Homework 6, Statistical Mechanics: Concepts and applications

2016/17 ICFP Master (first year)

Werner Krauth, Maurizio Fagotti, Olga Petrova
This homework will count for your grade. Please hand in on Wednesday,
26 October 2016, at the start of the lecture (extended deadline).
(Dated: October 13, 2016)

In lecture 06 (Ising model: from Kramers-Wannier duality to Kac and Ward’s combinatorial
solution) we treated high-temperature expansions of the two-dimensional Ising model, leading up
to its exact solution through a method that identifies the high-temperature undirected loops with
the directed permutation cycles of a corresponding matrix. This also provides the theme for the

present homework session.

I. PERMUTATION CYCLES AND DETERMINANTS

A. Preparation (general matrix)

Consider a general 4 x 4 matrix A with real elements:

1 a2 a13 aws
az1 1 a3 ag

A= (1)
az1 a2 1 as4

ag1 ago asz 1

and its determinant
det A = Z sign(P)a1p(1)a2p(2)@3p(3)@4p(4)- (2)
P

where P are the 24 permutations of the elements (1,2, 3,4). Write down the terms in the determi-

nant corresponding to some of the permutations, and explain that the formula

2 : f 1
detU = (—1)# of cycles Up, Po,UPy Py - - - UPy, Py uPl/PZ/ NN
~——

cycle

configs weight of first cycle other cycles

(—1)- weight o (—1)- weight of]
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is OK (no proof needed, just provide the "feel" that eq. (2) is correct). Illustrate the presence of

“hairpin” terms in the determinant. if a;; is available alongside aj;.

B. Naive matrix Usyo

In lecture 06, we considered the naive matrix:

1 v tanh(p)
. . 1 . ~ tanh 3
Usx2 =

v tanh(p) : 1

~ tanh(3) 1

where any “” stand for “0” and v = /4 = Y/—1. Write down the determinant of this matrix in

terms of permutation cycles. Show that
Zxa = (2* cosh® B)Uzxz (4)

corresponds to the partition function of the 2 x 2 partition function of the Ising model without
periodic boundary conditions. Familiarize yourself with how to visualize cycles in the matrix (from
one element of the matrix, you move vertically to the diagonal, then horizontally to the next

element, etc).

II. THE 4N x 4N KAC-WARD MATRIX FOR THE ISING MODEL ON N SITES

We now treat the Kac-Ward matrix U, whose determinant is connected to the square of the

partition function Z:
Z = 2N cosh(B)NevVU (5)

where N is the number of sites and N, = 2L(L — 1) the number of edges. The key idea has to do

with car traffic (see Fig. 1).



all

FIG. 1: Highway crossing. To solve the two-dimensional Ising model, Kac and Ward used a high-way crossing
strategy to allow traversing each site of the Ising model in all different directions, yet to avoid hair-pins.
One crossing corresponds to one site of the lattice, and it is broken up into four different directions (“right”
= 1, “up” = 2, “left” = 3, “down” = 4). Straight traversals count as v, left turns = «, hairpin turns = 0,

right turns = @ (see Table I).
A. The not-so-naive matrix Usyo

A not-so-naive Kac-Ward matrix for the 2 x 2 problem is given by the following:

Usso= | ooy (6)

As discussed in lecture 06, rows and columns 1-4 of this matrix correspond to site 1 of the Ising

model, column 5-8 to site 2, columns 9-12 to site 3, and columns 13-16 to site 4.
e Explain the values of ug 13, U614, Ue,15 in this matrix.
e Expose, by direct inspection, the four non-trivial permutations in this matrix.

e Compute the determinant of Usxo from the cycle-sum representation of eq. (3), and show

that it agrees with the determinant of ngg.



TABLE I: The matrix elements of the first row of the Kac-Ward matrix Usx2 (see eq. (6)).

Matrix element (example) value type
UL5 v =tanh g (straight traversal of site 2)
Ui 6 a = e™/*tanh 3 (left turn at site 2)
u17 0 (hairpin turn at site 2)
U1 8 @=e /*tanhf  (right turn at site 2)

B. Compact notation for Usyo

Show that the matrix Usxo can be compactly written as a matrix of 4 X 4 matrices:

1wy up
U 1 ©up
Uaxo = (7)
up 1 wu_
i up ue 1 ]

where 1 is the 4 X 4 unit matrix, and furthermore, the 4 x 4 matrices u_,, uy, u., and u| are given

by

III. KAC-WARD MATRIX FOR THE 4 x 4 ISING MODEL

Using the compact notation of Section II B, write down the matrix Usx4, in complete analogy
with what you did for Usxo. Compute its determinant, using a computer algorithm at a few different
temperatures. For your convenience, a mathematica notebook file setting up the matrix Usxo is
made available on the website. Note that the conversion factor of eq. (5) must be introduced in

order to yield the partition function Z.

e Fxplain what this program does.



e Explain in particular why you have to take the square root of the determinant.

e Modify this program to make it work for Ujx4 (or write your own) and compute the partition
function of the 4 x 4 Ising model (without periodic boundary conditions), version Kac and

Ward. Notice that we have not proven that this matrix actually gives the exact result.

e To check this latter point, compare the partition function with the partition function of the
4 x 4 Ising model obtained from the high-temperature expansion (see Fig. 2, and in particular,

its figure caption).

Notice that there are many non-zero cycles in the matrix Usx4 that have no relation to loops in the
high-temperature expansion of the Ising model. It was the “good fortune” of Kac and Ward that
they all sum up to zero. Your program does provide a constructive prove of this property for small

loops and cycles.
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FIG. 2: All the 512 loops that make up the high-temperature expansion of the 4 x 4 Ising model without
periodic boundary conditions. Note that there is one loop with zero edges. There are, in addition, 9 loops
with four edges, 12 loops with 6 edges, 50 loops with 8 edges, 92 loops with 10 edges, 158 loops with 12
edges, 116 loops with 14 edges, 69 loops with 16 edges, 4 loops with 18 edges, 1 loop with 20 edges (in

yellow). The “golden” configuration presents a loop within a loop.



