- see DD for geverahzatin to highur climensions
- A simidar corgumat is not known for hasd sphewes. un 2 or r i 3 dimensions.
* Spins waves: Absence of oorder is $\left[\begin{array}{ll}+\rightarrow B\end{array}\right]$

Trousfer ruaturx for $2 \times M$
Isiny model without periodic bo ondery conchitiois wi y-drricte $(l=0)$
Schult, ratis, lied
$\underbrace{856-862}_{\text {this lecturn }} ; \underbrace{863-87}_{6 i b 60}$

Tlischke

$$
\underbrace{184-189}, \underbrace{190-199}_{\text {biblio }}
$$

thislecture biblio

Onsager,1944

$$
4 \text { states }
$$

$$
\begin{aligned}
& 1=<= \\
& 2=\langle \pm \\
& 3=<\mp \\
& 4=<\ddagger
\end{aligned}
$$

$T(2,1)=T(1,2)$ as the matrux is symmetris.

$$
T(2,2)=\langle \pm \mid \pm\rangle=e^{K}
$$

$$
T(2,3)=\langle \pm \mid+\rangle=e^{-3 k}
$$

$$
T(2,4)=\langle \pm \not+\rangle=1
$$

$$
T(3,1)=T_{13}
$$

$$
T(3,2)=T(2,3)
$$

$$
T(3,3)=\left\langle+\left.\right|_{+} ^{-}\right\rangle=e^{k}
$$

$$
\left.T(3,4)=\quad<\begin{array}{l}
t- \\
+ \\
+
\end{array}\right\rangle=1
$$

$$
\forall \$\left[\begin{array}{llll}
e^{3 k} & 1 & 1 & e^{-k} \\
1 & e^{k} & e^{-3 k} & 1 \\
1 & e^{-3 k} & e^{k} & 1 \\
e^{-k} & 1 & 1 & e^{3 k}
\end{array}\right]
$$

$$
T(4,4)=+++\quad=e^{3 K}
$$

$$
\begin{aligned}
& T(1,1)=-\quad-\cdots 3 J \cdot \frac{e^{-3 \beta J}}{e^{3 k}} \quad \text { with }-\beta J=K \\
& T(1,2)=-+\quad=e^{0}=1 \\
& T(1,3)=-\overline{+}=e^{0}=1 \\
& T(1,4)=-+\quad=e^{-k .}
\end{aligned}
$$

a) Testing this result for $M=1$

Pakition functions: The vertical hut $\pm K$ The two horizantes hers $+K$

$$
\begin{array}{llc}
\langle \pm に & e^{3 k} & \text { hhs }+k \\
\langle\Psi \ddagger\rangle & e^{3 k} \\
k & z=2 e^{3 k}+2 e^{k}
\end{array}
$$

$$
\langle \pm \pm\rangle e^{k}
$$

$$
\langle\mp \mp\rangle \quad e^{k}
$$

Note that this equals the trace of the trons for matrix.
b) Testing the transfor matrix for $\Pi=2$.

$$
\begin{aligned}
Z & =\operatorname{Tr}(T \cdot T) \quad \text { (MathemaFica). } \\
& =2+e^{-2 k}+e^{6 k}+2+e^{-6 k}+e^{2 k}+2+e^{-6 k}+e^{2 x} \\
& +2+e^{-3 k}+e^{6 k} \\
& =8+2 e^{-2 k}+2 e^{2 k}+2 e^{-6 k}+2 e^{6 k}
\end{aligned}
$$

8 confyrúatios

Transfer Matrix for the $2 \times \mathrm{M}$ Ising model (stripe of height 2 without periodic boundary conditions in the y direction).
Material for the 5th ENS-ICFP lecture on Statistical Physics, 5 October 2016 (Werner Krauth).

$$
\begin{aligned}
& T=\{\{\operatorname{Exp}[3 K], 1,1, \operatorname{Exp}[-K]\},\{1, \operatorname{Exp}[K], \operatorname{Exp}[-3 K], 1\}, \\
& \{1, \operatorname{Exp}[-3 K], \operatorname{Exp}[K], 1\},\{\operatorname{Exp}[-K], 1,1, \operatorname{Exp}[3 K]\}\} \\
& \left\{\left\{\mathfrak{e}^{3 k}, 1,1, e^{-k}\right\},\left\{1, \mathbb{e}^{k}, e^{-3 k}, 1\right\},\left\{1, e^{-3 k}, e^{k}, 1\right\},\left\{e^{-k}, 1,1, e^{3 k}\right\}\right\} \\
& \text { т.T } \\
& \left\{\left[2+e^{-2 k}+e^{6 k}, e^{-3 k}+e^{-k}+e^{k}+e^{3 k}, e^{-3 k}+e^{-k}+e^{k}+e^{3 k}, 2+2 e^{2 k}\right\},\right. \\
& \left\{e^{-3 k}+e^{-K}+e^{k}+e^{3 x}, 2+e^{-6 K}+e^{2 k}, 2+2 e^{-2 k}, e^{-3 k}+e^{-k}+e^{K}+e^{3 k}\right\}, \\
& \left\{\mathbb{e}^{-3 k}+\mathbb{e}^{-k}+\mathbb{e}^{k}+\mathbb{e}^{3 k}, 2+2 e^{-2 \mathbb{2}}, 2+\mathbb{e}^{-6 k}+\mathbb{e}^{2 k}, \mathbb{e}^{-3 k}+\mathbb{e}^{-k}+e^{k}+\mathbb{e}^{3 k}\right\}, \\
& \left.\left\{2+2 \mathbb{e}^{2 k}, \mathbb{e}^{-3 k}+\mathbb{e}^{-k}+\mathbb{e}^{k}+\mathbb{e}^{3 k}, \mathbb{e}^{-3 k}+\mathbb{e}^{-k}+\mathbb{e}^{k}+\mathbb{e}^{3 k}, 2+\mathbb{e}^{-2 k}+\mathbb{e}^{6 k}\right\}\right\}
\end{aligned}
$$

Eigenvalues [T]

$\left\{e^{-3 k}\left(-1+\mathbb{e}^{4 k}\right), e^{-k}\left(-1+e^{4 k}\right)\right.$,
$\frac{1}{2} e^{-3 K}\left(1+e^{2 K}+e^{4 K}+e^{6 K}-\left(1+e^{2 K}\right) \sqrt{1-4 e^{2 K}+10 e^{4 K}-4 e^{6 K}+e^{8 K}}\right)$,
$\left.\frac{1}{2} e^{-3 \mathrm{~K}}\left(1+\mathbb{e}^{2 \mathrm{~K}}+\mathrm{e}^{4 \mathrm{~K}}+\mathbb{e}^{6 \mathrm{~K}}+\left(1+\mathrm{e}^{2 \mathrm{~K}}\right) \sqrt{1-4 \mathrm{e}^{2 \mathrm{~K}}+10 \mathrm{e}^{4 \mathrm{~K}}-4 \mathrm{e}^{6 \mathrm{~K}}+\mathrm{e}^{8 \mathrm{~K}}}\right)\right\}$
Va $=\{\{\operatorname{Exp}[2 K], 1,1, \operatorname{Exp}[-2 K]\},\{1, \operatorname{Exp}[2 K], \operatorname{Exp}[-2 K], 1\}$, $\{1, \operatorname{Exp}[-2 K], \operatorname{Exp}[2 \mathrm{~K}], 1\},\{\operatorname{Exp}[-2 \mathrm{~K}], 1,1, \operatorname{Exp}[2 \mathrm{~K}]\}\}$
$\left\{\left\{e^{2 k}, 1,1, e^{-2 k}\right\},\left\{1, \mathbb{e}^{2 k}, e^{-2 k}, 1\right\},\left\{1, e^{-2 k}, e^{2 k}, 1\right\},\left\{e^{-2 k}, 1,1, e^{2 k}\right\}\right\}$
$\mathrm{V} 1 \mathrm{sq}=\{\{\operatorname{Exp}[\mathrm{K} / 2], 0,0,0\}$,
$\{0, \operatorname{Exp}[-K / 2], 0,0\},\{0,0, \operatorname{Exp}[-K / 2], 0\},\{0,0,0, \operatorname{Exp}\{K / 2]\}\}$
$\left\{\left\{e^{k / 2}, 0,0,0\right\},\left\{0, e^{-K / 2}, 0,0\right\},\left\{0,0, e^{-k / 2}, 0\right\},\left\{0,0,0, e^{K / 2}\right\}\right\}$
V1sq. V2. V1sq
$\left\{\left\{e^{3 k}, 1,1, e^{-k}\right\},\left\{1, e^{k}, e^{-3 k}, 1\right\},\left\{1, e^{-3 k}, e^{k}, 1\right\},\left\{e^{-k}, 1,1, e^{3 k}\right\}\right\}$

Using the Trans furs matron, we know the partition functor or auroitiong stipe of widtc.2.
compute 2×2.
Let us do the Trmisfor matrix with lass labor

$$
\begin{aligned}
& {\left[\begin{array}{lll}
k / i & 0 k & j k / 2 \\
0 & 0 & 0
\end{array}\right]} \\
& V_{1}^{1 / 2} \quad V_{2} \quad V_{1}^{1 / 2} \\
& V_{1}=\left[\begin{array}{cccc}
\exp k & 0 & 0 & 0 \\
0 & \exp -k & 0 & 0 \\
0 & 0 & \exp -k & 0 \\
0 & 0 & 0 & \exp k
\end{array}\right] V_{1}^{1 / 2} \frac{1}{0} k \rightarrow k / 2 \\
& V_{2}=\left[\begin{array}{cccc}
\exp 2 k & 1 & 1 & \exp (-2 k) \\
1 & \exp (2 k) & \exp (-2 k) & 1 \\
1 & \exp (-2 k) & \exp (2 k) & 1 \\
\exp (-2 k) & 1 & 1 & \exp (2 k)
\end{array}\right]
\end{aligned}
$$

Mathematical allows us to see that

$$
V_{1}^{1 / 2} V_{2} V_{1}^{1 / 2}=T
$$

Analyris of V_{2} :

* $V_{2}(K, e)=\exp ((M-2 n) K)$
where x is the \#of different Spius.
* V_{2} describss the ritteraction in the horitontal divectim
* V_{1} describes the vertical intiractins
V_{1} is a diajonal matix

$$
\left.V_{1}(m, k)=\exp k(H \text { equal links })-(\text { (\#nequal hiles })\right) .
$$

- Peniodic borndary cmditins an easity intogratid the matrix is easily gancortited to laugrs voles of My.
- Fife use $V_{2}^{y} \dot{V}_{1}$; instead of $V_{1}^{1 / 2} V_{2} V_{1}^{1 / 2}$, we have a non non symmetric

This allows vs now to ompute the +rousfer matron for cubituary valus of M.
mntid, but it hes the same trace.

