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TH2d

Transfer Matrix for the 2 x M Ising model (stripe of height 2 without periodic boundary conditions in the y-

direction}.
Material for the 5th ENS-ICFP lecture on Statistical Physics, 5 October 2016 (Werner Krauth).

T = {{Exp[3K}, 1, 1, Expl-Kl}, {1, Exp[K], Bxp[-3 K], 1},
{1, Exp{-3 K], Bxp{K}, 1}, {Exp[-K], %, 1, Exp[3 K]}}

{{e”, 1,1, e'“}, {1, e*, g K, 1}, {1, e ¥ gk, 1}, {e“K, 1, 1, e”}}

T.%7

PR E S S S L S X SIPCLE PG R S S 21_2@21(}'
e PR, oK gF L pE | g, g 5K, g2K o9, o oniK e"3K+e'K+ex+e3“},
6K @TE  g-3K x‘iex‘}eax}’

elFiefief e, 2+20%F, 2ve e e

K+@3K, e ¥ e iefeg?k, 2+e'2K+e6K}}

r——

2+2e%F, e, e fre

Eigenvalues[T]

{3 (1eet®), e® [~1retK),

1 -
e 3K (1+e('K+E4K+eﬁK_(1+82K) ,\/1_4E2K+10e4k_4eGK+eEK]{

2
1 .

gtk (i+e”+e“‘+e6x+ (1+e%¥) \/1—4 e”»lOe“‘u4e5“+e”J}
2 P

V2= {{Exp[2K], 1, 1, Exp[-2 K}}, {1, Exp[2 K], Exp[-2 K], 1},
{1, Exp[-2K], Exp[2K], 1}, {Exp[-2K}, 1, 1, Exp[2K]}}

{{sz, 1, 1, E_ZK}, {1’ QZK* E'ZK, 1}( {1‘ E—ZK' EZK’ 1}’ {E“2K, 1,1, eZK}}

Visg = {{Exp[K/2], 0,0, 0},
{0, Bxp[-K /2], 0, 0}, {0, C, Exp{~-K /2], 0}, {0, 0, 0, Exp[K/2])})}

{{e*?. 0,0, 0}, {0, &**, 0, 0}, {0, 0, e®?, 0}, {0, 0,0, ?}}

Visqg . V2. Viesg
Hel®, 1,1, e, {1, &5, e, 1}, {1, 3%, &5, 1}, [e%, 1, 1, &**}}
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Lecture 6. Two-dimensional Ising model: From Ising to Onsager (Transfer matrix

2/2)
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Lecture 7

Two-dimensional Ising model:
Solution through high-temperature
expansions)

in this lecture, we introduce, on the one hand, to the concept of duality in the Ising
model[?, 20] On the other hand, we present the graphical method for the solution of
the Ising model, due to Kac and Ward. Our discussion relies on a few pages of the
SMAC book[5, 236-247], and on the original papers [?, 20]. A modern echo (among
many others) can be found in the work by Saul and Kardar (1992).

7.1 High-temperature expansion of the 2D Ising model

The word “enumeration” has two meanings: it refers to listing items (configurations),
but it also applies to simply counting them. The difference between the two is of
more than semantic interest: in the list generated by Alg. enumerate-ising.py, we
were able to pick out any information we wanted, for example the number of config-
urations of energy E and magnetization M, that is, the density of states V'(E, M). In
this subsection we discuss an alternative enumeration for the two-dimensional Ising
model. It does not list the spin configurations, but rather all the loop configurations
which appear in the high-temperature expansion of the Ising model. This program
will then turn, in Section ??, into an enumeration of the second kind (the counting), as
pioneered by Kac and Ward[?]. It counts configurations and obtains Z($3) for a two-
dimensional Ising system of any size (Kaufman, 1949)[21], and even for the infinite
system (Onsager, 1944)[17]. However, it then counts without listing. For example,
it finds the number N (E) of configurations with energy E but does not tell us how
many of them have a magnetization M.
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Lecture 7. Two-dimensional Ising model: Solution through high-temperature
expansions)

