




















Lecture 6. Two-dimensional Ising model: From Ising to Onsager (Transfer matrix
2/2)
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Lecture 7

Two-dimensional Ising model:
Solution through high-temperature
expansions)

in this lecture, we introduce, on the one hand, to the concept of duality in the Ising
model[?, 20] On the other hand, we present the graphical method for the solution of
the Ising model, due to Kac and Ward. Our discussion relies on a few pages of the
SMAC book[5, 236-247], and on the original papers [?, 20]. A modern echo (among
many others) can be found in the work by Saul and Kardar (1992).

7.1 High-temperature expansion of the 2D Ising model

The word “enumeration” has two meanings: it refers to listing items (configurations),
but it also applies to simply counting them. The difference between the two is of
more than semantic interest: in the list generated by Alg. enumerate-ising.py, we
were able to pick out any information we wanted, for example the number of config-
urations of energy E and magnetization M , that is, the density of states N (E,M). In
this subsection we discuss an alternative enumeration for the two-dimensional Ising
model. It does not list the spin configurations, but rather all the loop configurations
which appear in the high-temperature expansion of the Ising model. This program
will then turn, in Section ??, into an enumeration of the second kind (the counting), as
pioneered by Kac and Ward[?]. It counts configurations and obtains Z(β) for a two-
dimensional Ising system of any size (Kaufman, 1949)[21], and even for the infinite
system (Onsager, 1944)[17]. However, it then counts without listing. For example,
it finds the number N (E) of configurations with energy E but does not tell us how
many of them have a magnetization M .
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Lecture 7. Two-dimensional Ising model: Solution through high-temperature
expansions)

Van der Waerden, in 1941 [?], noticed that the Ising-model partition function,

Z =
∑
σ

exp

Jβ∑
〈k,l〉

σkσl


=
∑
σ

∏
〈k,l〉

eJβσkσl ,
(7.1)

allows each term eJβσkσl to be expanded and rearranged into just two terms, one
independent of the spins and the other proportional to σkσl:

eβσkσl = 1 +βσkσl+
β2

2! (σkσl)2︸     ︷︷     ︸
=1

+β3

3! (σkσl)3︸     ︷︷     ︸
=σkσl

+ · · ·− · · ·

=
(

1 + β2

2! + β4

4! + · · ·
)

︸                         ︷︷                         ︸
coshβ

+σkσl

(
β+ β3

3! + β5

5! + · · ·
)

︸                          ︷︷                          ︸
sinhβ

= (cosh β)(1 +σkσl tanhβ)

Inserted into eq. (7.1), with J = +1, this yields

Z(β) =
∑
s

∏
〈k,l〉

((cosh β)(1 +σkσl tanh β)) . (7.2)

For concreteness, we continue with a 4× 4 square lattice without periodic boundary
conditions (with J = 1). This lattice has 24 edges and 16 sites, so that, by virtue of
eq. (7.2), its partition function Z4×4(β) is the product of 24 parentheses, one for each
edge:

Z4×4(β) =
∑

{σ1,...,σ16}
cosh24β(

edge 1︷                  ︸︸                  ︷
1 +σ1σ2 tanh β)(

edge 2︷                  ︸︸                  ︷
1 +σ1σ5 tanh β)

× . . .(1 +σ14σ15 tanhβ)(1 +σ15σ16 tanhβ︸                   ︷︷                   ︸
edge 24

). (7.3)

We multiply out this product: for each edge (parenthesis) k, we have a choice between
a “one” and a “tanh” term. This is much like the option of a spin-up or a spin-down
in the original Ising-model enumeration, and can likewise be expressed through a
binary variable nk:

nk =
{

0 (≡ edge k in eq. (7.3) contributes 1)
1 (≡ edge k contributes (σskσs′k tanh(β)))

,

where sk and s′k indicate the sites at the two ends of edge k. Edge k = 1 has {s1,s
′
1}=

{1,2}, and edge k= 24 has, from eq. (7.3), {s24,s
′
24}= {15,16}. Each factored term can

be identified by variables

{n1, . . . ,n24}= {{0,1}, . . . ,{0,1}}.
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7.2. Counting (not listing) loops in two dimensions

For {n1, . . . ,n24} = {0, . . . ,0}, each parenthesis picks a “one”. Summed over all spin
configurations, this gives 216. Most choices of {n1, . . . ,n24} average to zero when
summed over spin configurations because the same term is generated with σk = +1
and σk = −1. Only choices leading to spin products σ0

s ,σ
2
s ,σ

4
s at each lattice site s

remain finite after summing over all spin configurations. The edges of these terms
form loop configurations, such as those shown for the 4×4 lattice in Fig. 7.1.