Let us now introduce the
Paulimetinces:

$$
\begin{array}{ll}
\sigma_{Z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) & \sigma_{X}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
\sigma^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) & \sigma_{Y}=-i\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
\end{array}
$$

$$
\sigma^{-}=\left(\begin{array}{ll}
0 & 0 \\
10
\end{array}\right)
$$

$$
\Rightarrow V_{1}=\exp \left(k \sum_{j=1}^{M_{j}^{K}} \sigma_{j, z}^{\text {it periodic }} \begin{array}{c}
\sigma_{j+1)}, z
\end{array}\right)
$$

same, for the V_{2} matrix, we caw
write it as

$$
A \cos ^{2} k^{*}=e^{k}
$$

$$
\frac{A \sinh K^{*}=e^{-k}}{\operatorname{or}} \frac{\tanh k^{*}=\frac{\operatorname{exps}(-2 k)}{A}=\sqrt{2 \sinh 2 K}}{A \cdot \cosh \left(K^{*}\right)+A \sinh \left(K^{*}\right) \sigma_{x} .}
$$

$$
\begin{aligned}
& \left.\begin{array}{llll}
\sin 1 & + \\
\text { sikh } & + & + & \sigma_{j} \\
+
\end{array}\right)= \\
& \left.\sigma_{2} \quad \begin{array}{l}
t
\end{array}\right)=1 \left\lvert\, \begin{array}{l}
t \\
+7
\end{array}\right. \\
& \left.\sigma_{1}|f\rangle=-\left.1\right|_{-1} ^{-}\right\rangle \\
& \sigma_{j z} \sigma_{j+z}=\sigma_{j+z} \sigma_{j z} \\
& \sigma_{2}|+\rangle=+1 \cdot|+\rangle \\
& \text { The Tali } \\
& \text { MaTrices commutes } \\
& \text { ow different sites }
\end{aligned}
$$

We arrive at the expression of the transfer matrix as

$$
V=v_{1}^{1 / 2} v_{2} v_{1}^{1 / 2}=\underbrace{v_{2}^{1 / 2} v_{1} v_{2}^{1 / 2}}_{\text {this is the }}
$$

this is the formulation that people use.

$$
V=(2 \sinh 2 k)^{M / 2} \exp \left(\frac{k^{*}}{2} \sum_{j=1}^{\pi} \sigma_{j x}\right) \exp \left(k \sum \sigma_{j z} \sigma_{j+1, z}\right) \exp \left(\frac{k^{*}}{2} \sum_{j=1}^{\pi} \sigma_{j x}\right)
$$

This is a quantum spin problem. (the Panli Matrices have commertatün relaters, or in other words, we are working on matron).

We can rewrite $\sigma_{z} \rightarrow-\sigma_{x} \quad$ (Hand rule)

$$
\begin{aligned}
& v_{x}=\exp \left\{k \sum_{j=1}^{\sigma_{x}}\left(\sigma_{j}^{+}+\sigma_{j}^{-}\right)\left(\sigma_{j+1}^{+}+\sigma_{j+1}^{-}\right)\right\} \\
& v_{2}=(2 \sinh 2 k)^{M / 2} \exp \left\{2 k^{*} \sum_{j=1}^{M} \sigma_{j}^{+} \sigma_{j}^{-}-\frac{1}{2} \cdot 1\right\} \\
& \sigma^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \sigma^{-} \sigma^{+}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\sigma^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \sigma^{-} \sigma^{+}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& \left.\sigma^{+} \sigma^{-}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad ; \quad \begin{array}{l}
2 \sigma^{+} \sigma^{-}-1=\sigma_{z} \\
\sigma_{x}=\sigma_{j}^{+}+\sigma_{j}^{-} \\
\sigma_{n+h} \\
\sigma^{+} \sigma^{-}+\sigma^{-} \sigma^{+}=\left[\sigma^{+}, \sigma^{-}\right.
\end{array}\right]_{+}=1 \quad
\end{aligned}
$$

on the oluer hand, ou cheffent sitis

$$
\left[\sigma_{j}^{+} \sigma_{k}^{-}\right]_{-}=0 .
$$

The unixed Bosomis, Ferminic commutakin, relations is what pases problems fr
the digomilatization of the matinx. Dixit Sehultit Muthis web

$$
\begin{aligned}
& \text { Jordan-Wigner Fransform } \rightarrow \\
& \sigma_{j}^{+}=\exp \left(\pi i \sum_{m=1}^{j-1} c_{m}^{+} c_{m}\right) c_{j}^{+} \\
& j_{j}^{-}=\exp \left(\pi i \sum_{m=1}^{j-1} c_{m}^{+} c m_{m}\right) c_{j} \\
& \left(c_{j} c_{m}^{+}\right)_{+}=c_{j} c_{m}^{+}+c_{m}^{+} c_{j}=\delta_{j m} \\
& {\left[\begin{array}{cc}
c_{j} & c_{m}
\end{array}\right]_{+}=\left[c_{j}^{+} c_{m}^{+}\right]_{+}=0 .} \\
& V_{2}=(2 \sin 2 k)^{\Gamma / 2} \exp _{H}\left\{2 k^{*}\left(c_{j}^{*} c_{j}-\frac{1}{2}\right)\right\} \\
& \text { © dagoer } \\
& V_{1}=\operatorname{iop}\left\{K \sum_{j=1}^{M}\left(c_{j}^{\mp}-c_{j}\right)\left(c_{j+1}^{+}+c_{j+1}\right)\right\}
\end{aligned}
$$

Introduce plame waves: $\quad q=\frac{j \cdot \pi}{M}$

$$
\begin{aligned}
& j= \pm 1 \pm 3 \ldots \pm \pm(M-1) \text { for } n \text { even } \\
& j=0 \pm 2, \pm 4 \ldots M \text { for } n \text { odd. }
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}=(2 \sin h 2 k)^{M / 2} \exp \left\{2 k ^ { * } \sum _ { q 2 0 } \left(a_{q}^{+} q-q\right.\right. \\
& \left.\left.+a_{-q}^{\top} a_{-q}-1\right)\right\} \\
& =(2 \sinh 2 k)^{\pi / 2} \pi V_{2 g 0} 4 \times 4 \\
& \text { matrices } \\
& V_{1}=\exp \left\{2 k \tau_{q>0} \cos q\left(q_{q}^{a} q^{+} q+q_{-q}^{\top} q, \ldots\right\}\right. \\
& =\prod_{p>0} V_{i q} \quad 4 \times 4 \text { matrics } \\
& T_{c}: \sinh 2 K \sinh 2 K^{*}=1 \\
& \beta F(O, T) \\
& c_{V} \sim \ln \left|1-\frac{T_{g}}{T_{c}}\right| \\
& m(t) \sim\left(T_{c}-T\right)^{\beta_{c}} \beta=\frac{1}{\delta} \\
& X(0, T) \sim\left(T-T_{c}\right)^{-7 / 4}
\end{aligned}
$$

Further developments
Koufumen (1949)
Ferclinand e Fishs (1965)
Beale (1996)

Lecture 6. Two-dimensional Ising model: From Ising to Onsager (Transfer matrix 2/2)

Lecture 7

Two-dimensional Ising model: Solution through high-temperature expansions)

in this lecture, we introduce, on the one hand, to the concept of duality in the Ising model[?, 20] On the other hand, we present the graphical method for the solution of the Ising model, due to Kac and Ward. Our discussion relies on a few pages of the SMAC book[5, 236-247], and on the original papers [?, 20]. A modern echo (among many others) can be found in the work by Saul and Kardar (1992).

7.1 High-temperature expansion of the 2D Ising model

The word "enumeration" has two meanings: it refers to listing items (configurations), but it also applies to simply counting them. The difference between the two is of more than semantic interest: in the list generated by Alg. enumerate-ising.py, we were able to pick out any information we wanted, for example the number of configurations of energy E and magnetization M, that is, the density of states $\mathcal{N}(E, M)$. In this subsection we discuss an alternative enumeration for the two-dimensional Ising model. It does not list the spin configurations, but rather all the loop configurations which appear in the high-temperature expansion of the Ising model. This program will then turn, in Section ??, into an enumeration of the second kind (the counting), as pioneered by Kac and Ward[?]. It counts configurations and obtains $Z(\beta)$ for a twodimensional Ising system of any size (Kaufman, 1949)[21], and even for the infinite system (Onsager, 1944)[17]. However, it then counts without listing. For example, it finds the number $\mathcal{N}(E)$ of configurations with energy E but does not tell us how many of them have a magnetization M.