Van der Waerden, in 1941 [?], noticed that the Ising-model partition function,

Z = Zexp (Jﬁ Z Ukal)
o (k,0)
— Z H eJ/BO'kUl7

7 (kD)

(7.1)

allows each term e’#?k% to be expanded and rearranged into just two terms, one
independent of the spins and the other proportional to o0;:

2 3
eﬂakal =1 +50k0l + /37 (O-kal)Q +67 (O'k’o'l)g to—ee
=1 =0k0o]
_ g B g B
_G+m+m+”*ﬂmﬁ+m+a+m
cosh 8 sinh 8

= (cosh S3) (14 oxo;tanh f3)

Inserted into eq. (7.1), with J = +1, this yields

Z(B) = Z H ((cosh B) (1+orojtanh 3)). (7.2)

5 (kD)

For concreteness, we continue with a 4 x 4 square lattice without periodic boundary
conditions (with J = 1). This lattice has 24 edges and 16 sites, so that, by virtue of
eq. (7.2), its partition function Z4x4(3) is the product of 24 parentheses, one for each
edge:

edge 1 edge 2
Zyxa(B) = Z cosh? 3(1+4 010z tanh B)(1+0y05tanh 3)

{o1,...,016}

X ... (1 + 014015 tanhﬁ)(l +015016tanh,8). (7.3)
edge 24

We multiply out this product: for each edge (parenthesis) £, we have a choice between
a “one” and a “tanh” term. This is much like the option of a spin-up or a spin-down
in the original Ising-model enumeration, and can likewise be expressed through a
binary variable ny;:

)

0 (= edgek ineq. (7.3) contributes 1)
ne =
g 1 (= edge k contributes (05,0 tanh(f)))

where s, and s}, indicate the sites at the two ends of edge k. Edge k = 1 has {s1,s}} =
{1,2}, and edge k = 24 has, from eq. (7.3), {524, sh4 } = {15,16}. Each factored term can
be identified by variables

{nl,. .. ,n24} = {{0, 1}, .. .,{0, 1}}
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7.2. Counting (not listing) loops in two dimensions

For {ni,...,n24} = {0,...,0}, each parenthesis picks a “one”. Summed over all spin
configurations, this gives 216, Most choices of {ni,...,n24} average to zero when
summed over spin configurations because the same term is generated with o, = +1

and o = —1. Only choices leading to spin products ¢,02,0% at each lattice site s

R RG]
remain finite after summing over all spin configurations. The edges of these terms
form loop configurations, such as those shown for the 4 x 4 lattice in Fig. 7.1.

The list of all loop configurations may be generated by Alg. edge-ising.py, a re-
cycled version of the Gray code for 24 digits, coupled to an incremental calculation
of the number of spins on each site. The {01,...,016} count the number of times the
sites {1,...,16} are present. The numbers in this vector must all be even for a loop

configuration, and for a nonzero contribution to the sum in eq. (7.3).

Table 7.1: Numbers of loop configurations in Fig. 7.1 with given numbers of edges (the figure contains
one configuration with 0 edges, 9 with 4 edges, etc). (From Alg. edge-ising.py).

#Edges # Configs

0 1
4 9
6 12
8 50
10 92
12 158
14 116
16 69
18 4
20 1

For the thermodynamics of the 4 x 4 Ising model, we only need to keep track of the
number of edges in each configuration, not the configurations themselves. Table 7.1,
which shows the number of loop configurations for any given number of edges, thus
yields the exact partition function for the 4 x 4 lattice without periodic boundary con-
ditions:

Zixa(B) = (2" cosh?*(B)) (14 9tanh? 8+ 12tanh® B+ - - - + 4tanh'® 8 + 1 tanh?° B).
(7.4)
Partition functions obtained from this expression are easily checked against the Gray-
code enumeration that we had before.

