
Homework 6, Statistical Mechanics: Concepts and applications

2016/17 ICFP Master (�rst year)

Werner Krauth, Maurizio Fagotti, Olga Petrova

This homework will count for your grade. Please hand in on Wednesday,

26 October 2016, at the start of the lecture (extended deadline).

(Dated: October 13, 2016)

In lecture 06 (Ising model: from Kramers-Wannier duality to Kac and Ward's combinatorial

solution) we treated high-temperature expansions of the two-dimensional Ising model, leading up

to its exact solution through a method that identi�es the high-temperature undirected loops with

the directed permutation cycles of a corresponding matrix. This also provides the theme for the

present homework session.

I. PERMUTATION CYCLES AND DETERMINANTS

A. Preparation (general matrix)

Consider a general 4× 4 matrix A with real elements:

A =


1 a12 a13 a14

a21 1 a23 a24

a31 a32 1 a34

a41 a42 a43 1

 (1)

and its determinant

detA =
∑
P

sign(P )a1P (1)a2P (2)a3P (3)a4P (4). (2)

where P are the 24 permutations of the elements (1, 2, 3, 4). Write down the terms in the determi-

nant corresponding to some of the permutations, and explain that the formula

detU =
∑
cycle
con�gs

(−1)# of cycles uP1P2uP2P3 . . . uPMP1︸ ︷︷ ︸
weight of �rst cycle

uP ′
1P

′
2
. . .︸ ︷︷ ︸

other cycles

=
∑
cycle
con�gs

(−1)· weight of�rst cycle

× · · · ×
(−1)· weight oflast cycle

 . (3)
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is OK (no proof needed, just provide the "feel" that eq. (2) is correct). Illustrate the presence of

�hairpin� terms in the determinant. if aij is available alongside aji.

B. Naive matrix Ũ2×2

In lecture 06, we considered the naive matrix:

Û2×2 =


1 γ tanh(β) · ·

· 1 · γ tanhβ

γ tanh(β) · 1 ·

· · γ tanh(β) 1

 .

where any �·� stand for �0� and γ = eiπ/4 = 4
√
−1. Write down the determinant of this matrix in

terms of permutation cycles. Show that

Z2×2 = (24 cosh4 β)Û2×2 (4)

corresponds to the partition function of the 2 × 2 partition function of the Ising model without

periodic boundary conditions. Familiarize yourself with how to visualize cycles in the matrix (from

one element of the matrix, you move vertically to the diagonal, then horizontally to the next

element, etc).

II. THE 4N × 4N KAC-WARD MATRIX FOR THE ISING MODEL ON N SITES

We now treat the Kac-Ward matrix U , whose determinant is connected to the square of the

partition function Z:

Z = 2N cosh(β)Ne
√
U (5)

where N is the number of sites and Ne = 2L(L− 1) the number of edges. The key idea has to do

with car tra�c (see Fig. 1).
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FIG. 1: Highway crossing. To solve the two-dimensional Ising model, Kac and Ward used a high-way crossing

strategy to allow traversing each site of the Ising model in all di�erent directions, yet to avoid hair-pins.

One crossing corresponds to one site of the lattice, and it is broken up into four di�erent directions (�right�

= 1, �up� = 2, �left� = 3, �down� = 4). Straight traversals count as ν, left turns = α, hairpin turns = 0,

right turns = α (see Table I).

A. The not-so-naive matrix U2×2

A not-so-naive Kac-Ward matrix for the 2× 2 problem is given by the following:

U2×2 =



1 · · · ν α · α · · · · · · · ·
· 1 · · · · · · α ν α · · · · ·
· · 1 · · · · · · · · · · · · ·
· · · 1 · · · · · · · · · · · ·
· · · · 1 · · · · · · · · · · ·
· · · · · 1 · · · · · · α ν α ·
· α ν α · · 1 · · · · · · · · ·
· · · · · · · 1 · · · · · · · ·
· · · · · · · · 1 · · · ν α · α
· · · · · · · · · 1 · · · · · ·
· · · · · · · · · · 1 · · · · ·
α · α ν · · · · · · · 1 · · · ·
· · · · · · · · · · · · 1 · · ·
· · · · · · · · · · · · · 1 · ·
· · · · · · · · · α ν α · · 1 ·
· · · · α · α ν · · · · · · · 1


. (6)

As discussed in lecture 06, rows and columns 1-4 of this matrix correspond to site 1 of the Ising

model, column 5-8 to site 2, columns 9-12 to site 3, and columns 13-16 to site 4.

• Explain the values of u6,13, u6,14, u6,15 in this matrix.

• Expose, by direct inspection, the four non-trivial permutations in this matrix.

• Compute the determinant of U2×2 from the cycle-sum representation of eq. (3), and show

that it agrees with the determinant of Û2×2.
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TABLE I: The matrix elements of the �rst row of the Kac�Ward matrix U2×2 (see eq. (6)).

Matrix element (example) value type

u1,5 ν = tanhβ (straight traversal of site 2)

u1,6 α = eiπ/4 tanhβ (left turn at site 2)

u1,7 0 (hairpin turn at site 2)

u1,8 α = e−iπ/4 tanhβ (right turn at site 2)

B. Compact notation for U2×2

Show that the matrix U2×2 can be compactly written as a matrix of 4× 4 matrices:

U2×2 =


1 u→ u↑ .

u← 1 · u↑

u↓ · 1 u→

· u↓ u← 1

 (7)

where 1 is the 4× 4 unit matrix, and furthermore, the 4× 4 matrices u→, u↑, u←, and u↓ are given

by

u→ =


ν α · α

· · · ·

· · · ·

· · · ·

 , u↑ =


· · · ·

α ν α ·

· · · ·

· · · ·

 ,

u← =


· · · ·

· · · ·

· α ν α

· · · ·

 , u↓ =


· · · ·

· · · ·

· · · ·

α · α ν

 .
(8)

III. KAC-WARD MATRIX FOR THE 4× 4 ISING MODEL

Using the compact notation of Section II B, write down the matrix U4×4, in complete analogy

with what you did for U2×2. Compute its determinant, using a computer algorithm at a few di�erent

temperatures. For your convenience, a mathematica notebook �le setting up the matrix U2×2 is

made available on the website. Note that the conversion factor of eq. (5) must be introduced in

order to yield the partition function Z.

• Explain what this program does.
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• Explain in particular why you have to take the square root of the determinant.

• Modify this program to make it work for U4×4 (or write your own) and compute the partition

function of the 4 × 4 Ising model (without periodic boundary conditions), version Kac and

Ward. Notice that we have not proven that this matrix actually gives the exact result.

• To check this latter point, compare the partition function with the partition function of the

4×4 Ising model obtained from the high-temperature expansion (see Fig. 2, and in particular,

its �gure caption).

Notice that there are many non-zero cycles in the matrix U4×4 that have no relation to loops in the

high-temperature expansion of the Ising model. It was the �good fortune� of Kac and Ward that

they all sum up to zero. Your program does provide a constructive prove of this property for small

loops and cycles.
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FIG. 2: All the 512 loops that make up the high-temperature expansion of the 4 × 4 Ising model without

periodic boundary conditions. Note that there is one loop with zero edges. There are, in addition, 9 loops

with four edges, 12 loops with 6 edges, 50 loops with 8 edges, 92 loops with 10 edges, 158 loops with 12

edges, 116 loops with 14 edges, 69 loops with 16 edges, 4 loops with 18 edges, 1 loop with 20 edges (in

yellow). The �golden� con�guration presents a loop within a loop.