Lecture 7. Two-dimensional Ising model: Solution through high-temperature expansions)

Van der Waerden, in 1941 [?], noticed that the Ising-model partition function,

$$
\begin{align*}
Z & =\sum_{\sigma} \exp \left(J \beta \sum_{\langle k, l\rangle} \sigma_{k} \sigma_{l}\right) \tag{7.1}\\
& =\sum_{\sigma} \prod_{\langle k, l\rangle} \mathrm{e}^{J \beta \sigma_{k} \sigma_{l}},
\end{align*}
$$

allows each term $\mathrm{e}^{J \beta \sigma_{k} \sigma_{l}}$ to be expanded and rearranged into just two terms, one independent of the spins and the other proportional to $\sigma_{k} \sigma_{l}$:

$$
\begin{aligned}
& \mathrm{e}^{\beta \sigma_{k} \sigma_{l}}=1+\beta \sigma_{k} \sigma_{l}+\frac{\beta^{2}}{2!} \underbrace{\left(\sigma_{k} \sigma_{l}\right)^{2}}_{=1}+\frac{\beta^{3}}{3!} \underbrace{\left(\sigma_{k} \sigma_{l}\right)^{3}}_{=\sigma_{k} \sigma_{l}}+\cdots-\cdots \\
& =\underbrace{\left(1+\frac{\beta^{2}}{2!}+\frac{\beta^{4}}{4!}+\cdots\right)}_{\cosh \beta}+\sigma_{k} \sigma_{l} \underbrace{\left(\beta+\frac{\beta^{3}}{3!}+\frac{\beta^{5}}{5!}+\cdots\right)}_{\sinh \beta} \\
& \quad=(\cosh \beta)\left(1+\sigma_{k} \sigma_{l} \tanh \beta\right)
\end{aligned}
$$

Inserted into eq. (7.1), with $J=+1$, this yields

$$
\begin{equation*}
Z(\beta)=\sum_{s} \prod_{\langle k, l\rangle}\left((\cosh \beta)\left(1+\sigma_{k} \sigma_{l} \tanh \beta\right)\right) . \tag{7.2}
\end{equation*}
$$

For concreteness, we continue with a 4×4 square lattice without periodic boundary conditions (with $J=1$). This lattice has 24 edges and 16 sites, so that, by virtue of eq. (7.2), its partition function $Z_{4 \times 4}(\beta)$ is the product of 24 parentheses, one for each edge:

$$
\begin{align*}
Z_{4 \times 4}(\beta)=\sum_{\left\{\sigma_{1}, \ldots, \sigma_{16}\right\}} \cosh ^{24} \beta(\overbrace{1+\sigma_{1} \sigma_{2} \tanh \beta}) & (\overbrace{1+\sigma_{1} \sigma_{5} \tanh \beta}^{\text {edge }}) \\
& \times \ldots\left(1+\sigma_{14} \sigma_{15} \tanh \beta\right)(\underbrace{1+\sigma_{15} \sigma_{16} \tanh \beta}_{\text {edge } 24}) . \tag{7.3}
\end{align*}
$$

We multiply out this product: for each edge (parenthesis) k, we have a choice between a "one" and a "tanh" term. This is much like the option of a spin-up or a spin-down in the original Ising-model enumeration, and can likewise be expressed through a binary variable n_{k} :

$$
n_{k}=\left\{\begin{array}{ll}
0 & (\equiv \text { edge } k \text { in eq. (7.3) contributes } 1) \\
1 & \left(\equiv \text { edge } k \text { contributes }\left(\sigma_{s_{k}} \sigma_{s_{k}^{\prime}} \tanh (\beta)\right)\right)
\end{array},\right.
$$

where s_{k} and s_{k}^{\prime} indicate the sites at the two ends of edge k. Edge $k=1$ has $\left\{s_{1}, s_{1}^{\prime}\right\}=$ $\{1,2\}$, and edge $k=24$ has, from eq. (7.3), $\left\{s_{24}, s_{24}^{\prime}\right\}=\{15,16\}$. Each factored term can be identified by variables

$$
\left\{n_{1}, \ldots, n_{24}\right\}=\{\{0,1\}, \ldots,\{0,1\}\} .
$$

For $\left\{n_{1}, \ldots, n_{24}\right\}=\{0, \ldots, 0\}$, each parenthesis picks a "one". Summed over all spin configurations, this gives 2^{16}. Most choices of $\left\{n_{1}, \ldots, n_{24}\right\}$ average to zero when summed over spin configurations because the same term is generated with $\sigma_{k}=+1$ and $\sigma_{k}=-1$. Only choices leading to spin products $\sigma_{s}^{0}, \sigma_{s}^{2}, \sigma_{s}^{4}$ at each lattice site s remain finite after summing over all spin configurations. The edges of these terms form loop configurations, such as those shown for the 4×4 lattice in Fig. 7.1.

The list of all loop configurations may be generated by Alg. edge-ising.py, a recycled version of the Gray code for 24 digits, coupled to an incremental calculation of the number of spins on each site. The $\left\{o_{1}, \ldots, o_{16}\right\}$ count the number of times the sites $\{1, \ldots, 16\}$ are present. The numbers in this vector must all be even for a loop configuration, and for a nonzero contribution to the sum in eq. (7.3).

Table 7.1: Numbers of loop configurations in Fig. 7.1 with given numbers of edges (the figure contains one configuration with 0 edges, 9 with 4 edges, etc). (From Alg. edge-ising.py).

\# Edges	\# Configs
0	1
4	9
6	12
8	50
10	92
12	158
14	116
16	69
18	4
20	1

For the thermodynamics of the 4×4 Ising model, we only need to keep track of the number of edges in each configuration, not the configurations themselves. Table 7.1, which shows the number of loop configurations for any given number of edges, thus yields the exact partition function for the 4×4 lattice without periodic boundary conditions:

$$
\begin{equation*}
Z_{4 \times 4}(\beta)=\left(2^{16} \cosh ^{24}(\beta)\right)\left(1+9 \tanh ^{4} \beta+12 \tanh ^{6} \beta+\cdots+4 \tanh ^{18} \beta+1 \tanh ^{20} \beta\right) \tag{7.4}
\end{equation*}
$$

Partition functions obtained from this expression are easily checked against the Graycode enumeration that we had before.

7.2 Counting (not listing) loops in two dimensions

Following Kac and Ward[?], we now construct a matrix whose determinant counts the number of loop configurations in Fig. 7.1. This is possible because the determinant of a matrix $U=\left(u_{k l}\right)$ is defined by a sum of permutations P (with signs and weights). Each permutation can be written as a collection of cycles, a "cycle configuration". Our

Lecture 7. Two-dimensional Ising model: Solution through high-temperature expansions)

Figure 7.1: The list of all 512 loop configurations for the 4×4 Ising model without periodic boundary conditions. The "golden" configuration is the only one with 20 edges. It gives rise to the $1 \tanh ^{20} \beta$ term in eq. (7.4). The "red" configuration represents a "loop within a loop".
task will consist in choosing the elements $u_{k l}$ of the matrix U in such a way that the signs and weights of each cycle configurations correspond to the loop configurations in the two-dimensional Ising model. We shall finally arrive at a computer program which implements the correspondence, and effectively solves the enumeration problem for large two-dimensional lattices. For simplicity, we restrict ourselves to square lattices without periodic boundary conditions, and consider the definition of the determinant of a matrix U,

$$
\operatorname{det} U=\sum_{\text {permutations }}(\operatorname{sign} P) u_{1 P_{1}} u_{2 P_{2}} \ldots u_{N P_{N}} .
$$

We now represent P in terms of cycles. The sign of a permutation P of N elements with n cycles is $\operatorname{sign} P=(-1)^{N+n}$ (an example may be found in the SMAC 1.2.2). In the following, we shall consider only matrices with even N, for which $\operatorname{sign} P=$ $(-1)^{\# \text { of cycles. }}$. The determinant is thus

$$
\begin{aligned}
& \operatorname{det} U=\sum_{\begin{array}{c}
\text { cycle } \\
\text { configs }
\end{array}}(-1)^{\# \text { of cycles }} \underbrace{u_{P_{1} P_{2}} u_{P_{2} P_{3}} \ldots u_{P_{M} P_{1}}}_{\text {weight of first cycle }} \underbrace{u_{P_{1}^{\prime} P_{2}^{\prime}} \cdots}_{\text {other cycles }} \\
&=\sum_{\begin{array}{c}
\text { cycle } \\
\text { configs }
\end{array}}\left(\left\{\begin{array}{c}
(-1) \cdot \text { weight of } \\
\text { first cycle }
\end{array}\right\}\right) \times \cdots \times\left(\left\{\begin{array}{c}
(-1) \cdot \text { weight of } \\
\text { last cycle }
\end{array}\right\}\right)
\end{aligned}
$$

It follows from this representation of a determinant in terms of cycle configurations that we should choose the matrix elements $u_{k l}$ such that each cycle corresponding to a loop on the lattice (for example $\left(P_{1}, \ldots, P_{M}\right)$) gets a negative sign (this means that the sign of $u_{P_{1} P_{2}} u_{P_{2} P_{3}} \ldots u_{P_{M} P_{1}}$ should be negative). All cycles not corresponding to loops should get zero weight.

We must also address the problem that cycles in the representation of the determinant are directed. The cycle ($P_{1}, P_{2}, \ldots, P_{M-1}, P_{M}$) is different from the cycle ($P_{M}, P_{M-1}, \ldots, P_{2}, P_{1}$), whereas the loop configurations in Fig. 7.1 have no sense of direction.

7.2.1 $\quad \mathbf{2 x}$ lattice, naive 4×4 matrix

For concreteness, we start with a 2×2 lattice without periodic boundary conditions, for which the partition function is

$$
\begin{equation*}
Z_{2 \times 2}=\left(2^{4} \cosh ^{4} \beta\right)\left(1+\tanh ^{4} \beta\right) . \tag{7.5}
\end{equation*}
$$

The prefactor in this expression (2^{N} multiplied by one factor of $\cosh \beta$ per edge) was already encountered in eq. (7.4). We can find naively a 4×4 matrix $\hat{U}_{2 \times 2}$ whose determinant generates cycle configurations which agree with the loop configurations. Although this matrix cannot be generalized to larger lattices, it illustrates the problems which must be overcome. This matrix is given by

$$
\hat{U}_{2 \times 2}=\left[\begin{array}{cccc}
1 & \gamma \tanh (\beta) & \cdot & \cdot \\
\cdot & 1 & \cdot & \gamma \tanh \beta \\
\gamma \tanh (\beta) & \cdot & 1 & \cdot \\
\cdot & \cdot & \gamma \tanh (\beta) & 1
\end{array}\right]
$$

Lecture 7. Two-dimensional Ising model: Solution through high-temperature expansions)
(In the following, zero entries in matrices are represented by dots.) The matrix must satisfy

$$
Z_{2 \times 2}=\left(2^{4} \cosh ^{4} \beta\right) \operatorname{det} \hat{U}_{2 \times 2},
$$

and because of

$$
\operatorname{det} \hat{U}_{2 \times 2}=1-\gamma^{4} \tanh ^{4} \beta,
$$

we have to choose $\gamma=\exp i \pi / 4=\sqrt[4]{-1}$. The value of the determinant is easily verified by expanding with respect to the first row, or by naively going through all the 24 permutations of 4 elements. Only two permutations have nonzero contributions: the unit permutation $\binom{1234}{1234}$, which has weight 1 and sign 1 (it has four cycles), and the permutation, $\binom{2413}{1234}=(1,2,4,3)$, which has weight $\gamma^{4} \tanh ^{4} \beta=-\tanh ^{4} \beta$. The sign of this permutation is -1 , because it consists of a single cycle.

