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Hard-disk packings 1/4

This is Fejes (1940) proving optimal disk packing in 2D.
There is also Thue (1910), but it seems to be wrong.
Conway & Sloane (1999): ‘This result has a long history - see
especially Thue’s 1910 paper [Thu 1] and the proof given by
Fejes Toth in 1940’ ...
Question: Is Thue’s proof correct or is it wrong, and does
anyone (in the audience) have a copy of the paper?
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This is Böröczky’s (1964) paper showing sparse ‘locally’ stable
packings in 2D (and also in higher dimensions).
Hoellmer et al (2021) follows in its footsteps, provides an
open-source arbitrary-precision implementation.
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Böröczky packings in a periodic square box.
see Hoellmer et al. (2021).
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Long-range positional order.
Long-range orientational order.



Hard disks away from close packing (1/2)

A one-d (two-d) hard-sphere system cannot have positional
long-range order.
A three-d hard-sphere system can have positional long-range
order



Hard disks away from close packing (2/2)

A 2d particle system cannot be a crystal.
2d harmonic model: long-range orientational order.



Metropolis et al (1953) (1/3)



Metropolis et al (1953) (2/3)

i = 1 (rej.) i = 2 i = 3 i = 4 (rej.) i = 5 i = 6

i = 7 i = 8 (rej.) i = 9 (rej.) i = 10 i = 11 i = 12 (rej.)

Metropolis et al. (1953) introduced reversible MCMC.
They also introduced non-reversible MCMC (sic).



Metropolis et al (1953) (3/3)



Alder–Wainwright (1962) (1/2)



Alder–Wainwright (1962) (2/2)

Alder–Wainwright (1962) revisited by Li et al. (2022)



2D melting transition

density η = 0.48 η = 0.72

Generic 2D systems cannot crystallize (Peierls, Landau 1930s)
but they can turn solid (Alder & Wainwright, 1962).
Nature of transition disputed for decades.

Phase positional order orientational order
solid algebraic long-range
hexatic short-range algebraic
liquid short-range short-range



Kosterlitz–Thouless (1973)



Detailed balance - global balance

flow into a = Boltzmann weight π(a) (global balance
condition): ∑

k

π(t−1)(k)p(k → a)︸ ︷︷ ︸
flow into a

∑
k F(k→a)

= π(t)(a)

flow F(a → b) ≡ flow F(b → a) (detailed balance condition):

π(b)p(b → a)︸ ︷︷ ︸
flow from b to aF(b→a)

= π(a)p(a → b)︸ ︷︷ ︸
F(a→b) flow from a to b
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Faster algorithm: (Straight) Event-chain Monte Carlo

Bernard, Krauth, Wilson (2009): Non-reversible,
continuous-time.
Infinitesimal moves: No multiple overlaps, consensus.
Michel, Kapfer, Krauth (2014) (smooth potentials).
Other versions of ECMC: ‘Straight’ (2009), ‘Reflective’
(2009), ‘Forward’ (Michel et al. 2020), ‘Newtonian’ (Klement
et al. 2020).
New world of MCMC (Review: Krauth (2021)).



Hard-disk configuration

10242 hard disks
Bernard, Krauth (PRL 2011)



Equilibrium equation of state

1st-order liquid–hexatic (Bernard & Krauth, PRL (2011)).
Many confirmations (Engel, Anderson, Glotzer, Isobe, Bernard,
Krauth, PRE Milestone (2013)).



Soft disks

Soft disks: V ∝ (σ/r)n.

Kapfer & Krauth (PRL 2015).
Two melting scenarios depending on softness n of potential.



Local Markov chains and packings (1/4)

Sparse packings are only ‘locally’ stable.
They trap local Markov chains that move single disks.
They are a ‘lower-dimensional’ manifold.
Can they break the connectivity of sample space?



Local Markov chains and packings (2/4)

Böröczky packing =⇒ ϵ-relaxed Böröczky configuration.
They no longer trap local Markov chains that move single
disks.
They correspond to a finite portion of sample space.
For small ϵ, the relaxed Böröczky configurations are ‘tough
cookies’.



Local Markov chains and packings (3/4)
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Exact scaling prediction from an ϵ-relaxed Böröczky
configuration.
Scaling as a function of ϵ, not of system size N.
Enormous differences in escape times between local Metropolis
algorithm and Event-chain Monte Carlo.
Enormous differences in escape times between ECMC variants.



Local Markov chains and packings (4/4)

Packing ≡ ∞-Pressure configuration.
In an NPT MCMC algorithm, pressure is constant, not the
box volume.
Homothetic expansion of box (volume V , side L) part of move
set. Scaling as a function of ϵ, not of system size N

∆L

L
∼ ϵ ∼ 1

βPVcut
(fixed configuration). (1)

See Höllmer et al. (2021).



Conclusions

Packings, from low to high densities.
Local Markov chains.
Hard-disk model.
NB: Help with Thue (1910)? (Really needed)