The list of all loop configurations may be generated by Alg. edge-ising.py, a re-
cycled version of the Gray code for 24 digits, coupled to an incremental calculation
of the number of spins on each site. The {o1, . . . ,o16} count the number of times the
sites {1, . . . ,16} are present. The numbers in this vector must all be even for a loop
configuration, and for a nonzero contribution to the sum in eq. (7.3).

Table 7.1: Numbers of loop configurations in Fig. 7.1 with given numbers of edges (the figure contains
one configuration with 0 edges, 9 with 4 edges, etc). (From Alg. edge-ising.py).

# Edges # Configs
0 1
4 9
6 12
8 50

10 92
12 158
14 116
16 69
18 4
20 1

For the thermodynamics of the 4×4 Ising model, we only need to keep track of the
number of edges in each configuration, not the configurations themselves. Table 7.1,
which shows the number of loop configurations for any given number of edges, thus
yields the exact partition function for the 4×4 lattice without periodic boundary con-
ditions:

Z4×4(β) = (216 cosh24(β))(1 + 9tanh4β+ 12tanh6β+ · · ·+ 4tanh18β+ 1tanh20β).
(7.4)

Partition functions obtained from this expression are easily checked against the Gray-
code enumeration that we had before.

7.2 Counting (not listing) loops in two dimensions
Following Kac and Ward[?], we now construct a matrix whose determinant counts the
number of loop configurations in Fig. 7.1. This is possible because the determinant of
a matrix U = (ukl) is defined by a sum of permutations P (with signs and weights).
Each permutation can be written as a collection of cycles, a “cycle configuration”. Our
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expansions)

Figure 7.1: The list of all 512 loop configurations for the 4×4 Ising model without periodic boundary
conditions. The “golden” configuration is the only one with 20 edges. It gives rise to the 1tanh20β
term in eq. (7.4). The “red” configuration represents a “loop within a loop”.
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7.2. Counting (not listing) loops in two dimensions

task will consist in choosing the elements ukl of the matrix U in such a way that the
signs and weights of each cycle configurations correspond to the loop configurations
in the two-dimensional Ising model. We shall finally arrive at a computer program
which implements the correspondence, and effectively solves the enumeration prob-
lem for large two-dimensional lattices. For simplicity, we restrict ourselves to square
lattices without periodic boundary conditions, and consider the definition of the de-
terminant of a matrix U ,

detU =
∑

permutations

(signP )u1P1u2P2 . . .uNPN .

We now represent P in terms of cycles. The sign of a permutation P ofN elements
with n cycles is signP = (−1)N+n (an example may be found in the SMAC 1.2.2).
In the following, we shall consider only matrices with even N , for which signP =
(−1)# of cycles. The determinant is thus

detU =
∑
cycle

configs

(−1)# of cyclesuP1P2uP2P3 . . .uPMP1︸                         ︷︷                         ︸
weight of first cycle

uP ′1P ′2 . . .︸       ︷︷       ︸
other cycles

=
∑
cycle

configs

(
{

(−1)·weight of
first cycle

}
)×·· ·× (

{
(−1)·weight of

last cycle

}
).

It follows from this representation of a determinant in terms of cycle configurations
that we should choose the matrix elements ukl such that each cycle corresponding to
a loop on the lattice (for example (P1, . . . ,PM )) gets a negative sign (this means that
the sign of uP1P2uP2P3 . . .uPMP1 should be negative). All cycles not corresponding to
loops should get zero weight.

We must also address the problem that cycles in the representation of the de-
terminant are directed. The cycle (P1,P2, . . . ,PM−1,PM ) is different from the cycle
(PM ,PM−1, . . . ,P2,P1), whereas the loop configurations in Fig. 7.1 have no sense of
direction.