The matrix $\hat{U}_{2 \times 2}$ cannot be generalized directly to larger lattices. This is because it sets u_{21} equal to zero because $u_{12} \neq 0$, and sets $u_{13}=0$ because $u_{31} \neq 0$; in short it sets $u_{k l}=0$ if $u_{l k}$ is nonzero (for $k \neq l$). In this way, no cycles with hairpin turns are retained (which go from site k to site l and immediately back to site k). It is also guaranteed that between a permutation and its inverse (in our case, between the permutation $\binom{2413}{1134}$ and $\binom{3142}{1234}$, at most one has nonzero weight.

Table 7.2: Correspondence between lattice sites and directions, and the indices of the Kac-Ward matrix U

Site	Direction	Index
	\rightarrow	1
1	\uparrow	2
	\leftarrow	3
	\downarrow	4
	\rightarrow	5
	\uparrow	6
2	\leftarrow	7
	\downarrow	8
\vdots	\vdots	\vdots
	\rightarrow	$4 k-3$
\mathbf{k}	\uparrow	$4 k-2$
	\leftarrow	$4 k-1$
	\downarrow	$4 k$

For larger lattices, this strategy is too restrictive. We cannot generate all loop configurations from directed cycle configurations if the direction in which the edges are gone through is fixed. We would thus have to allow both weights $u_{k l}$ and $u_{l k}$ different from zero, but this would reintroduce the hairpin problem. For larger N, there is no $N \times N$ matrix whose determinant yields all the loop configurations.

Kac and Ward's solution to this problem associates a matrix index, not with each lattice site, but with each of the four directions on each lattice site (see Table 7.2), and a matrix element with each pair of directions and lattice sites. Matrix elements are nonzero only for neighboring sites, and only for special pairs of directions (see Fig. 7.2), and hairpin turns can be suppressed.

For concreteness, we continue with the 2×2 lattice, and its 16×16 matrix $U_{2 \times 2}$. We retain from the preliminary matrix $\hat{U}_{2 \times 2}$ that the nonzero matrix element must essentially correspond to terms $\tanh \beta$, but that there are phase factors. This phase factor is 1 for a straight move (case a in Fig. 7.2); it is $\exp (i \pi / 4)$ for a left turn, and $\exp (-i \pi / 4)$ for a right turn.

Figure 7.2: Graphical representation of the matrix elements in the first row of the Kac-Ward matrix $U_{2 \times 2}$

Table 7.3: The matrix elements of Fig. 7.2 that make up the first row of the Kac-Ward matrix $U_{2 \times 2}$ (see eq. (7.6)).

Case	Matrix element	value	type
a	$u_{1,5}$	$\nu=\tanh \beta$	(straight move)
b	$u_{1,6}$	$\alpha=\mathrm{e}^{i \pi / 4} \tanh \beta$	(left turn)
c	$u_{1,7}$	0	(hairpin turn)
d	$u_{1,8}$	$\bar{\alpha}=\mathrm{e}^{-i \pi / 4} \tanh \beta$	(right turn)

The nonzero elements in the first row of $U_{2 \times 2}$ are shown in Fig. 7.2, and taken up in Table 7.3. We arrive at the matrix

The matrix $U_{2 \times 2}$ contains four nonzero permutations, which we can generate with a naive program (in each row of the matrix, we pick one term out of $\{1, \nu, \alpha, \bar{\alpha}\}$, and then check that each column index appears exactly once). We concentrate in the following on the nontrivial cycles in each permutation (that are not part of the identity). The identity permutation, $P^{1}=\left(\begin{array}{lll}1 & \ldots & 16 \\ 1 & \ldots & 16\end{array}\right)$, one of the four nonzero permutations, has

Lecture 7. Two-dimensional Ising model: Solution through high-temperature expansions)
only trivial cycles. It is characterized by an empty nontrivial cycle configuration c_{1}. Other permutations with nonzero weights are

$$
c_{2} \equiv\left(\begin{array}{lllll}
\text { site } & 1 & 2 & 4 & 3 \\
\text { dir. } & \rightarrow & \uparrow & \leftarrow & \downarrow \\
\text { index } & 1 & 6 & 15 & 12
\end{array}\right)
$$

and

$$
c_{3} \equiv\left(\begin{array}{llccc}
\text { site } & 1 & 3 & 4 & 2 \\
\text { dir. } & \uparrow & \rightarrow & \downarrow & \leftarrow \\
\text { index } & 2 & 9 & 16 & 7
\end{array}\right)
$$

Finally, the permutation c_{4} is put together from the permutations c_{2} and c_{3}, so that we obtain

$$
\begin{aligned}
& c_{1} \equiv 1, \\
& c_{2} \equiv u_{1,6} u_{6,15} u_{15,12} u_{12,1}=\alpha^{4}=-\tanh ^{4}(\beta), \\
& c_{3} \equiv u_{2,9} u_{9,16} u_{16,7} u_{7,2}=\bar{\alpha}^{4}=-\tanh ^{4}(\beta), \\
& c_{4} \equiv c_{2} c_{3}=\alpha^{4} \bar{\alpha}^{4}=\tanh ^{8}(\beta) .
\end{aligned}
$$

We thus arrive at

$$
\begin{equation*}
\operatorname{det} U_{2 \times 2}=1+2 \tanh ^{4} \beta+\tanh ^{8} \beta=\underbrace{\left(1+\tanh ^{4} \beta\right)^{2}}_{\text {see eq. (7.5) }}, \tag{7.7}
\end{equation*}
$$

and this is proportional to the square of the partition function in the 2×2 lattice (rather than the partition function itself).

The cycles in the expansion of the determinant are oriented: c_{2} runs anticlockwise around the pad, and c_{3} clockwise. However, both types of cycles may appear simultaneously, in the cycle c_{4}. This is handled by drawing two lattices, one for the clockwise, and one for the anticlockwise cycles (see Fig. 7.3). The cycles $\left\{c_{1}, \ldots, c_{4}\right\}$ correspond to all the loop configurations that can be drawn simultaneously in both lattices. It is thus natural that the determinant in eq. (7.7) is related to the partition function in two independent lattices, the square of the partition function of the individual systems.

Figure 7.3: Neighbor scheme and cycle configurations in two independent 2×2 Ising models.
Before moving to larger lattices, we note that the matrix $U_{2 \times 2}$ can be written in
more compact form, as a matrix of matrices:

$$
U_{2 \times 2}=\left[\begin{array}{cccc}
1 & u_{\rightarrow} & u_{\uparrow} & \cdot \tag{7.8}\\
u_{\leftarrow} & 1 & \cdot & u_{\uparrow} \\
u_{\downarrow} & \cdot & 1 & u_{\rightarrow} \\
\cdot & u_{\downarrow} & u_{\leftarrow} & 1
\end{array}\right] \quad \begin{gathered}
\text { (a } 16 \times 16 \text { matrix }, \\
\text { see eq. (7.9)) }
\end{gathered}
$$

where 1 is the 4×4 unit matrix, and furthermore, the 4×4 matrices $u_{\rightarrow,} u_{\uparrow}, u_{\leftarrow}$, and u_{\downarrow} are given by

$$
\begin{align*}
& u_{\rightarrow}=\left[\begin{array}{cccc}
\nu & \alpha & \cdot & \bar{\alpha} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right], \quad u_{\uparrow}=\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\bar{\alpha} & \nu & \alpha & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right], \\
& u_{\leftarrow}=\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \bar{\alpha} & \nu & \alpha \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right], \quad u_{\downarrow}=\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\alpha & \cdot & \bar{\alpha} & \nu
\end{array}\right] . \tag{7.9}
\end{align*}
$$

The difference between eq. (7.6) and eq. (7.8) is purely notational.
The 2×2 lattice is less complex than larger lattices. For example, one cannot draw loops in this lattice which sometimes turn left, and sometimes right. (On the level of the 2×2 lattice it is unclear why left turns come with a factor α and right turns with a factor $\bar{\alpha}$.) This is what we shall study now, in a larger matrix. Cycle configurations will come up that do not correspond to loop configurations. We shall see that they sum up to zero.

Figure 7.4: All 64 loop configurations for two uncoupled 4×2 Ising models without periodic boundary conditions (a subset of Fig. 7.1).

For concreteness, we consider the 4×2 lattice (without periodic boundary conditions), for which the Kac-Ward matrix can still be written down conveniently. We understand by now that the matrix and the determinant describe pairs of lattices, one for each sense of orientation, so that the pair of 4×2 lattices corresponds to a single 4×4 lattice with a central row of links eliminated. The 64 loop configurations for this

Lecture 7. Two-dimensional Ising model: Solution through high-temperature expansions)
case are shown in Fig. 7.4. We obtain

$$
U_{4 \times 2}=\left[\begin{array}{cccccccc}
1 & u_{\rightarrow} & \cdot & \cdot & u_{\uparrow} & \cdot & \cdot & \cdot \tag{7.10}\\
u_{\leftarrow} & 1 & u_{\rightarrow} & \cdot & \cdot & u_{\uparrow} & \cdot & \cdot \\
\cdot & u_{\leftarrow} & 1 & u_{\rightarrow} & \cdot & \cdot & u_{\uparrow} & \cdot \\
\cdot & \cdot & u_{\leftarrow} & 1 & \cdot & \cdot & \cdot & u_{\uparrow} \\
u_{\downarrow} & \cdot & \cdot & \cdot & 1 & u_{\rightarrow} & \cdot & \cdot \\
\cdot & u_{\downarrow} & \cdot & \cdot & u_{\leftarrow} & 1 & u_{\rightarrow} & \cdot \\
\cdot & \cdot & u_{\downarrow} & \cdot & \cdot & u_{\leftarrow} & 1 & u_{\rightarrow} \\
\cdot & \cdot & \cdot & u_{\downarrow} & \cdot & \cdot & u_{\leftarrow} & 1
\end{array}\right] .
$$

Written out explicitly, this gives a 32×32 complex matrix $U_{4 \times 2}=\left(u_{k, l}\right)$ with elements

This matrix is constructed according to the same rules as $U_{2 \times 2}$, earlier.

