to 0)\geq \frac{1}{N}\left[1-\frac{N-1}{N}\frac{4\eta}{}\right]$$

• $p(1 \rightarrow 2)$: Pick 2... N move near to 1_A or 1_B .

$$p(1 \rightarrow 2) \leq \frac{N-1}{N} \left[\frac{8}{N} \eta \right]$$

• \implies for $\eta < 1/12$: further coupling likely.

Path coupling 4/4

- Bernard et al. (2010)
- Damage-spreading dynamical phase transition Helmuth et al. (2020)

Conclusions

Strategies for overcoming the limitations of MCMC

- Larger moves—faster convergence
- Exact-sampling approaches from MCMC