7.2.1 2x2 lattice, naive 4×4 matrix
For concreteness, we start with a 2× 2 lattice without periodic boundary conditions,
for which the partition function is

Z2×2 = (24 cosh4β)(1 + tanh4β). (7.5)

The prefactor in this expression (2N multiplied by one factor of coshβ per edge) was
already encountered in eq. (7.4). We can find naively a 4× 4 matrix Û2×2 whose de-
terminant generates cycle configurations which agree with the loop configurations.
Although this matrix cannot be generalized to larger lattices, it illustrates the prob-
lems which must be overcome. This matrix is given by

Û2×2 =


1 γ tanh(β) · ·
· 1 · γ tanhβ

γ tanh(β) · 1 ·
· · γ tanh(β) 1

 .
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(In the following, zero entries in matrices are represented by dots.) The matrix must
satisfy

Z2×2 = (24 cosh4β)det Û2×2,

and because of
det Û2×2 = 1−γ4 tanh4β,

we have to choose γ= exp iπ/4 = 4√−1. The value of the determinant is easily verified
by expanding with respect to the first row, or by naively going through all the 24
permutations of 4 elements. Only two permutations have nonzero contributions: the
unit permutation (1234

1234), which has weight 1 and sign 1 (it has four cycles), and the
permutation, (2413

1234) = (1,2,4,3), which has weight γ4 tanh4β =−tanh4β. The sign of
this permutation is −1, because it consists of a single cycle.

The matrix Û2×2 cannot be generalized directly to larger lattices. This is because it
sets u21 equal to zero because u12 , 0, and sets u13 = 0 because u31 , 0; in short it sets
ukl = 0 if ulk is nonzero (for k , l). In this way, no cycles with hairpin turns are retained
(which go from site k to site l and immediately back to site k). It is also guaranteed
that between a permutation and its inverse (in our case, between the permutation
(2413

1134) and (3142
1234)), at most one has nonzero weight.

Table 7.2: Correspondence between lattice sites and directions, and the indices of the Kac–Ward matrix
U

Site Direction Index

1

→
↑
←
↓

1
2
3
4

2

→
↑
←
↓

5
6
7
8

...
...

...

k

→
↑
←
↓

4k−3
4k−2
4k−1

4k

For larger lattices, this strategy is too restrictive. We cannot generate all loop con-
figurations from directed cycle configurations if the direction in which the edges are
gone through is fixed. We would thus have to allow both weights ukl and ulk different
from zero, but this would reintroduce the hairpin problem. For larger N , there is no
N ×N matrix whose determinant yields all the loop configurations.
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7.2. Counting (not listing) loops in two dimensions

Kac and Ward’s solution to this problem associates a matrix index, not with each
lattice site, but with each of the four directions on each lattice site (see Table 7.2),
and a matrix element with each pair of directions and lattice sites. Matrix elements
are nonzero only for neighboring sites, and only for special pairs of directions (see
Fig. 7.2), and hairpin turns can be suppressed.

For concreteness, we continue with the 2× 2 lattice, and its 16× 16 matrix U2×2.
We retain from the preliminary matrix Û2×2 that the nonzero matrix element must
essentially correspond to terms tanhβ, but that there are phase factors. This phase
factor is 1 for a straight move (case a in Fig. 7.2); it is exp(iπ/4) for a left turn, and
exp(−iπ/4) for a right turn.

Figure 7.2: Graphical representation of the matrix elements in the first row of the Kac–Ward matrix
U2×2

Table 7.3: The matrix elements of Fig. 7.2 that make up the first row of the Kac–Ward matrix U2×2 (see
eq. (7.6)).