Figure 7.5: A loop in the 4×2 system, not present in Fig. 7.4. Weights of c_{1} and c_{2} cancel.
The cycle c_{2} in Fig. 7.5 can be described by the following trajectory:

$$
\text { cycle } c_{2} \equiv\left[\begin{array}{lcccccccccc}
\text { site } & 1 & 2 & 3 & 7 & 8 & 4 & 3 & 2 & 6 & 5 \\
\text { dir. } & \rightarrow & \rightarrow & \uparrow & \rightarrow & \downarrow & \leftarrow & \leftarrow & \uparrow & \leftarrow & \downarrow \\
\text { index } & 1 & 5 & 10 & 25 & 32 & 15 & 11 & 6 & 23 & 20
\end{array}\right]
$$

This cycle thus corresponds to the following product of matrix elements:

$$
\left\{\text { weight of } c_{2}\right\}: u_{1,5} u_{5,10} \ldots u_{23,20} u_{20,1}
$$

The cycle c_{2} makes four left and four right turns (so that the weight is proportional to $\bar{\alpha}^{4} \alpha^{4} \propto+1$) whereas the cycle c_{1} turns six times to the left and twice to the right, with weight $\bar{\alpha}^{6} \alpha^{2} \propto-1$, canceling c_{2}.

A naive program easily generates all of the nontrivial cycles in $U_{4 \times 2}$ (in each row of the matrix, we pick one term out of $\{1, \nu, \alpha, \bar{\alpha}\}$, and then check that each column index appears exactly once). This reproduces the loop list, with 64 contributions, shown in Fig. 7.4. There are in addition 80 more cycle configurations, which are either not present in the figure, or are equivalent to cycle configurations already taken into account. Some examples are the cycles c_{1} and c_{2} in Fig. 7.5. It was the good fortune of Kac and Ward that they all add up to zero.

On larger than 4×2 lattices, there are more elaborate loops. They can, for example, have crossings (see, for example, the loop in Fig. 7.6). There, the cycle configurations c_{1} and c_{2} correspond to loops in the generalization of Fig. 7.4 to larger lattices, whereas the cycles c_{3} and c_{4} are superfluous. However, c_{3} makes six left turns and two right turns, so that the overall weight is $\alpha^{4}=-1$, whereas the cycle c_{4} makes three left turns and three right turns, so that the weight is +1 , the opposite of that of c_{3}. The weights of c_{3} and c_{4} thus cancel.

c_{1}

c_{2}

c_{4}

Figure 7.6: Loop and cycle configurations. The weights of c_{3} and c_{4} cancel.

For larger lattices, it becomes difficult to establish that the sum of cycle configurations in the determinant indeed agrees with the sum of loop configurations of the high-temperature expansion, although rigorous proofs exist to that effect. However, at our introductory level, it is more rewarding to proceed heuristically. We can, for example, write down the 144×144 matrix $U_{6 \times 6}$ of the 6×6 lattice for various temperatures (using Alg. combinatorial-ising.py), and evaluate the determinant $\operatorname{det} U_{6 \times 6}$ with a standard linear-algebra routine. Partition functions thus obtained are equivalent to those resulting from Gray-code enumeration, even though the determinant is evaluated in on the order of $144^{3} \simeq 3 \times 10^{6}$ operations, while the Gray code goes over $2^{35} \simeq 3 \times 10^{10}$ configurations. The point is that the determinant can be evaluated for lattices that are much too large to go through the list of all configurations.

The matrix $U_{L \times L}$ for the $L \times L$ lattice contains the key to the analytic solution of the two-dimensional Ising model first obtained, in the thermodynamic limit, by Onsager (1944). To recover Onsager's solution, we would have to compute the determinant of U, not numerically as we did, but analytically, as a product over all the eigenvalues. Analytic expressions for the partition functions for Ising models can also be obtained for finite lattices with periodic boundary conditions. To adapt for the changed boundary conditions, one needs four matrices, generalizing the matrix U (compare with the analogous situation for dimers in chapter xx. Remarkably, evaluating $Z(\beta)$ on a finite lattice reduces to evaluating an explicit function (see the classical papers by Kaufman (1949) [21] and Ferdinand and Fisher (1969) [22].

Lecture 7. Two-dimensional Ising model: Solution through high-temperature expansions)

The analytic solutions of the Ising model have not been generalized to higher dimensions, where only Monte Carlo simulations, high-temperature expansions, and renormalization-group calculations allow to compute to high precision the properties of the phase transition. These properties, as mentioned, are universal, that is, they are the same for a wide class of systems, called the Ising universality class.

Lecture 8

The three pillars of mean-field theory (Transitions and order parameters 1/2)

Phypris in ruifinite dimensuins 1/2
Mean fied thory
1 CFP 2016 LECTURE 9/15
Baxter 1982:
Exacty sered statistind nuchamion
Givit
What we will discuss,
Mean-field theory \rightarrow Infinit-dimensimal of a phynial model
Self consistency;
interprctativ as a Landion Theary,
Free energy cos a functin of an ooder parametis (and posibly of ibs cenvátióes)
(TD: Bethelattice).

Buagg-Wiltiams Rhewry.
Introdisction Weiss Magnetic ficild

$$
\begin{aligned}
& H=-J \sum_{(i j\rangle} \sigma_{i} \sigma_{j}-h \sum_{i} \sigma_{i} \\
& \sigma_{i}= \pm 1 \\
&\langle i j\rangle: \text { nearest neightas }
\end{aligned}
$$

introduce aw

$$
\begin{aligned}
&\left.E\right|_{\sin \theta}=-J \sigma_{0} \sum_{j_{\pi}} \sigma_{j}-h \sigma_{0} \\
&=-\sigma_{0}[\underbrace{J \sum_{j} \sigma_{j}+h}_{\sum_{j h b i s ⿻ f}}] \\
& m_{0}=-h_{\text {weiss }} \approx \text { constant }
\end{aligned}
$$

$\sum_{i} \sigma_{j}=\operatorname{const}$
I) Neglecting fenctúdis

Weiss $\overline{\left\langle a_{j}\right\rangle}=m$

1) Secfromsttancy ceach ivirat any mount idertival with eadror siths sith

$$
\begin{aligned}
& \begin{array}{c|c|c}
\sigma_{0} & \epsilon & e^{-\beta H} \\
\hline 1 & -h_{\text {whis }} & e^{\text {BHwein }} \\
-1 & +h_{\text {whis }} & e^{-\beta+t w e r i}
\end{array} \\
& m_{0}=\frac{e^{\beta \text { Hhein }}-e^{-\beta \text { Hthein }}}{e^{\beta \text { (thein }}+e^{-\beta \text { threiss }}}=\operatorname{tank}(\beta \text { thoersi) }) \\
& m_{0}=\operatorname{tamb}\left(\beta h_{\text {weis }}\right) \\
& =\operatorname{tank} \beta\left[J q m+h_{\text {ext }}\right]
\end{aligned}
$$

secf cmristancy $m_{0}=n v$

$$
\begin{aligned}
& m=\operatorname{tamb} \beta\left[J q m+h_{q} t\right] \text {, } \beta \text { 于q lavge } \\
& h_{\text {ext }}=0 \\
& \begin{array}{l}
\sin \text { utilisnt } \\
\tan x=x-\frac{x^{3}}{3}
\end{array} \\
& \beta 3 q=\alpha \\
& m=\beta \operatorname{Jqm} \cdot \frac{[\beta J q m]^{3}}{3} \\
& 35 \operatorname{cig}^{2}=1 \quad \alpha=1: \\
& k_{B} T=q J \\
& m=\alpha m-\frac{\alpha^{3} m^{3}}{3} \quad \quad m=0 \quad \text { astis a sobithin } \\
& 1=\alpha-\frac{\alpha^{2} m^{2}}{3} \quad \alpha^{2} m^{2}=\alpha-1 \\
& m=\sqrt[4]{\frac{3(\alpha-1)}{\alpha^{2}}} \cdots \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=1=\varepsilon \\
& \alpha^{2}=[\Sigma+1]^{2}=1+2 \kappa \\
& m= \pm \sqrt{3 \frac{\varepsilon}{1+2 \varepsilon}}= \pm \sqrt{3} \sqrt{\varepsilon} \\
& m(T)= \pm \sqrt{3}\left(\frac{T}{T_{c}}\right)^{3 / 2}\left(\frac{T_{c}}{T}-1\right)^{1 / 2}
\end{aligned}
$$

$m(T) \sim\left(\frac{T_{C}}{T}-1\right)^{\beta}$ Critical exponent $\beta_{M F}=\frac{1}{2}$ CRITCAC EXPONENT (exact solution $\beta=\frac{1}{3}$). A less coll-N.Nons enoupl.

One-dimensoinal 1 sing chari. $(J=12$.

$$
\beta_{c} \cdot 2=1
$$

$$
\beta_{c} \sim \frac{1}{2}
$$

$$
T-2
$$

$M_{0}=1$, settriy any spain at sit k equal to is mean value.

$$
m_{k}=\tanh \left(J \beta\left(m_{k-1}+m_{k k 1}\right)\right)
$$

let us liniante the equation

$$
\begin{aligned}
& m_{0}=1 \\
& m_{k}=\beta\left(m_{k-1}+m_{k \times 1}\right) \quad \forall k>0
\end{aligned}
$$

This is a difference equation (see linear Bender?

$$
\begin{aligned}
& m_{k}=r^{k} \\
& r^{k}=\beta\left(r^{k-1}+r^{k \times 1}\right) \\
& \frac{\Lambda}{\beta}=\frac{1}{r}+r \quad r=\frac{1}{2 \beta} \pm \sqrt{\frac{1}{4 \beta^{2}}-1}
\end{aligned}
$$

$$
r=\frac{1}{2 \beta} \pm \sqrt{\frac{1}{4 \beta^{2}}-1}
$$

Bifurfacter $1=\frac{1}{2 \beta} \quad B=\frac{1}{2}$.
This clucles with The previons

$$
r=\frac{\beta_{c}}{\beta}+\frac{\beta_{c}}{\beta} \sqrt{1-\left(\frac{\beta}{\beta}\right)^{2}}
$$

We analyze bchunis of the lower bramece for small

$$
\begin{aligned}
& \text { pasition valus of } t=\frac{\left(T-T_{c}\right)}{T_{c}} \quad t>0 \quad \begin{array}{c}
T>T_{C} \\
\text { PARA }
\end{array} \\
& \begin{array}{l|l}
\left.\gamma=\beta_{c} \cdot T-\beta_{c} T \sqrt{1-\left(\frac{1}{\beta_{c}} T\right.}\right)^{2} & \left.\begin{array}{l}
t=\frac{T}{T_{c}}-1 \\
\\
=t+1-\sqrt{t^{2}+2 t}
\end{array} \right\rvert\, \begin{array}{l}
\frac{T}{T_{c}}+t \\
r=1+t-\sqrt{t^{2}+2 t}
\end{array}
\end{array} \\
& m_{k} \sim(1-\sqrt{2 t})^{k} \sim e^{-k} \sqrt{2 t} \\
& \sim 1+t-\sqrt{2 t} \\
& \sim \sqrt{1-\sqrt{2} t}
\end{aligned}
$$

$$
m_{k} \sim \exp (-k \xi) \quad \xi \sim \frac{1}{t^{1 / 2}}
$$

This mand that the correlatim length in ad meaw field theory is $V=\frac{1}{2}$. One caw also do a lmeanted Taylar expansori arind $t=0$ ant fir $v^{\prime}=\frac{1}{2}$.

