Advanced topics in Markov-chain Monte Carlo

Lecture 2:

Diameters and conductances, liftings, path graph Part 2/2: Lifting / Examples

Werner Krauth

ICFP -Master Course Ecole Normale Supérieure, Paris, France

26 January 2022

References

- F. Chen, L. Lovasz, I. Pak, Lifting Markov Chains to Speed up Mixing. Proceedings of the 17th Annual ACM Symposium on Theory of Computing, 275 (1999) http: //www.math.ucla.edu/~pak/papers/stoc2.pdf
- P. Diaconis, S. Holmes, R. M. Neal, Analysis of a nonreversible Markov chain sampler Ann. Appl. Probab. 10, 726–752 (2000) https://projecteuclid.org/download/pdf_1/euclid.aoap/1019487508
- M. Hildebrand, Rates of convergence of the Diaconis-Holmes-Neal Markov chain sampler with a V-shaped stationary probability, Markov Proc. Rel. Fields 10, 687–704 (2004)
- W. Krauth, Event-Chain Monte Carlo: Foundations, Applications, and Prospects, Front. Phys. 9:663457. https://www.frontiersin.org/article/10. 3389/fphy.2021.663457

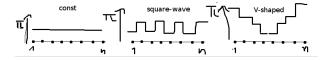
Metropolis algorithm on path graph (1/4)

- path graph $P_n = (\Omega_n, E_n) \dots$
- vertices \Leftrightarrow sample space $\Omega_n = \{1, \dots, n\}$
- edges $E_n = \{(1,2), \dots, (n-1,n)\} \Leftrightarrow \text{non-zero } P_{ij}$
- one-d *n*-site lattice without pbc.
- stationary distribution $\pi = \{\pi_1, \dots, \pi_n\} \Leftrightarrow \mathsf{GBC}$.
- Phantom vertices 0 and n+1 with $\pi_0=\pi_{n+1}=0$, and
- Phantom edges (0, 1) and (n, n + 1).

Metropolis algorithm:

- From vertex $i \in \Omega$ choose $j = i \pm 1$ with probability 1/2
- **2** accept $i \rightarrow j$ with probability $\min(1, \pi_j/\pi_i)$
- else stay at i.
- NB: Phantoms are nice

Metropolis algorithm on path graph (2/4)

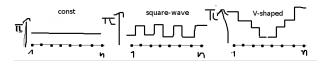


- Checking detailed balance $(\pi_i P_{ij} = \pi_j P_{ji})$:
- Checking global balance $(\sum_i \pi_i P_{ij} = \pi_j)$:

$$\underbrace{\frac{\pi_{i} - \frac{1}{2}\min(\pi_{i}, \pi_{i-1}) - \frac{1}{2}\min(\pi_{i}, \pi_{i+1})}_{\frac{1}{2}\min(\pi_{i}, \pi_{i-1})} \underbrace{\frac{1}{2}\min(\pi_{i}, \pi_{i+1})}_{\frac{1}{2}\min(\pi_{i}, \pi_{i+1})} \underbrace{\frac{1}{2}\min(\pi_{i}, \pi_{i+1})}_{i+1} \underbrace{\frac{1}{2}\min(\pi_{i}, \pi_{i+1})}_{i+1}$$

- Irreducibility OK
- Aperiodicity OK, thanks to boundaries

Metropolis algorithm on path graph (3/4)



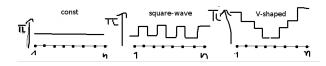
- Constant: $\pi_i = \frac{1}{n} \ \forall i \in \Omega$. Conductance $\Phi = \mathcal{O}(1/n)$.
- Square wave: $\pi_{2k-1} = \frac{2}{3n}$, $\pi_{2k} = \frac{4}{3n}$. Conductance $\Phi = \frac{2}{3n}$ (for $n \to \infty$).
- V-shaped: $\pi_i = \operatorname{const} \left| \frac{n+1}{2} i \right| \ \forall i \in \Omega$, where $\operatorname{const} = \frac{4}{n^2}$. Conductance $\Phi = \frac{2}{n^2}$.

NB: Graph diameter n.

NNB: π normalized.

NNNB: Bottleneck between $i = \frac{n}{2}$ and $j = \frac{n}{2} + 1$.

Metropolis algorithm on path graph (4/4)



- Constant: $\pi_i = \frac{1}{n} \ \forall i \in \Omega$. Conductance $\Phi = \mathcal{O}(1/n)$. Mixing time $\mathcal{O}(n^2)$. Markov chain is transport-limited.
- Square wave: $\pi_{2k-1} = \frac{2}{3n}$, $\pi_{2k} = \frac{4}{3n}$. Conductance $\Phi = \frac{2}{3n}$ (for $n \to \infty$). Mixing time $\mathcal{O}(n^2)$. Markov chain is transport-limited.
- V-shaped: $\pi_i = \operatorname{const} | \frac{n+1}{2} i | \ \forall i \in \Omega$, where $\operatorname{const} = \frac{4}{n^2}$. Conductance $\Phi = \frac{2}{n^2}$. Mixing time $\mathcal{O}\left(n^2 \log n\right)$. Markov chain is conductance-limited (up to a log). NB: Mixing time in \mathcal{S} is $\mathcal{O}\left(n^2\right)$.

