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I. ISING MODEL IN D ≥ 2 – THE PEIERLS ARGUMENT

1. Peierls argument for the Ising model in D > 2 C. Bonati, Eur. J. Phys. 35, 035002 (2014)

The model: Consider a classical Ising ferromagnet, defined for spins σ ∈ {+1,−1}:

E = −J
∑
(i,j)

σiσj − h
∑
i

σi , (1)

where J is assumed to be positive and we set the applied magnetic field h to zero. We define the
average magnetization per lattice site as

m =
1

N

∑
i

σi =
N+ −N−

N
= 1− 2

N−
N

(2)

where N is the total number of spins and N± is the number of ±1 spins. In D ≥ 2, this system
undergoes a phase transition at the critical temperature Tc. In the paramagnetic phase (T > Tc),
the average magnetization in thermodynamic limit 〈m〉 vanishes, whereas in the ferromagnetic phase
(T < Tc) it does not. The Peierls argument allows one to show that 〈N−〉/N < 1/2 − ε (for every
N) in ferromagnetic phase, from which it follows that 〈m〉 > 0. The argument in D = 2 has been
presented in the lecture: in this exercise we generalize it to the case D > 2.

Peierls argument for the Ising model in D ≥ 3: Consider a three dimensional cubic lattice of di-
mensions N1/3 ×N1/3 ×N1/3. The Peierls contours are in this case surfaces, but their construction
proceeds along the same lines as in the two dimensional case.

(a) Label an arbitrary Peierls surface by γiS , where S is the surface area measured in units of
elementary squares. Show that for a fixed spin configuration, the following bound holds:

N− ≤
∑

S≥6,even

N(S)∑
i=1

V (γiS)X(γiS) (3)

where X(γiS) is non-zero iff γiS belongs to the configuration, V (γiS) is the volume enclosed by the
Peierls surface and N(S) the total number of surfaces or area S.

: In a fixed configuration, each negative spin is enclosed within at least one Peierls surface, but
the latter can include also positive spins (see Fig. 1 of Bonatti’s paper for a D = 2 example).
Thus the sum of the volumes enclosed in all Peierls surfaces gives an upper bound to N−.

(b) Give an upper bound on the volume inside a surface V (γiS) as a function V (S) depending only
the surface area S.
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: Let R be the smallest parallelogram containing the surface γiS. Its edges x1, x2, x3 must satisfy
xi ≤ S/4, and each xi can be at most (S − 2)/4. This gives:

V (γiS) ≤ max
xi≤(S−2)/4

x1x2x3 ≤ max
x1≤S/4

x1 max
x2≤S/4

x2 max
x3≤S/4

x3 =

(
S

4

)3

. (4)

(c) Find an upper bound X(S) on the thermal average 〈X(γiS)〉.
: With exactly the same argument as for D = 2 we get:

〈X(γiS)〉 ≤
∑
c∈C e−βE(c)∑
c̄∈C̄ e−βE(c̄)

(5)

and

E(c) = E(c̄) + 2JS . (6)

Substituting this into the above inequality we get

〈X(γiL)〉 ≤
e−2JβL

∑
c∈C e−βE(c̄)∑

c̄∈C̄ e−βE(c̄)

where the two sums are equal to each other because for a given surface, for every configuration
c, there is exactly one configuration c̄. This results in the following upper bound on 〈X(γiS)〉:

〈X(γiS)〉 ≤ X(S) ≡ e−2JβS . (7)

(d) Derive an upper bound on the number N(S) of closed surfaces of area S.

: This is obtained bounding the number of ways in which a closed surface of size S can be built by
combining S faces of unit area. At the first step, the first face can be placed around any of
the N lattice sites, in 3 possible orientations. At any subsequent step n, one additional face
is attached to each of the sn links left open at the previous step: for each added face there are

at most 3 possible orientations. This is iterated until the step n such that 1 +
∑n
n=2 sn = S.

Therefore we get:

N(S) ≤ N 3S

S
, (8)

where the additional factor of S in the denominator accounts for the different possible choices
of which is the first one out of the S faces.

(e) Use the quantities you calculated to write down an expression for 〈N−〉, which will be proportional
to a sum over surface areas S. The final result should be of the form 〈N−〉 ≤ Nf3(x) where
x = 9e−4Jβ and f3(x) is a continuous function of x.

: Combining all estimates one gets

〈N−〉 ≤
∑

S≥6,even

V (S)N(S)X(S) =
N

43

∑
S≥6,even

S2(3 e−2βJ)S (9)
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Writing S = 2k we get

〈N−〉 ≤
N

16

∑
k≥3

k2(9 e−4βJ)S =
N

16

∑
k≥1

k2xk − x− 4x2

 . (10)

Using that ∑
k≥1

k2xk =
x(1 + x)

(1− x)3
(11)

one gets 〈N−〉 ≤ Nf3(x) with

f3(x) =
x3

16(1− x)3
(9− 11x+ 4x2). (12)

(f) Use the same reasoning to arrive at a similar result for the general D > 3 case.

: In D dimensions, let γiH denote a Peierls hypersurface of area H. The bounds generalize to:

V (γiH) ≤ V (H) =

(
H

2(D − 1)

)D
, N(H) ≤ DN 3H

3H
(13)

and 〈X(γiH)〉 ≤ X(H) = e−2JβH , so that

〈N−〉 ≤
ND

6(D − 1)D

∑
k≥D

kD−1xk, (14)

and the sum is convergent.

(g) Why cannot the Peierls argument be applied to the one dimensional Ising model?

: In D = 1 the domains are segments of length H: while V (H) and N(H) grow with H, X(H) =
e−4βJ does not: the upper-bound is thus a diverging series.