The correlatini beugth as a scall \Rightarrow Scalkip (next wacek).

Meai- Infinite thyanasixall 1 sing model (Boxta 1902$)$
field
The approximation $\sum_{j} \sigma_{j}=q \cdot m$ is exxect if we consider a d-dimusuriel lathe ui The hmit $d=9 / 2 \rightarrow \infty$.

Ketrostraw polve thos pradebr
RATHER Thow consideny This model, we solve exactly the fully anne ctid clustio

The total field m a siti

$$
\begin{aligned}
& h+(N-1)^{-7} q J \sum_{j \neq i} \sigma_{j} \sigma_{j} \\
& E(\vec{S})=-\frac{q J}{N-7} \sum_{(i, j)} \sigma_{i} \sigma_{j}-h \sum_{i=7}^{N} \sigma_{i}
\end{aligned}
$$

For a groin comfgienater of spuis \rightarrow This sum is our the $\frac{1}{2} N(N-1)$ distrinct pais的 of i and j.
$E(\vec{r})=-\frac{1}{2} q J \frac{\left(M^{2}-N\right)}{M-1}-h(M$
$E(\vec{\sigma})=E(M)$ Whide is amating, and ust

$$
\begin{aligned}
& \text { In fimite } \\
& \text { dimunsion } \\
& E(\uparrow \uparrow \uparrow \uparrow \phi d \psi \psi) \\
& E(\uparrow \uparrow \uparrow \downarrow \uparrow \downarrow)
\end{aligned}
$$

$$
\overbrace{\uparrow \uparrow \uparrow \uparrow}^{*} \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
$$

munts of spins
$(\epsilon)=$ Mean field exprunt defintion 1.7 .9

$$
\begin{aligned}
& E=B=B=\frac{1}{2} \\
& C=\frac{\partial}{\partial T} E \\
& \text { Suscuptimility }
\end{aligned}
$$

$$
\begin{aligned}
& \text { usceptimuity } \\
& x=(-2 q J t)^{-1} \\
& \gamma=\gamma \gamma^{\prime}=1
\end{aligned}
$$ inturnol Exigy 0 contrim

free emigy specific hut \sim jjmp $1.7 .10 \rightarrow \alpha=0$

$$
\begin{aligned}
& z=\sum_{r=0}^{N} c_{r} \\
& c_{r}=\frac{N!}{r!(N-1)!} \operatorname{app}\left\{\frac{1}{2} \beta q J\left[(N-2 i)^{2}-N\right] /(N-1)\right. \\
& +\beta H(N-26)\} \\
& M=\frac{1}{N}\langle U R\rangle=\left(\left(1-\frac{2 r}{N}\right)\right\rangle \\
& =\frac{1}{Z} \sum_{v=0}^{N}(1-2 v / N) c_{r} \\
& \text { but in practici } \\
& \text { One meds only the } \\
& \text { peaking ele-ter } \\
& d_{r}=\frac{C_{r \pi}}{C r}=\frac{N-r}{v+1} \exp \left\{-2 \beta q J\left(\frac{N-2 r-1)}{N-1}-2 \beta+\pi\right\}\right. \\
& d_{r} \sum^{\frac{c}{\sigma}} \begin{array}{ll}
d r=1 & c_{r} \\
d,<0 & \left.\frac{c_{r n}}{c_{r}}=1 \Rightarrow \quad M=\operatorname{tank}[q 5 \pi+H] \beta\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& Z=c_{r}=\frac{N!}{r!(N-r)!} \exp \left\{\frac{1}{2} \beta g=\frac{(N-2 r)^{2}-N}{N-1}\right\}\lfloor 7 \\
& M=N-2 r \\
& Z=c_{r}=\frac{N!}{r!(N-J)!} \exp \left(\frac{1}{2} \beta J \frac{M^{2}-N}{N-1}\right) \\
& \frac{\log t}{N}=-\beta f=\underbrace{\frac{1}{2} \beta J N m^{2}} \quad m^{2}=\frac{C M}{N} \\
& \text { tern of exponential }
\end{aligned}
$$

\log prefacta : $N \log N-r_{0} \log v_{0}-(N-\sigma) \log (N-V)$

$$
\begin{aligned}
& (N-V)=\frac{1}{2} N(1+M) \\
& r_{0}=\frac{1}{2} N(1-m)
\end{aligned}
$$

$$
N \log N-\frac{1}{2} N \log \left[\frac{1}{2} N(1-M) \cdot \frac{1}{2} N(1+M)\right]+\frac{1}{2} N M \log \left(\frac{1-M}{1 M M}\right)
$$ replace $M=\tan N \beta q \in M$ and

$$
\begin{aligned}
& \log \left(\frac{1-\tanh x}{1+\tan x}\right)=-2 x \\
& -\beta f=\frac{1}{2} \log \frac{4}{1-M^{2}}-\frac{1}{2} \beta q J \sqrt{\frac{1}{2} N M^{2}}
\end{aligned}
$$

It is not true that Combs = Entropy $\exp 0=$ Gurge

A too simple approximatin
Eade spin intiacts with a local field hnue

$$
\left.\begin{array}{r}
\left.\frac{\operatorname{shn}^{2}(a+h x)}{\cosh ^{2}(a t h x}=t h^{2}(a t h x)=x^{2}\right]^{2}
\end{array} \uparrow \uparrow \downarrow \uparrow\right\}
$$

Using $m=\operatorname{tank}(\beta H$) k is

$$
\begin{aligned}
& H=\frac{1}{\beta} \operatorname{atanh} M \\
& Z=[2 \cos a \tanh M]^{N}=\left[\frac{\Lambda}{\Lambda-M^{2}}\right]^{N / 2}
\end{aligned}
$$

Q4. Bragg-Williams therog (Bettor ath $x=\frac{1}{2} \log \left(\frac{1+x}{1-x}\right)$

$$
\begin{aligned}
E & =-J\left[N_{++}-N_{+}+N_{-}\right] \\
N_{+} & =N\left(\frac{1+m)}{2} \quad N-j \frac{N(1-m)}{2} .\right. \\
S & =-k_{B}^{N}\left(\frac{N_{+}}{N} \log \frac{N_{+}}{N}+\frac{N_{-}}{N} \log \frac{N-}{N}\right)
\end{aligned}
$$

eade site is (t) with probalality $\frac{N_{+}}{N}$ B eadet eade sine is (t) with probablity $N-$ Independer eade p log $p+(1-p) \log \left(1-p_{t}\right)$ site

$$
p_{+} \log p_{+}+\left(1-p_{+}\right) \log \left(1-p_{+}\right)
$$

$$
\begin{aligned}
& {\left[\frac{N}{N}\right]} \\
& \begin{array}{l}
t+ \\
T^{t} \uparrow
\end{array} \\
& N_{++}=N \frac{9}{2}\left(\frac{N_{+}}{N}\right)\left(\frac{N_{+}}{N}\right) \\
& N+\quad \frac{q}{\frac{q}{2}} \frac{N_{ \pm}^{2}}{N} \\
& N_{-}=\frac{f}{2} \frac{N_{-}^{2}}{N} \\
& N_{4-}=q \frac{N_{+} N_{-}}{N} \\
& G=-9 \frac{5 N}{2} m^{2}-N h m+N K B\left(\frac{1+m}{2} \log \frac{1+m}{2}\right. \\
& \frac{\partial G}{\partial m}=0 \Rightarrow m=\tanh [\beta(q J m \times h)]^{+} \\
& \left.+\frac{1-m}{2} \log \left(1-\frac{m}{2}\right)\right) \\
& E=-\frac{1}{2} N m^{2} p q J \\
& \frac{E}{N}=-\frac{1}{2} \frac{N m^{2} q J}{N}=-\frac{1}{2} m^{2} q J \\
& \overline{T S}_{\bar{N}}=-\frac{1}{2 \beta} \log \frac{4}{1-m^{2}}+M^{2} q J \\
& E-T S=-\frac{1}{2} m^{\prime} q J-\frac{1}{2 \beta} \operatorname{lig} \frac{4}{1-m^{2}}+M^{2} q J \\
& \text { parpantcle }
\end{aligned}
$$

Lecture 9

Landau theory / Ginzburg criterium (Transitions and order parameters 2/2)

Lecture 10 ICFP

Mean -field theory $2 / 2$:
(1934)

Landau Theory, Ginziburct Criterion (1960)

1) Reveiv of lat while. isee) Homeward os
(we showed that $v=\frac{1}{2}=v^{\prime}$). $\quad X=-\left.\frac{\partial m}{\partial H}\right|_{H=0}$ we did not slow rat $\gamma=1=\gamma^{\prime} / \$=\left(-2 q t^{-1}\right)^{-1}=\left(\begin{array}{ll} \\ \end{array}\right.$
Exact solution of model on complete graph.

$$
\left[-\beta f=\frac{1}{2} \log \frac{4}{1-\mu L}-\frac{1}{2} \beta q J M^{2}\right]
$$

Move importantly; we could wile

$$
\begin{gathered}
Z \sim c_{r}=\frac{N!}{r!(N-v)!} \exp \left\{\frac{1}{2} \beta_{q} 5 \frac{(N-2 s)^{2}-N}{N-1}\right\} \\
M=N-2 v
\end{gathered}
$$

$$
\begin{aligned}
-\left.\beta F\right|_{\text {prefecture }} N \log N & -\frac{1}{2} N \log \left(\frac{1}{2} N(1-M) \frac{1}{2} N(1+M)\right) \\
N!\sim e^{-N} N^{N} &
\end{aligned}
$$