Lifting (Chen et al (1999)) (1/2)

- Markov chain Π ⇔ Lifted Markov chain Π̂
- Ω (sample space) $\Leftrightarrow \hat{\Omega}$ (lifted sample space)
- P (transition matrix) $\Leftrightarrow \hat{P}$ (lifted transition matrix)
- Condition 1: sample space is copied ("lifted"), π preserved

$$\pi_{V} = \hat{\pi} \left[f^{-1}(V) \right] = \sum_{i \in f^{-1}(V)} \hat{\pi}_{i},$$

• Condition 2: flows are preserved

$$\underbrace{\pi_{\mathcal{V}} P_{\mathcal{V} \mathcal{U}}}_{\text{collapsed flow}} = \sum_{i \in f^{-1}(\mathcal{V}), j \in f^{-1}(\mathcal{U})} \widehat{\hat{\pi}_i \hat{P}_{ij}} \ .$$

• Usually: $\hat{\Omega} = \Omega \times \mathcal{L}$, with \mathcal{L} a set of lifting variables σ

Lifting (Chen et al (1999)) (2/2)

• Condition 1: sample space is copied ("lifted"), π preserved

$$\pi_{\mathbf{v}} = \hat{\pi} \left[f^{-1}(\mathbf{v}) \right] = \sum_{i \in f^{-1}(\mathbf{v})} \hat{\pi}_i,$$

Condition 2: flows are preserved

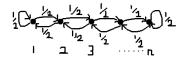
$$\underbrace{\pi_{\mathcal{V}} P_{\mathcal{V} \mathcal{U}}}_{\text{collapsed flow}} = \sum_{i \in f^{-1}(\mathcal{V}), j \in f^{-1}(\mathcal{U})} \widehat{\hat{\pi}_i \hat{P}_{ij}} \ .$$

• Lifting does not increase the conductance (TD).

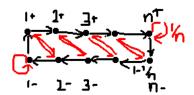
Lifting on the path graph (1/4)

Probability distribution $\pi = (1/n, ..., 1/n)$ (Diaconis et al. 2000)

"Collapsed" Markov chain:



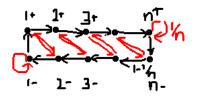
• "Lifted" Markov chain $\hat{\Omega} = \Omega \times \{-, +\}$:



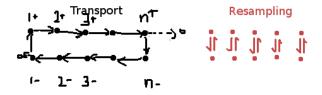
Lifting on the path graph (2/4)

Probability distribution $\pi = (1/n, ..., 1/n)$ (Diaconis et al. 2000)

• "Lifted" Markov chain $\hat{\Omega} = \Omega \times \{-, +\}$:



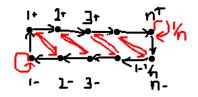
Two-step version



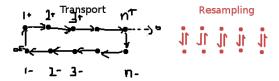
Lifting on the path graph (3/4)

Probability distribution $\pi = (1/n, ..., 1/n)$ (Diaconis et al. 2000)

• "Lifted" Markov chain $\hat{\Omega} = \Omega \times \{-, +\}$:



Two-step version



Analyze, then generalize the behavior at the boundaries

Lifting on the path graph (4/4)

"Lifted Markov chain: Transport"

$$\begin{array}{c|c} \hline (i-1,+1) & \frac{1}{2}\min(\pi_{i-1},\pi_i) \\ \hline & i,+1 \\ \hline & \frac{1}{2}(\pi_i-\min(\pi_i,\pi_{i+1})] \\ \hline & \frac{1}{2}[\pi_i-\min(\pi_i,\pi_{i+1})] \\ \hline & \vdots \\ \hline [i-1,-1] & \frac{1}{2}\min(\pi_{i-1},\pi_i) \\ \hline & \vdots \\ \hline \end{array} \begin{array}{c|c} \hline (i,+1) & \frac{1}{2}\min(\pi_i,\pi_{i+1}) \\ \hline & \vdots \\ \hline \vdots \\ \hline \end{array} \begin{array}{c|c} \hline (i+1,+1) \\ \hline \end{array}$$

"Lifted Markov chain: Resampling"

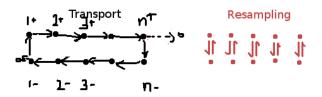
$$(i,+1)$$

$$\frac{1}{2}\pi_{i}\epsilon \downarrow \uparrow \frac{1}{2}\pi_{i}\epsilon$$

$$(i,-1)$$

Resampling can often be dropped

Lifting and global balance



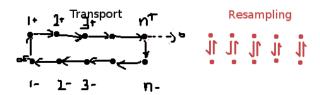
• Flow into configuration (x, +) (transport):

$$(x-1,+) \rightarrow (x,+)$$
 $\mathcal{A}_{x}^{+} = \min(\pi_{x-1}^{+}, \pi_{x}^{+})$
 $(x,-) \rightarrow (x,+)$ $\mathcal{R}_{x}^{+} = \pi_{x}^{-} - \min(\pi_{x-1}^{-}, \pi_{x}^{-})$

Flow into configuration (resampling):

$$(x,+) \to (x,+)$$
 $\mathcal{L}_{x}^{++} = (1-\lambda)\pi_{x}^{+} = \frac{1}{2}(1-\lambda)\pi(x)$
 $(x,-) \to (x,+)$ $\mathcal{L}_{x}^{-+} = \lambda\pi_{x}^{-} = \frac{1}{2}\lambda\pi(x)$

Lifting and mixing



- The V-shaped stationary distribution is an ideal model to test the lifted Metropolis algorithm.
- It has conductance $\mathcal{O}(2/n^2)$, so mixing at least $\sim n^2$
- Collapsed Metropolis: $t_{mix} = \mathcal{O}(n^2 \log n)$
- Lifted Metropolis: $t_{\text{mix}} = \mathcal{O}(n^2)$
- Lifted Metropolis (restricted to $S = \{1, \dots, \frac{n}{2}\}$) $t_{\text{mix}}^{\text{restricted}} = \mathcal{O}(n)$ with TVD decreasing to $\frac{1}{2}$.