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I. ISING MODEL IN D > 2 — THE PEIERLS ARGUMENT

1. Peierls argument for the Ising model in D > 2 C. Bonati, Eur. J. Phys. 35, 035002 (2014)

The model: Consider a classical Ising ferromagnet, defined for spins o € {41, —1}:
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where J is assumed to be positive and we set the applied magnetic field h to zero. We define the
average magnetization per lattice site as

m==Y =" _""=1-2"> (2)

where N is the total number of spins and N is the number of +1 spins. In D > 2, this system
undergoes a phase transition at the critical temperature T,.. In the paramagnetic phase (T > T.),
the average magnetization in thermodynamic limit (m) vanishes, whereas in the ferromagnetic phase
(T < T¢) it does not. The Peierls argument allows one to show that (N_)/N < 1/2 — € (for every
N) in ferromagnetic phase, from which it follows that (m) > 0. The argument in D = 2 has been
presented in the lecture: in this exercise we generalize it to the case D > 2.

Peierls argument for the Ising model in D > 3: Consider a three dimensional cubic lattice of di-
mensions N/3 x N1/3 x N1/3. The Peierls contours are in this case surfaces, but their construction
proceeds along the same lines as in the two dimensional case.

(a) Label an arbitrary Peierls surface by 7% , where S is the surface area measured in units of
elementary squares. Show that for a fixed spin configuration, the following bound holds:
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where X (v%) is non-zero iff % belongs to the configuration, V(%) is the volume enclosed by the
Peierls surface and N(S) the total number of surfaces or area S.

: In a fized configuration, each negative spin is enclosed within at least one Peierls surface, but
the latter can include also positive spins (see Fig. 1 of Bonatti’s paper for a D = 2 example).
Thus the sum of the volumes enclosed in all Peierls surfaces gives an upper bound to N_.
(b) Give an upper bound on the volume inside a surface V(%) as a function V(S) depending only
the surface area S.



: Let R be the smallest parallelogram containing the surface 7%- Its edges x1, 2, x3 must satisfy
x; < S/4, and each x; can be at most (S — 2)/4. This gives:
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(c) Find an upper bound X (S) on the thermal average (X (v%)).

: With exactly the same argument as for D = 2 we get:

‘ o—BE(c)
() < EEL
and

E(c)=E(c)+2JS . (6)

Substituting this into the above inequality we get
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where the two sums are equal to each other because for a given surface, for every configuration
¢, there is exactly one configuration ¢. This results in the following upper bound on (X (vy)):

(X(05)) < X(8) =275 (7)

(d) Derive an upper bound on the number N(S) of closed surfaces of area S.

: This is obtained bounding the number of ways in which a closed surface of size S can be built by
combining S faces of unit area. At the first step, the first face can be placed around any of
the N lattice sites, in 3 possible orientations. At any subsequent step n, one additional face
1s attached to each of the s, links left open at the previous step: for each added face there are
at most 3 possible orientations. This is iterated until the step m such that 1 + 2222 Sp = S.
Therefore we get:
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where the additional factor of S in the denominator accounts for the different possible choices
of which is the first one out of the S faces.

(e) Use the quantities you calculated to write down an expression for (N_), which will be proportional
to a sum over surface areas S. The final result should be of the form (N_) < N f3;(x) where
r =9e 48 and f3(z) is a continuous function of z.

: Combining all estimates one gets
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Writing S = 2k we get
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one gets (N_) < N f3(x) with
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(f) Use the same reasoning to arrive at a similar result for the general D > 3 case.
: In D dimensions, let v denote a Peierls hypersurface of area H. The bounds generalize to:
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and the sum is convergent.

(g) Why cannot the Peierls argument be applied to the one dimensional Ising model?

: In D =1 the domains are segments of length H: while V(H) and N(H) grow with H, X (H) =
e~ 487 does not: the upper-bound is thus a diverging series.