The $N \log N$ terms:

$$
\begin{aligned}
& N \log N-\frac{1}{2} N \log \left[\frac{1}{4} N^{2}\right]=+\frac{1}{2} N \log 4 \\
& =N \cos 2 \\
& -\left.\beta\right|_{\text {pronactu }}=-\frac{1}{2} N \underbrace{\log \left(1-M^{2}\right)}_{-M^{2}-\frac{M^{4}}{2}}+\frac{1}{2} N M \underbrace{\log \left(\frac{1-m}{1+m}\right)}_{-2 M-\frac{2 m^{3}}{3}} \stackrel{N \log 2}{ } \\
& =-\frac{1}{2} M^{2}-\frac{1}{12} M^{4}
\end{aligned}
$$

$$
-\left.\beta F\right|_{\text {expomentiol }} \simeq \frac{1}{2} \beta q M^{2}
$$

totel:

$$
\begin{gathered}
-\beta F=\frac{1}{2} \beta q M^{2}-\frac{1}{2} M^{2}-\frac{1}{12} M^{4} \\
\beta f=\left[-\frac{1}{2} \beta q+\frac{1}{2}\right] M^{2}+\frac{1}{12} M^{4} \\
\beta \frac{\partial f}{\partial m}=0 \quad[-\beta q+1] \pi+\frac{1}{3} M^{3}=0 \\
M^{2}=[\beta q-1] \cdot 3 \\
M=\sqrt{\beta q-1} \sqrt{3}
\end{gathered}
$$

$M=0$ or

Move general

$$
\begin{aligned}
G(m, T) & =a(T)+\frac{1}{2} b(T) m^{2}+\frac{1}{4} c(T) m^{4}+\frac{1}{6} c(C) m_{1}^{6} \\
\frac{\partial G}{\partial m} & =0 \Rightarrow m(T) \\
S & =-\frac{\partial G}{\partial T}, \quad C=+\frac{\partial S}{\partial T} .
\end{aligned}
$$

Laurdan (1936): Connection beturen symmerty breaking of Free enivy and 2nd aicher phase trousithis.

A tro simph approximitin

$$
Z=\left[2 \cos \omega h_{\text {weaiss }} \beta\right]^{N}
$$

Using $m=\tanh$ (BHweiss)
$h_{\text {werss }}=\frac{1}{\beta}$ atenterme

$$
Z=[2 \cos h \text { atomh } M]^{N}=\left[\frac{1}{1-M^{2}}\right]^{N / 2}
$$

too imisp
Brage WiLLiatis Theory

$$
\begin{aligned}
& E=-J\left[N_{++}-N_{+-}+N_{-}\right] \\
& N_{+}=N(1+m) \quad N_{-}=N\left(\frac{1-m)}{2}\right. \\
& N_{++}=N \frac{N_{+}}{2} \frac{N_{+}}{N}=\frac{q}{2} \frac{N_{+}^{2}}{N} \\
& N_{-}= \\
& N_{+-}= \\
& \quad \frac{q}{2} \frac{N_{-}^{2}}{N} \\
& S=-K_{B} N\left[\frac{N_{+} N_{-}}{N} \log \frac{N_{+}}{N_{1}+\frac{N-}{N}} \log \frac{N-}{N}\right) \\
& P_{+} \log P_{+}+\left(1 P_{+}\right) \log \left(1-P_{+}\right) .
\end{aligned}
$$

The Ginzburg Criterium.
(V.GINZBUR4, 1960)

I sing madel.

Approximation of Mean- field thessy. (haire version)
Neglecting feuctuations
Ansati of Meam field theney (better uevsim)

$$
\left[(\delta \pi)_{\Omega}\right]^{2} \ll\left[M_{\Omega}\right]^{2}
$$

Trick: Use this Ansatz belaw T_{c}. In a regic Ω of the rize of the correlation flemettions length

LHS:

$$
\begin{aligned}
& \left\langle\left(\sum_{\Omega}\left(S_{i}-\left\langle S_{i}\right\rangle\right)\right)^{2}\right\rangle= \\
& =\left(\sum_{\substack{i \in \Omega \\
j \in \Omega}}\left(S_{i}-\left\langle S_{i}\right\rangle\right)\left(S_{i}-\langle s\rangle\right)\right\rangle \\
& =N(\Omega) \cdot \sum_{\Omega}\left\langle S_{0} S_{i}-\langle S\rangle^{2}\right\rangle \\
& \left.=N(\Omega) \sum_{\Omega}\left[S_{0} S_{i}\right\rangle-\langle S\rangle^{2}\right]
\end{aligned}
$$

compare with
M
\uparrow
tot

Compare with:
Total Magnetization in a big vilume V

$$
\begin{aligned}
& M=\sum_{i \in V} S_{i} e^{-\beta\left[t+H \sum_{j} S_{j}\right]} \\
& \frac{\partial 1}{\partial H}=\sum_{i \in v} \sum_{j \in V} S_{i} S_{j} \\
& \frac{\partial M}{\partial H}=\sum_{W=0} \sum_{j \in V}\left\langle S_{0} S_{j}\right\rangle \\
& \frac{\partial M}{\partial H}=X=X=\sum_{D \in V}\left\langle S_{0} S_{j}\right\rangle .
\end{aligned}
$$

It follows thit

$$
\text { LHS: } N(\Omega) \cdot X
$$

RHS: $(N(\Omega))^{2} \cdot m^{2}$

$$
\begin{gathered}
x<N(\Omega) \cdot m^{2} \\
t^{-\gamma}<t^{-\nu d+2 \beta} \\
1 \ll t^{-v c^{\prime}+2 \beta+\gamma} \\
<0 \\
-\gamma d+2 \beta+\gamma<0 \\
2=2 \beta+\gamma<v d
\end{gathered}
$$

$$
-\gamma d+2 \beta+r<0 \quad 4<d
$$

$$
d=4: \text { upper }
$$

cintion climension

Lecture 10
Kosterlitz-Thouless physics in two dimensions: The XY model (Transitions without order parameters 1/2)

Lecture 67
Physics in two dimussions - Kosterliti-Thoulers physirs 1/2:
The $X Y$ (planar votor) model.
Literutne:
F. Weguer
Z. Plys. 206, 465(1967)

Kostalitit and Thurutess
J. Phyp C 1973

Kosturhis
J. Phyp. C 1974

Frohlich E Spencer
Comm. Meth Phys. 81

$$
527(1981)
$$

Merming Waguer
Phyp. Rew lett 17, 1133 (1966)
Domany, Schick, Snendsew
Phys.Rev. Lett 52, 1535(1984)
M. Hasublouse SPh A 2005

At high tumpenative; this model must be disndured for temperatores. This can be shown through Standerd high-Femperature expansion. It can also be shown usiy GRIFFitits
 inequatity that $\left.\left\langle\vec{S}_{i} \cdot \vec{S}_{j}\right\rangle_{J_{1} 2 \beta} \leqslant \sigma_{i} \cdot \sigma_{j}\right\rangle_{J \beta}$
$\uparrow \quad$ ising
XYmal. \quad miode

$$
\begin{aligned}
& z=\left\{d \theta_{i} \cdots d \theta_{L}=2 \pi \prod_{j=2}^{L}\left(d \theta_{j}^{i}\right.\right. \\
& \left(F=-\frac{1}{r} \log \left(2 \pi I_{0}(3)\right)\right)
\end{aligned}
$$

Oned:

Spin waves

$$
\uparrow \uparrow \nearrow \rightarrow \longrightarrow \downarrow \downarrow
$$

$$
\Delta \varphi=\begin{aligned}
& \frac{2 \pi}{L} \text { if Unitatal hin } \\
& 0 \text { if vertical } \ln \text { ink }
\end{aligned}
$$

total energy $\sim L^{2} \cdot \frac{24 \pi^{2}}{L} \sim 4 \pi^{2}=$ constant if yow suppose that you have many cliffernt types 8 orimitaties of som wares, the er your would expect rat at how temperature. fur is no sponturers mxgnetitatio
Spin correlation functions:
At high temperature $T \geqslant 2 J$, you would expect That the corelation functions are expountially decaynij.
Let us next study what is going ow at low temperature.

Lúscluer
Weiss 1988

Negurs 1967
"We considur a D-dimensional systan of clarrical spins rotating nia plome and nitracting vir a Heisculrirg coupling...."

$$
H=-\frac{1}{2} \sum_{\vec{r} \vec{r}^{\prime}} I\left(\vec{r}-\vec{r}^{\prime}\right) \cos \left(\varphi_{\vec{r}}-\varphi_{\vec{r}^{\prime}}\right)
$$

in low tempurature approximation

$$
\begin{aligned}
& H=-\frac{N}{2} \sum_{r} I(\vec{v})+\frac{1}{4} \sum_{\vec{v}, \vec{v}}\left(\varphi_{\vec{r}}-\varphi_{\vec{r}}\right)^{2} . \\
& \varphi_{\vec{k}}=\frac{1}{\sqrt{N}} \sum_{\vec{r}} e^{-i \vec{k} \vec{r}} \varphi_{r} \quad \varphi_{\vec{r}}=\frac{1}{\sqrt{N}} \sum_{\vec{k}} e^{i \vec{k} \vec{r}} \varphi_{\vec{k}} \\
& \varepsilon_{\vec{k}}=\sum_{\vec{r}} I(\vec{r}) \cdot(1-\cos \vec{k} \vec{r})=2 \sum_{\vec{r}} I(\vec{v}) \sin ^{2}\left(\frac{\vec{k} \vec{r}}{2}\right) . \\
& H=-\frac{N}{2} \sum_{\vec{r}} I(\vec{v})+\frac{1}{2} \sum_{\vec{k}} \sum_{\vec{k}} \rho_{\vec{k}} \varphi_{-\vec{k}} .
\end{aligned}
$$

where

$$
\varphi_{\vec{k}}=\frac{1}{L} \sum_{r}
$$

$$
\varphi_{k}=\frac{2 \pi i n k}{L L}
$$

$$
K \cdot L=
$$

$$
\psi_{\vec{k}}=\frac{1}{\sqrt{2}}\left(\varphi_{k}+\varphi_{-k}\right) \not \psi_{-\vec{k}}=\frac{1}{i \sqrt{2}}\left(\varphi_{k}-\varphi_{-k}\right)
$$

and get

$$
H=-\frac{N}{2} \sum_{\vec{r}} I(\vec{v})+\frac{1}{2} \sum_{k} \varepsilon_{k} \psi_{k}^{2}
$$

$$
g_{\uparrow}^{(\vec{r})}=\left\langle\cos \left(\varphi_{0}-\varphi_{\vec{r}}\right)\right)=\operatorname{ke}\left(\exp \left(i\left(\varphi_{0}-\varphi_{r}\right)\right)\right\rangle
$$