7.2 Counting (not listing) loops in two dimensions

Following Kac and Ward[?], we now construct a matrix whose determinant counts the
number of loop configurations in Fig. 7.1. This is possible because the determinant of
a matrix U = (uy,) is defined by a sum of permutations P (with signs and weights).
Each permutation can be written as a collection of cycles, a “cycle configuration”. Our
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Lecture 7. Two-dimensional Ising model: Solution through high-temperature
expansions)
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Fiqure 7.1: The list of all 512 loop configurations for the 4 x 4 Ising model without periodic boundary
conditions. The “golden” configuration is the only one with 20 edges. It gives rise to the 1tanh?® 3
term in eq. (7.4). The “red” configuration represents a “loop within a loop”.
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7.2. Counting (not listing) loops in two dimensions

task will consist in choosing the elements uy; of the matrix U in such a way that the
signs and weights of each cycle configurations correspond to the loop configurations
in the two-dimensional Ising model. We shall finally arrive at a computer program
which implements the correspondence, and effectively solves the enumeration prob-
lem for large two-dimensional lattices. For simplicity, we restrict ourselves to square
lattices without periodic boundary conditions, and consider the definition of the de-
terminant of a matrix U,

detU = Z (signP)ulpluQPQ...uNpN.
permutations
We now represent P in terms of cycles. The sign of a permutation P of N elements
with n cycles is sign P = (—1)V*" (an example may be found in the SMAC 1.2.2).
In the following, we shall consider only matrices with even NN, for which sign P =
(—1)*ofcycles The determinant is thus

f cycl
detU = Y (=1 'Y up pup,p,...upyp, upip ...
cycle
configs

- - N——
weight of first cycle other cycles

B (—1)- weight of (—1)- weight of
= 2 ({ first cycle })XX({ last cycle })
cycle
configs
It follows from this representation of a determinant in terms of cycle configurations
that we should choose the matrix elements wuy; such that each cycle corresponding to
a loop on the lattice (for example (P,..., Pyr)) gets a negative sign (this means that
the sign of up, p,up,p; ... up,, p, should be negative). All cycles not corresponding to
loops should get zero weight.

We must also address the problem that cycles in the representation of the de-
terminant are directed. The cycle (P, Ps,...,Py—1,Py) is different from the cycle
(Pyv, Prr-1, ..., P2, Pr), whereas the loop configurations in Fig. 7.1 have no sense of
direction.

7.2.1 2x2 lattice, naive 4 x 4 matrix

For concreteness, we start with a 2 x 2 lattice without periodic boundary conditions,
for which the partition function is

Zoxo = (21 cosh? B)(1 +tanh? B). (7.5)

The prefactor in this expression (2N multiplied by one factor of cosh 3 per edge) was
already encountered in eq. (7.4). We can find naively a 4 x 4 matrix Uswo whose de-
terminant generates cycle configurations which agree with the loop configurations.
Although this matrix cannot be generalized to larger lattices, it illustrates the prob-
lems which must be overcome. This matrix is given by

1 ~tanh(p) :
A : 1 : ~vtanh
~tanh(p) . 1 : '
: vtanh(pB) 1
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Lecture 7. Two-dimensional Ising model: Solution through high-temperature
expansions)

(In the following, zero entries in matrices are represented by dots.) The matrix must
satisfy
Zoxo = (2" cosh? B) det Uno,

and because of
det Usyo = 1 —~*tanh* 3,

we have to choose vy = expin /4= /—1. The value of the determinant is easily verified

by expanding with respect to the first row, or by naively going through all the 24
permutations of 4 elements. Only two permutations have nonzero contributions: the
unit permutation (1231), which has weight 1 and sign 1 (it has four cycles), and the
permutation, (333%) = (1,2,4,3), which has weight v*tanh* 8 = —tanh* 3. The sign of
this permutation is —1, because it consists of a single cycle.

The matrix U- 2x2 cannot be generalized directly to larger lattices. This is because it
sets u9q equal to zero because u15 # 0, and sets 113 = 0 because us3; # 0; in short it sets
ug = 0 if uy, is nonzero (for k #1). In this way, no cycles with hairpin turns are retained
(which go from site k to site [ and immediately back to site k). It is also guaranteed
that between a permutation and its inverse (in our case, between the permutation
(3113) and ($132)), at most one has nonzero weight.

