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Transition matrix

@ Space of samples: sample space 2

@ Markov chain: Sequence of random variables (Xp, X1, ...)
where Xj represents the initial distribution and X; 4
depends on X; through the transition matrix.

@ P; > 0: Conditional probability to move to j if at /.
° Z/-EQ Pj =1 Vi € Q (stochasticity condition).
@ Commonly: made up of two parts P; = A;P;

P < filter and A < a priori probability
Examples: Metropolis filter, heatbath filter.

@ Commonly: Pj; < rejection probability.
Advanced MCMC algorithms often have no rejections.
e V = {(i,j)|Pj > 0}: set of vertices of a graph G = (€, V).
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Irreducibility

@ Pirreducible & any i/ can be reached from any j in a finite
number of steps.

@ This is equivalent to (P!); > 0 Vi, j for some t, which may
depend on j and j.

@ P connects not only configurations (samples) i, but also
probability distributions:

=N 2R = 2 =S P; viea
jeQ JjEQ

o 710} Initial probability (user-supplied). If concentrated on a
single initial configuration: 7{% is a (Kronecker) d-function.
@ Pirreducible = unique stationary distribution 7 with

T = Zﬂjpj,' Vi e Q.
je
@ No guarantee that =ttt — = for t — oo, though!
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Probability flows

@ Balance condition (again):

T = ZW/P/,‘ Vi e Q.
JEQ

@ “flow” from j to i & stationary probability x probability to

move:
flows exiting i flows entering i
— —
./Tj,' = Trij,' ~ Z Fik = Z}_), Vi e Q,
ke jeQ

(NB: stochasticity condition used >, .q Pk = 1).
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Ergodic theorem

@ Irreducible P < unique 7, but not necessarily =ttt — = for
t — oc.

@ Nevertheless, ergodicity follows from irreducibility alone.

@ This is (essentially) the strong law of large numbers:
For O a real function on Q, 7 probability distribution on Q,
irreducible Markov chain with stationary distribution 7:

(0) = Z Qjm;

icQ
then

=1

P, {tirgo 120(:}) =(0)
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Aperiodicity, convergence theorem

@ Set of return times at configuration i: {t > 1 : (P!); > 0}
@ Period: Greatest common divisor.

@ {2,4,6,...} = period is 2

@ {1000,1001,1002,...} = period is 1

@ Period = 1: & Markov chain is aperiodic

@ For irreducible, aperiodic P: P! = (P!); is a positive matrix
for some fixed t.

@ For irreducible, aperiodic P: MCMC converges towards =
from any starting distribution 7{0}.
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Reversibility

@ Reversible P satisfies the “detailed-balance” condition:
miPyj = mP;  Vi,j€ Q.
@ General P satisfies “global-balance” condition
= Zﬂjpj,- Vi e Q.
jeQ
@ DBC = GBC (sum over j, use stochasticity: }_;cq Pj = 1).

@ DBC « zero stationary net flow 7 — F; Vi, j € Q.
@ Remember: GBC:

flows exiting i flows entering /
— —
Z Fixk = Z Fii Vi e Q,
ke jeq

@ DBC more restrictive, but far easier to check than GBC.
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Spectrum of reversible transition matrix

@ Reversible P:
7T,'P,‘j = 71'ij,' Vf,j e Q.

@ Reversible P: Aj; = 7T;/2P,'j7['j_1/2 is symmetric.

@ Reversible P:
S m 2P 2 = o 3P {FJ_—VzXJ —\ {W,-—VZX/} '
jea~——~—" jeQ
i
@ P and A have same eigenvalues.

@ A symmetric: (Spectral theorem): All eigenvalues real, can
expand on eigenvectors.

@ Irreducible, aperiodic: Single eigenvalue with A = 1, all
others smaller in absolute value.
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Classes for non-reversible transition matrix

Non-reversible P can be “unhappy” in different ways:

@ P can be non-reversible, real eigenvalues, eigenvalues
non-orthogonal.

@ P can be non-reversible, real eigenvalues:
Non-diagonalizable. (algebraic multiplicity # geometric
multiplicity).

@ P can be non-reversible, pairs of complex eigenvalues.

@ Most common case: Complex eigenvalues.