Case Matrix element value type
a u1,5 ν = tanhβ (straight move)
b u1,6 α= eiπ/4 tanhβ (left turn)
c u1,7 0 (hairpin turn)
d u1,8 α= e−iπ/4 tanhβ (right turn)

The nonzero elements in the first row of U2×2 are shown in Fig. 7.2, and taken up
in Table 7.3. We arrive at the matrix

U2×2 =



1 · · · ν α · α · · · · · · · ·
· 1 · · · · · · α ν α · · · · ·
· · 1 · · · · · · · · · · · · ·
· · · 1 · · · · · · · · · · · ·
· · · · 1 · · · · · · · · · · ·
· · · · · 1 · · · · · · α ν α ·
· α ν α · · 1 · · · · · · · · ·
· · · · · · · 1 · · · · · · · ·
· · · · · · · · 1 · · · ν α · α
· · · · · · · · · 1 · · · · · ·
· · · · · · · · · · 1 · · · · ·
α · α ν · · · · · · · 1 · · · ·
· · · · · · · · · · · · 1 · · ·
· · · · · · · · · · · · · 1 · ·
· · · · · · · · · α ν α · · 1 ·
· · · · α · α ν · · · · · · · 1


. (7.6)

The matrix U2×2 contains four nonzero permutations, which we can generate with
a naive program (in each row of the matrix, we pick one term out of {1,ν,α,α}, and
then check that each column index appears exactly once). We concentrate in the fol-
lowing on the nontrivial cycles in each permutation (that are not part of the identity).
The identity permutation, P 1 = (1 ... 16

1 ... 16), one of the four nonzero permutations, has
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only trivial cycles. It is characterized by an empty nontrivial cycle configuration c1.
Other permutations with nonzero weights are

c2 ≡

 site 1 2 4 3
dir. → ↑ ← ↓
index 1 6 15 12


and

c3 ≡

 site 1 3 4 2
dir. ↑ → ↓ ←
index 2 9 16 7

 .
Finally, the permutation c4 is put together from the permutations c2 and c3, so that we
obtain

c1 ≡ 1,
c2 ≡ u1,6u6,15u15,12u12,1 = α4 =−tanh4(β),
c3 ≡ u2,9u9,16u16,7u7,2 = α4 =−tanh4(β),
c4 ≡ c2c3 = α4α4 = tanh8(β).

We thus arrive at

detU2×2 = 1 + 2tanh4 β+ tanh8 β =
(
1 + tanh4 β

)2

︸                 ︷︷                 ︸
see eq. (7.5)

, (7.7)

and this is proportional to the square of the partition function in the 2×2 lattice (rather
than the partition function itself).

The cycles in the expansion of the determinant are oriented: c2 runs anticlockwise
around the pad, and c3 clockwise. However, both types of cycles may appear simulta-
neously, in the cycle c4. This is handled by drawing two lattices, one for the clockwise,
and one for the anticlockwise cycles (see Fig. 7.3). The cycles {c1, . . . , c4} correspond
to all the loop configurations that can be drawn simultaneously in both lattices. It is
thus natural that the determinant in eq. (7.7) is related to the partition function in two
independent lattices, the square of the partition function of the individual systems.

Figure 7.3: Neighbor scheme and cycle configurations in two independent 2×2 Ising models.

Before moving to larger lattices, we note that the matrix U2×2 can be written in
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7.2. Counting (not listing) loops in two dimensions

more compact form, as a matrix of matrices:

U2×2 =


1 u→ u↑ .
u← 1 · u↑
u↓ · 1 u→
· u↓ u← 1

 (a 16×16 matrix,
see eq. (7.9))

, (7.8)

where 1 is the 4×4 unit matrix, and furthermore, the 4×4 matrices u→, u↑, u←, and
u↓ are given by

u→ =


ν α · α
· · · ·
· · · ·
· · · ·

 , u↑ =


· · · ·
α ν α ·
· · · ·
· · · ·

 ,

u← =


· · · ·
· · · ·
· α ν α
· · · ·

 , u↓ =


· · · ·
· · · ·
· · · ·
α · α ν

 .
(7.9)

The difference between eq. (7.6) and eq. (7.8) is purely notational.

The 2×2 lattice is less complex than larger lattices. For example, one cannot draw
loops in this lattice which sometimes turn left, and sometimes right. (On the level of
the 2×2 lattice it is unclear why left turns come with a factor α and right turns with
a factor α.) This is what we shall study now, in a larger matrix. Cycle configurations
will come up that do not correspond to loop configurations. We shall see that they
sum up to zero.