Table 7.2: Correspondence between lattice sites and directions, and the indices of the Kac—Ward matrix
U

Site Direction Index

— 1
T 2
1 — 3
4 4
— 5
T 6
2 — 7
d 8
— 4k —3
0 4k —2
k — 4k -1
d 4k

For larger lattices, this strategy is too restrictive. We cannot generate all loop con-
figurations from directed cycle configurations if the direction in which the edges are
gone through is fixed. We would thus have to allow both weights uj; and u;, different
from zero, but this would reintroduce the hairpin problem. For larger IV, there is no
N x N matrix whose determinant yields all the loop configurations.

92



7.2. Counting (not listing) loops in two dimensions

Kac and Ward’s solution to this problem associates a matrix index, not with each
lattice site, but with each of the four directions on each lattice site (see Table 7.2),
and a matrix element with each pair of directions and lattice sites. Matrix elements
are nonzero only for neighboring sites, and only for special pairs of directions (see
Fig. 7.2), and hairpin turns can be suppressed.

For concreteness, we continue with the 2 x 2 lattice, and its 16 x 16 matrix Usys.
We retain from the preliminary matrix ﬁgxg that the nonzero matrix element must
essentially correspond to terms tanh 3, but that there are phase factors. This phase
factor is 1 for a straight move (case a in Fig. 7.2); it is exp(in/4) for a left turn, and
exp(—im/4) for a right turn.

|

b} 2
1 2 1 2 1]

a b c d

—_
DO

Figure 7.2: Graphical representation of the matrix elements in the first row of the Kac—Ward matrix
Uzx2

Table 7.3: The matrix elements of Fig. 7.2 that make up the first row of the Kac—Ward matrix Uy o (see
eq. (7.6)).

Case Matrix element value type
a Ui s v =tanhf3 (straight move)
b U1L,6 a=e™*tanh 8 (left turn)
c U7 0 (hairpin turn)
d Uy g a=e¢ "/ tanh  (right turn)

The nonzero elements in the first row of U2 are shown in Fig. 7.2, and taken up
in Table 7.3. We arrive at the matrix

U2><2: ....... 11 . (7.6)

The matrix Uz 2 contains four nonzero permutations, which we can generate with
a naive program (in each row of the matrix, we pick one term out of {1,v,«, @}, and
then check that each column index appears exactly once). We concentrate in the fol-
lowing on the nontrivial cycles in each permutation (that are not part of the identity).

The identity permutation, P! = (] - 18), one of the four nonzero permutations, has
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Lecture 7. Two-dimensional Ising model: Solution through high-temperature
expansions)

only trivial cycles. It is characterized by an empty nontrivial cycle configuration c;.
Other permutations with nonzero weights are

site 1 2 4 3
co = | dir - 1T < |
index 1 6 15 12
and
site 1 3 4 2
c3=| dir. T = L o«
index 2 9 16 7

Finally, the permutation ¢, is put together from the permutations c; and c3, so that we
obtain

C1 = 1,
_ — ot = _tanh?

C2 = U1,6U6,15U15,12U12,1 = 00" = —tan (B),
_ —4 4

€3 = U2,9U9, 16U16,7UT,2 = O = —tanh™(f),

¢4 = cpcs = otat = tanh®(B).
We thus arrive at

4 8 4 9\2
detUsyy = 1+ 2tanh? 3+ tanh ﬂ:(1+tanh 5), (7.7)

see eq. (7.5)

and this is proportional to the square of the partition function in the 2 x 2 lattice (rather
than the partition function itself).

The cycles in the expansion of the determinant are oriented: ¢ runs anticlockwise
around the pad, and c3 clockwise. However, both types of cycles may appear simulta-
neously, in the cycle ¢4. This is handled by drawing two lattices, one for the clockwise,
and one for the anticlockwise cycles (see Fig. 7.3). The cycles {ci,...,c4} correspond
to all the loop configurations that can be drawn simultaneously in both lattices. It is
thus natural that the determinant in eq. (7.7) is related to the partition function in two
independent lattices, the square of the partition function of the individual systems.