Spin correlation functrin

$$
\begin{array}{r}
\varphi_{0}-\varphi_{r}=\sqrt{\frac{2}{N}} \sum_{\vec{k} \in B^{+}}\left(\psi_{\vec{k}}(1-\cos \stackrel{\rightharpoonup}{k} \vec{r})\right. \\
\left.+\psi_{-\vec{k}} \sin \stackrel{\rightharpoonup}{k} \vec{v}\right) .
\end{array}
$$

it follows

$$
\begin{aligned}
& g(\vec{r})=\operatorname{Re}^{\int d^{N} \psi_{\vec{k}} \exp \left(-\beta H+i\left(\varphi_{0}-\varphi_{\vec{r}}\right)\right)} \\
&=\exp \left(-\frac{2 d_{B} T}{N} \psi_{k} \exp (-\beta H)\right. \\
& \sum_{\vec{k}} \frac{\sin ^{2}\left(\frac{\vec{k} \vec{r}}{2}\right)}{\varepsilon_{\vec{k}}}
\end{aligned}
$$

$$
I(s)=\begin{aligned}
& I \text { hearest neighbess } \\
& 0 \text { otherurig }
\end{aligned}
$$

$$
\varepsilon_{k}=4 I \sum_{i=1}^{D} \sin ^{2} \frac{k_{i}}{2}
$$

in ore dimension $g_{1}(r)=\exp \left(-\frac{k_{B} T|r|}{2 I}\right)$
Intur dimensins $g_{2}(v)=\exp \left(-\frac{k_{B} T}{I}\left(f_{r y}+\right.\right.$ const $\left.\left.+\frac{1}{2 \pi} \ln r\right)\right)$

$$
r \operatorname{esf}\left(-K_{B} T / 2 \pi I\right)
$$

In thore dimusins $\frac{{ }_{r \rightarrow 00}(r)}{\frac{3}{r \rightarrow 0}}=\exp \left(-k_{B} T f_{3}(\infty) / I\right)$
Wegur 1967

On 10/16/2016 08:17 PM, Ze Lei wrote:
Hi Werner,

Here I collected some data:
The core energy: $E_{\text {_ }}$ core $=E_{-}$total - $\operatorname{pi} \ln L(a s a=1)$
for $L=8$, energy $=8.63203435584$, core energy $=2.09927608493$
for $L=16$, energy $=10.8240288449$, core energy $=2.11368448373$
for $L=32$, energy $=13.0050815665$, core energy $=2.11715111498$
for $L=64$, energy $=15.1835264432$, core energy $=2.11800990142$
Then Tommaso helped using C , and run for quite long:
$\mathrm{L}=1024$, energy $=23.8941552245$, core energy $=2.11829432$
I think it almost converged.

Vortex pair energy and J_R calculation

As for a vortex-antivortex pair (1 use core energy $=2.118, E_{\mathbf{C}}$ pair = E_total $-2 E_{\text {_core }}$)
$L=64$ (dst is the horizontal displacement from vortex to antivortex, the real distance should be multiplied by sqrt(2))
dst $=3, E=21.263989$
dst $=4, E=22.971028$
$d s t=5, E=24.207665$
$d s t=6, E=25.137539$
$d s t=7, E=25.845934$
$d s t=8, E=26.383322$
dst $=9, E=26.782272$

E_pair - $\ln (d s t)$ or $(E-\ln (d s t))$ is almost linear:
$E=5.0518 \mathrm{dst}+15.91729729$, correlation coefficient: $r=0.9965$
the rest of the energy is far from twice the core energy. Snce the theory treated a quite distance pair, it may be acceptable.

From the thesis, the factor should be pi * J_R, then $\rfloor R(T=0) \sim 1.137$, quite close to 1 , it's almost self-consistent.

This may make a good homework.

[^0]```
rtex-homework(cosine models)
```

Subject: vortex-homework(cosine models)
From: Ze Lei [leizelaser@gmail.com](mailto:leizelaser@gmail.com)
Date: 10/16/2016 08:17 PM
To: Werner Krauth [krauth@tournesol.lps.ens.fr](mailto:krauth@tournesol.lps.ens.fr)
Hi Werner,
Here I collected some data:
The core energy: $E_{-}$core $=E_{\text {_total }}-\operatorname{pi} \ln L(a s a=1)$

```
for L = 8 , energy = 8.63203435584, core energy = 2.09927608493
for L = 16 , energy = 10.8240288449, core energy = 2.11368448373
for L = 32, energy = 13.0050815665 , core energy = 2.11715111498
for L = 64, energy = 15.1835264432 , core energy = 2.11800990142
Then Tommaso helped using C, and run for quite long:
L}=1024, energy = 23.8941552245, core energy =2.1182943
```

I think it almost converged.

## Vortex pair energy and J_R calculation

As for a vortex-antivortex pair ( I use core energy $=2.118$, E_pair = E_total $-2 E_{-}$core)
$L=64$ (dst is the horizontal displacement from vortex to antivortex, the real distance should be
multiplied by sqrt(2))
$d s t=3, E=21.263989$
$d s t=4, E=22.971028$
$d s t=5, E=24.207665$
dst $=6, E=25.137539$
$d s t=7, E=25.845934$
$d s t=8, E=26.383322$
dst $=9, E=26.782272$

E_pair $-\ln (d s t)$ or $(E-\ln (d s t))$ is almost linear:
$E=5.0518$ dst $+\mathbf{1 5 . 9 1 7 2 9 7 2 9}$, correlation coefficient: $r=0.9965$
the rest of the energy is far from twice the core energy. Snce the theory treated a quite distance pair, it may be acceptable.

From the thesis, the factor should be pi* $\int_{\Omega}$, then $\int_{-} R(T=0) \sim 1.137$, quite close to 1 , it's almost self-consistent.

This may make a good homework.

In two divensuis,
the $x y$ model, in harmonic approximation,
shows algebraic order, with correlation function

$$
\cos \left(\varphi_{0}-\varphi_{v}\right) \sim \frac{1}{r^{\operatorname{const}} \cdot T}
$$

This connects well with the ground States of the sgotan, which $\cos \left(\varphi_{0}-\varphi_{1}\right)=1=\frac{1}{v^{0}}$

This calculation, and the calculation of the sugcuptibilites

$$
x=\frac{\partial m}{\partial h}=\frac{\beta}{2} \sum_{\vec{r}} g(\vec{c})
$$

Suggest that there must be a phone transition at some temperatione.

Kostertite © Thowles

$h=-1$

III same configuratum


$$
\rightarrow
$$

$$
\oint_{c} \vec{\nabla} \theta d \vec{b}=2 \pi g
$$

The appearance of vortvas can be Shown by the famous free-enery adgument

$$
\begin{aligned}
|\vec{\nabla} \theta| & \sim \frac{1}{\sqrt{V}} \\
E_{\text {vatex }} & =\frac{1}{2} J_{R} \int_{0}^{L} 2 \pi s \frac{1}{v^{2}} d r+E_{C} \\
& =\pi \int_{R} \log \frac{L}{a}+E_{C} .
\end{aligned}
$$

Jrfecur matized spin Stftuens
The vortexemergy hasa precise meaniy
$L x L$
Lattius find lucal Mimimunu


$$
\begin{aligned}
& 10.824 \\
& \Delta E_{16-8}=\frac{8.632}{2,192} \\
& \epsilon= \\
& \Delta E_{32-16} \frac{\begin{array}{l}
3.005 \\
10.824 \\
1,181
\end{array}}{-2,181} \\
& \Delta E_{64-32}=\begin{array}{l}
15 \cdot 18352 \\
13 \cdot 00,50,8 \\
2,17844
\end{array} \\
& \pi \cdot J_{R} \cdot[\log 16-\log 8] \\
& 2,178=\pi \cdot J_{R} \cdot \log 2 \\
& J_{R}=1.0 \\
& S_{R}(T)=T_{R}\left(T_{k}\right)\left[1+c \cdot\left(T_{h}-T\right)^{1 T_{2}}\right] \\
& \beta=\frac{2}{\pi} \sim 0.7 . \\
& J_{R}=1 \\
& \Delta E_{64}=15 \cdot 18352=\pi \cdot \log 64+E_{C} \\
& \epsilon_{c}=2.118
\end{aligned}
$$

The Famous Kosterliti Thondes angument.

$$
\begin{aligned}
& \epsilon_{\nu}=\pi J_{\Omega} \log \frac{c}{a}+\epsilon_{c} \\
& S_{v}=k_{B} \cdot \log \frac{L^{2}}{a^{2}} \\
& \pi J_{R} \log \frac{L}{a}+\epsilon_{c}-\frac{2}{\beta} \log \frac{L}{a} \\
& F_{N}=[\underbrace{\pi J_{R}-\frac{2}{\beta}}] \log \frac{L}{a} \\
& \beta J_{R}>\frac{2}{\pi}: \quad F \longrightarrow \rightarrow 0 \\
& \text { Single vartex canmst } \\
& \text { be supprort - }
\end{aligned}
$$

Therefore, a phoou tramidin takse plom at..... $\beta_{K T} T_{R 2}=\frac{2}{\hbar}$

$$
\begin{aligned}
& U_{i j}\left(v_{i j}\right) \sim \sim \pi J_{R} q_{i} q_{j} \log \left(\frac{v_{i j}}{a}\right) \\
& \sim \pi J_{R} \log \\
& \log \left(\frac{v_{i j}}{a}\right)^{\beta \pi J_{r}} \\
& e^{a \log \left[\left(\frac{v_{i j}}{a}\right)^{\beta \pi T_{R}}\right]} \\
& Q_{i}\left(\frac{r_{i j}}{a}\right)^{-\beta \pi J_{R}} \sim r_{i j}^{-2}
\end{aligned}
$$


[^0]:    Massive open ontine course
    Statistical Mechanics: Algorithms and Computations
    3rd edition running (self*paced) : https;//ww, coursera,org/learn/statistical*mechanics

    Laboratoire de Physique Statistique, Ecole Normale Superieure
    24, rue Lhomond, 75231 Paris Cedex 05, France
    Tel $(+33)$ (0) 144323494
    Fax (+33) (0)1 44323433
    krauth@lps,ens.fr http://www.lps.ens,fr/-krauth/