Figure 7.4: All 64 loop configurations for two uncoupled 4×2 Ising models without periodic boundary
conditions (a subset of Fig. 7.1).

For concreteness, we consider the 4× 2 lattice (without periodic boundary con-
ditions), for which the Kac–Ward matrix can still be written down conveniently. We
understand by now that the matrix and the determinant describe pairs of lattices, one
for each sense of orientation, so that the pair of 4× 2 lattices corresponds to a single
4×4 lattice with a central row of links eliminated. The 64 loop configurations for this
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case are shown in Fig. 7.4. We obtain

U4×2 =



1 u→ · · u↑ · · ·
u← 1 u→ · · u↑ · ·
· u← 1 u→ · · u↑ ·
· · u← 1 · · · u↑
u↓ · · · 1 u→ · ·
· u↓ · · u← 1 u→ ·
· · u↓ · · u← 1 u→
· · · u↓ · · u← 1


. (7.10)

Written out explicitly, this gives a 32×32 complex matrix U4×2 = (uk,l) with elements

U4×2 =



1 · · · ν α · α · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·
· 1 · · · · · · · ········· · · · · · · α ν α ········· · · · · · · · · · ········· · ·
· · 1 · · · · · · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·
· · · 1 · · · · · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·
· · · · 1 · · · ν α · α · · · · · · · ········· · · · · · · · · · ········· · ·
· · · · · 1 · · · ········· · · · · · · · · · ········· α ν α · · · · · · ········· · ·
· α ν α · · 1 · · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·
· · · · · · · 1 · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·
· · · · · · · · 1 ········· · · ν α · α · · · ········· · · · · · · · · · ········· · ·
········· ········· ········· ········· ········· ········· ········· ········· ········· 1 ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· α ν α ········· ········· ········· ········· ·········
· · · · · α ν α · ········· 1 · · · · · · · · ········· · · · · · · · · · ········· · ·
· · · · · · · · · ········· · 1 · · · · · · · ········· · · · · · · · · · ········· · ·
· · · · · · · · · ········· · · 1 · · · · · · ········· · · · · · · · · · ········· · ·
· · · · · · · · · ········· · · · 1 · · · · · ········· · · · · · · · · α ν α ·
· · · · · · · · · α ν α · · 1 · · · · ········· · · · · · · · · · ········· · ·
· · · · · · · · · ········· · · · · · 1 · · · ········· · · · · · · · · · ········· · ·
· · · · · · · · · ········· · · · · · · 1 · · ········· ν α · α · · · · · ········· · ·
· · · · · · · · · ········· · · · · · · · 1 · ········· · · · · · · · · · ········· · ·
· · · · · · · · · ········· · · · · · · · · 1 ········· · · · · · · · · · ········· · ·
α ········· α ν ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· 1 ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ·········
· · · · · · · · · ········· · · · · · · · · · ········· 1 · · · ν α · α · ········· · ·
· · · · · · · · · ········· · · · · · · · · · ········· · 1 · · · · · · · ········· · ·
· · · · · · · · · ········· · · · · · · · α ν α · · 1 · · · · · · ········· · ·
· · · · α · α ν · ········· · · · · · · · · · ········· · · · 1 · · · · · ········· · ·
· · · · · · · · · ········· · · · · · · · · · ········· · · · · 1 · · · ν α · α
· · · · · · · · · ········· · · · · · · · · · ········· · · · · · 1 · · · ········· · ·
· · · · · · · · · ········· · · · · · · · · · ········· · α ν α · · 1 · · ········· · ·
· · · · · · · · α ········· α ν · · · · · · · ········· · · · · · · · 1 · ········· · ·
· · · · · · · · · ········· · · · · · · · · · ········· · · · · · · · · 1 ········· · ·
········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· 1 ········· ·········
· · · · · · · · · ········· · · · · · · · · · ········· · · · · · α ν α · ········· 1 ·
· · · · · · · · · ········· · · α · α ν · · · ········· · · · · · · · · · ········· · 1



.

This matrix is constructed according to the same rules as U2×2, earlier.

Figure 7.5: A loop in the 4×2 system, not present in Fig. 7.4. Weights of c1 and c2 cancel.