34
— D D
34
100t
sites Cq Co Cq Cy
Figure 7.3: Neighbor scheme and cycle configurations in two independent 2 x 2 Ising models.

Before moving to larger lattices, we note that the matrix Usy2 can be written in
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7.2. Counting (not listing) loops in two dimensions

more compact form, as a matrix of matrices:

1wy uy .
ue 1 S VS (a 16 x 16 matrix,
u, 1 us see eq. (7.9))

. up  ue 1

Usyo = ; (7.8)

where 1 is the 4 x 4 unit matrix, and furthermore, the 4 x 4 matrices u_,, u, u., and
uy are given by

S N 9

The difference between eq. (7.6) and eq. (7.8) is purely notational.

The 2 x 2 lattice is less complex than larger lattices. For example, one cannot draw
loops in this lattice which sometimes turn left, and sometimes right. (On the level of
the 2 x 2 lattice it is unclear why left turns come with a factor o and right turns with
a factor @.) This is what we shall study now, in a larger matrix. Cycle configurations
will come up that do not correspond to loop configurations. We shall see that they
sum up to zero.

I 0 e i 6 B o e W R A |
I s o N [ s O s I Y [
I [y s s (e (s o I o o o o
I o e I N A R e o s I o B A
e e e s s S I S S v  S—  S— | S— y —
I 0 s s [ N (R | N 0 Y ) s o 6 O
o o o I Iy Iy Iy B
I Y | B W O O Ol cCca0ooe. 0

Figure 7.4: All 64 loop configurations for two uncoupled 4 x 2 Ising models without periodic boundary
conditions (a subset of Fig. 7.1).

For concreteness, we consider the 4 x 2 lattice (without periodic boundary con-
ditions), for which the Kac-Ward matrix can still be written down conveniently. We
understand by now that the matrix and the determinant describe pairs of lattices, one
for each sense of orientation, so that the pair of 4 x 2 lattices corresponds to a single
4 x 4 lattice with a central row of links eliminated. The 64 loop configurations for this
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Lecture 7. Two-dimensional Ising model: Solution through high-temperature

expansions)

case are shown in Fig. 7.4. We obtain

1 u. . . Ut
U 1 u . . Usp
U 1w - . Usp
. . u 1 . . . u
Usxo = < T (7.10)
UJ/ . . . 1 u% . .
uy . coue 1wl
uy . - ue 1w
i up o e 1

Written out explicitly, this gives a 32 x 32 complex matrix U2 = (uy,;) with elements

Usxo= | 000 oo L L ea

This matrix is constructed according to the same rules as Us 2, earlier.

1234 l’"’"zz’"lr

cycle ¢; cycle ¢y

sites loop

Fiqure 7.5: A loop in the 4 x 2 system, not present in Fig. 7.4. Weights of c1 and co cancel.

The cycle ¢ in Fig. 7.5 can be described by the following trajectory:

site 1 2 3 7 8 4 3 2 6 5
cycle ¢ = | dir. = = 1 = |l o« « 1T« |
index 1 5 10 25 32 15 11 6 23 20

This cycle thus corresponds to the following product of matrix elements:

{ weight of Co } S U1,5U5,10 - - - U23,20U20,1 -
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7.2. Counting (not listing) loops in two dimensions

The cycle co makes four left and four right turns (so that the weight is proportional to
a*at x +1) whereas the cycle ¢; turns six times to the left and twice to the right, with
weight @%a? o —1, canceling cs.

A naive program easily generates all of the nontrivial cycles in Uy (in each row
of the matrix, we pick one term out of {1,v,«,a}, and then check that each column
index appears exactly once). This reproduces the loop list, with 64 contributions,
shown in Fig. 7.4. There are in addition 80 more cycle configurations, which are either
not present in the figure, or are equivalent to cycle configurations already taken into
account. Some examples are the cycles ¢; and c; in Fig. 7.5. It was the good fortune
of Kac and Ward that they all add up to zero.