@ For simple examples, see Weber (2017)
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Total variation distance, mixing time

@ Total variation distance:

t _ {1}
HW{}—WHTV—TC?!;;IW{}( —m(A)| = §:|7r - mjl.
/eQ
@ (Above) first eq.: definition; second eq.: (tiny) theorem

@ Distance:

a(t) = m{g§<||7f{t}( 7O — 7[|rv

@ Mixing time:
fmix(€) = min{t : d(t) < ¢}
@ Usually e = 1/4 is taken (arbitrary, must be smaller than %):
fmix = tmix(1/4)

Werner Krauth Advanced topics in Markov-chain Monte Carlo



Diameter bounds, conductance

@ Graph diameter L: minimum number of moves to travel
between any i,j € Q

@ Diameter bound: or any e < 1/2, trivially satisfies
@ Conductance (bottleneck ratio):

_ Fe.3 - iesjgs TPy
®= min 2S2S_  in eSS
ScQmg<}y TS ScQmg<t s
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Total variation distance, mixing time (reminder)

@ Total variation distance:

t _ {1}
HW{}—WHTV—TC?!;;IW{}( —m(A)| = §:|7r - mjl.
/eQ
@ (Above) first eq.: definition; second eq.: (tiny) theorem

@ Distance:

a(t) = m{g§<||7f{t}( 7O — 7[|rv

@ Mixing time:
fmix(€) = min{t : d(t) < ¢}
@ Usually e = 1/4 is taken (arbitrary, must be smaller than %):
fmix = tmix(1/4)
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Mixing (reminder)

@ Distribution 7=0 (starting from upper right)

t = O 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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@ Distribution 7=1 (starting from upper right)

t = 1 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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@ Distribution 7=2 (starting from upper right)

t = 2 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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@ Distribution 7=2 (starting from upper right)

t = 3 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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@ Distribution 7=* (starting from upper right)

t = 4 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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@ Distribution 7=° (starting from upper right)

t = 5 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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@ Distribution 7!=® (starting from upper right)

t=6
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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@ Distribution 7=7 (starting from upper right)

t = 7 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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@ Distribution 7=8 (starting from upper right)

t = 8 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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@ Distribution 7=° (starting from upper right)

t = 9 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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@ Distribution 7=10 (starting from upper right)

t=10
10
0.9
0.8
07
0.6
05
0.4
0.3
0.2
01
0.0
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@ Distribution 7!=0 (starting from center)

t = O 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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@ Distribution 7=1 (starting from center)

t = 1 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
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Diameter bounds, conductance

@ Graph diameter L: minimum number of moves to travel
between any i,j € Q.

@ NB: L =4 for 3 x 3 pebble game.
@ Diameter bound: for any € < 1/2, trivially satisfies

Z‘mix > L/2-

@ Conductance (bottleneck ratio):

Fs,s _ YiesjesTiPi
ScQms<i TS ScQms<j TS
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Direct Sampling
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Markov-chain sampling

NB: ... slower than direct sampling
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Direct sampling with bottleneck

NB: ... reaches a boundary site i € S with probability ;/7g
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Direct sampling with bottleneck

NB: ... reaches a boundary site i € S less than with 7;/7g
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Conductance and correlations

Remember:
Fs 5 . YiesjesmiPj
b= min —S2S— qin =ESESTY
ScQms<i TS ScQmg<} TS

@ Reversible Markov chains:

1 8
6 < Teorr < &
(second relation see Sinclair & Jerrum, Lemma (3.3) (p
15-17))
@ Arbitrary Markov chain (see Chen et al):
1 20
< <
40 — A »2’

(set time: Expectation of maxg (fs x mg) from equilibrium)
NB: One bottleneck, not many. Lower and upper bound.
NNB: A is not the mixing time as we have defined it (see Chen
et al. (1999)).
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Conductance and mixing

Fs.5 - Yiesjgs TPy

ScQmg<l TS ScQmg<i TS

@ Mixing-time bounds:

const const’
< tix < 2 |0g(1/7TO)

const and const’ depend on whether reversible or
non-reversible. my: smallest weight (see Chen et al 1999).

NB: One bottleneck, not many. Lower and upper bound.
NNB: Conductance: more general than transition matrices

Werner Krauth Advanced topics in Markov-chain Monte Carlo