The cycle c2 in Fig. 7.5 can be described by the following trajectory:

cycle c2 ≡

 site 1 2 3 7 8 4 3 2 6 5
dir. → → ↑ → ↓ ← ← ↑ ← ↓
index 1 5 10 25 32 15 11 6 23 20

 .
This cycle thus corresponds to the following product of matrix elements:{

weight of c2
}

: u1,5u5,10 . . .u23,20u20,1.
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7.2. Counting (not listing) loops in two dimensions

The cycle c2 makes four left and four right turns (so that the weight is proportional to
α4α4 ∝+1) whereas the cycle c1 turns six times to the left and twice to the right, with
weight α6α2 ∝−1, canceling c2.

A naive program easily generates all of the nontrivial cycles in U4×2 (in each row
of the matrix, we pick one term out of {1,ν,α,α}, and then check that each column
index appears exactly once). This reproduces the loop list, with 64 contributions,
shown in Fig. 7.4. There are in addition 80 more cycle configurations, which are either
not present in the figure, or are equivalent to cycle configurations already taken into
account. Some examples are the cycles c1 and c2 in Fig. 7.5. It was the good fortune
of Kac and Ward that they all add up to zero.

On larger than 4×2 lattices, there are more elaborate loops. They can, for example,
have crossings (see, for example, the loop in Fig. 7.6). There, the cycle configurations
c1 and c2 correspond to loops in the generalization of Fig. 7.4 to larger lattices, whereas
the cycles c3 and c4 are superfluous. However, c3 makes six left turns and two right
turns, so that the overall weight is α4 =−1, whereas the cycle c4 makes three left turns
and three right turns, so that the weight is +1, the opposite of that of c3. The weights
of c3 and c4 thus cancel.

Figure 7.6: Loop and cycle configurations. The weights of c3 and c4 cancel.

For larger lattices, it becomes difficult to establish that the sum of cycle configu-
rations in the determinant indeed agrees with the sum of loop configurations of the
high-temperature expansion, although rigorous proofs exist to that effect. However,
at our introductory level, it is more rewarding to proceed heuristically. We can, for
example, write down the 144× 144 matrix U6×6 of the 6× 6 lattice for various tem-
peratures (using Alg. combinatorial-ising.py), and evaluate the determinant detU6×6
with a standard linear-algebra routine. Partition functions thus obtained are equiva-
lent to those resulting from Gray-code enumeration, even though the determinant is
evaluated in on the order of 1443 ' 3×106 operations, while the Gray code goes over
235 ' 3×1010 configurations. The point is that the determinant can be evaluated for
lattices that are much too large to go through the list of all configurations.

The matrixUL×L for theL×L lattice contains the key to the analytic solution of the
two-dimensional Ising model first obtained, in the thermodynamic limit, by Onsager
(1944). To recover Onsager’s solution, we would have to compute the determinant of
U , not numerically as we did, but analytically, as a product over all the eigenvalues.
Analytic expressions for the partition functions for Ising models can also be obtained
for finite lattices with periodic boundary conditions. To adapt for the changed bound-
ary conditions, one needs four matrices, generalizing the matrix U (compare with the
analogous situation for dimers in chapter xx. Remarkably, evaluating Z(β) on a finite
lattice reduces to evaluating an explicit function (see the classical papers by Kaufman
(1949) [21] and Ferdinand and Fisher (1969) [22].
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Lecture 7. Two-dimensional Ising model: Solution through high-temperature
expansions)

The analytic solutions of the Ising model have not been generalized to higher di-
mensions, where only Monte Carlo simulations, high-temperature expansions, and
renormalization-group calculations allow to compute to high precision the properties
of the phase transition. These properties, as mentioned, are universal, that is, they are
the same for a wide class of systems, called the Ising universality class.
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Lecture 8

The three pillars of mean-field
theory (Transitions and order
parameters 1/2)
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Lecture 9

Landau theory / Ginzburg criterium
(Transitions and order parameters
2/2)
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Lecture 10

Kosterlitz-Thouless physics in two
dimensions: The XY model
(Transitions without order
parameters 1/2)
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