On larger than 4 x 2 lattices, there are more elaborate loops. They can, for example,
have crossings (see, for example, the loop in Fig. 7.6). There, the cycle configurations
c1 and c¢; correspond to loops in the generalization of Fig. 7.4 to larger lattices, whereas
the cycles c3 and ¢4 are superfluous. However, c3 makes six left turns and two right
turns, so that the overall weight is ao* = —1, whereas the cycle ¢4 makes three left turns
and three right turns, so that the weight is +1, the opposite of that of c3. The weights
of ¢3 and ¢4 thus cancel.

0 4 Ty
T
DD AL EFDD
T
l l [ l
(31 (32 (:3 C4

loop

Figure 7.6: Loop and cycle configurations. The weights of c3 and c4 cancel.

For larger lattices, it becomes difficult to establish that the sum of cycle configu-
rations in the determinant indeed agrees with the sum of loop configurations of the
high-temperature expansion, although rigorous proofs exist to that effect. However,
at our introductory level, it is more rewarding to proceed heuristically. We can, for
example, write down the 144 x 144 matrix Ugxe of the 6 x 6 lattice for various tem-
peratures (using Alg. combinatorial-ising.py), and evaluate the determinant det Usy¢
with a standard linear-algebra routine. Partition functions thus obtained are equiva-
lent to those resulting from Gray-code enumeration, even though the determinant is
evaluated in on the order of 1443 ~ 3x 10° operations, while the Gray code goes over
235 ~ 3x10'° configurations. The point is that the determinant can be evaluated for
lattices that are much too large to go through the list of all configurations.

The matrix Uy, 1, for the L x L lattice contains the key to the analytic solution of the
two-dimensional Ising model first obtained, in the thermodynamic limit, by Onsager
(1944). To recover Onsager’s solution, we would have to compute the determinant of
U, not numerically as we did, but analytically, as a product over all the eigenvalues.
Analytic expressions for the partition functions for Ising models can also be obtained
for finite lattices with periodic boundary conditions. To adapt for the changed bound-
ary conditions, one needs four matrices, generalizing the matrix U (compare with the
analogous situation for dimers in chapter xx. Remarkably, evaluating Z(/3) on a finite
lattice reduces to evaluating an explicit function (see the classical papers by Kaufman
(1949) [21] and Ferdinand and Fisher (1969) [22].
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Lecture 7. Two-dimensional Ising model: Solution through high-temperature
expansions)

The analytic solutions of the Ising model have not been generalized to higher di-
mensions, where only Monte Carlo simulations, high-temperature expansions, and
renormalization-group calculations allow to compute to high precision the properties
of the phase transition. These properties, as mentioned, are universal, that is, they are
the same for a wide class of systems, called the Ising universality class.
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Lecture 8

The three pillars of mean-field
theory (Transitions and order
parameters 1/2)
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Lecture 9

Landau theory / Ginzburg criterium

(Transitions and order parameters
2/2)

109



| echie A0 (C+C

STHTSTicAL HGCW{?\J@(} ConcEVTS ¢ KPPLICATIONS

v o

S
e

(

MECU'\ - ‘@‘5‘\‘{ Mof«j 202

(A9%Y) _ ey
L;«WIW} \"\(’H’t:’@?’"j G:N%Eo(&cv 0 TER i
«:L) &‘m;\& ef. PFiN m-euh | (Set ) ‘Hﬁﬁfj‘c«faﬁz o
e <
(Wﬁ < Louwred )/Lu:J( ~ P = ) T .
Lo chud st Slw  Tlact N =L=E )/?ﬁ( - )

vl (nv-))
M= N N
“‘%F\\ym\ad’v&‘ N Log N -4 N ﬂ"ﬁ( (/?“Hf'f})
Ngﬂeﬁdfdg\j hi{\}ﬁ 8 Ve
kv Tl M Aog N s
;\/@JM N@J/NJ = "vé A Loy o
- 1l
= INE v
B e = L by (0 e g (4 ) TS
R N
~E - 2w -2t
s 3

T - = (-yt9)
é)(ﬁﬁct g—jj’;,\jf.vq\ G’(/ f\/\/\oc&ﬁ, e~ (/\‘.’\m()szﬁi-( _«rm‘) .




Gok | C
A It S RIS L B
o
= L6y-2)3
= '—\éiﬂj-_g, ‘\/;
AR NP -

éf CMT) = O\{T)#.’éur) % s;;f C(T):MLT 4;, ) wE

g
s 2
S=-25 C= 4 33
2T ! 0T,

s

L&bu\ﬁ{&m ( A 6 K 6) : Caw WQ%’C‘”\ &éﬂmﬁw
-57*0' WA wvd'y (J\Y'(Cm ke«,u& Le({ E\LL
\" (’L AR ‘F\f M“;\t—/{n 5 -

\Z.



Ne = N Mrw) v =N
= - =
G &j‘ M 4 = A4S
MT%"“ Mi N U % Mj,:;
N = 1N
N
N_{_,_ - = U%N-‘
Ty




Wﬁhﬁ.égw%gwt@ Ce\TER O 1.
(V. Celu TBIR &, 1960)

WM:W\O\%}:‘ [ chr MQ“V" (—Cego’{ Jr{/\i\fb‘fju (V\o\\'& \3‘(.&&\«;«)
I\Jr;.j\{ c,i:\' u} QZMCJ\M e &?\'\sﬂ
fjf"\SﬁL (;1(,_ S 7O %\f.c\c& T('*"»*j C \,,/d"-/fc,{ SN v ]

\?

et

ln o regie~

med&%wﬂ%@@W@v&%ﬁk
LG < (z(g&m&;?n > =
PARORCYCRIR)

L& S
3 e

- ) 7 (SDS (°)

s Zf 57 -]

\“w



Vo< NI
.o w’\)d 126
T X«{ §
N2>
e G’f._.imf
< 0
—yd 426ty <o :}::“ ﬁ
2 = 2P S v A=y oopret
i hiead

CL\AM\.«“(}\_,‘



Lecture 10

Kosterlitz-Thouless physics in two
dimensions: The XY model
(Transitions without order
parameters 1/2)
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On 10/16/2016 08:17 PM, Ze Lei wrote:

Hi Werner,
Here | coliected some data:
The core energy: E_core =E _total-piinbL{asa = 1)

forL= 8 , energy = 8.63203435584 , core energy = 2.09927608493
fori= 16 , energy = 10.8240288449 , core energy = 2.11368448373
forL= 32 , energy = 13.0050815665 , core energy = 2.11715111498
forL = 64 , energy = 15.1835264432 , core energy = 2.11800990142
Then Tornmaso helped using C, and run for quite long:

L = 1024, energy = 23.8941552245, core energy =2.11829432

} think it almost converged,

Vortex pair energy and ]J_R calculation
As for a vortex-antivortex pair ( | use core energy = 2.118, E_pair = E_total - 2E_core)

L. = 64 (dst is the horizontal disptacement from vortex to antivortex, the real distance should be
multiplied by sqrt{2)}

dst =3, E = 21.263989

dst=4, E = 22.971028

dst = 5, E = 24.207665

dst =6, E = 25137539

dst =7, F = 25.845934

dst = 8, E = 26.383322

dst = 9, E = 26.782272

E_pair - In{dst) or {E - In{dst}) is almost linear:

E = 5.,0518 dst + 15.91729729, correlation coefficient: r = 0.9965

the rest of the energy is far from twice the core energy. Snce the theory treated a quite distance
pair, it may be acceptable.

From the thesis, the factor should be pi * | R, then | R(T = 0) ~ 1.137, quite close to 1, it's almost
self-consistent.

This may make a good homework.

Massive gpen online course
Statistical Mechanics: Algorithms and Computations
3rd edition running {self-paced): hitps://www.coursera,crg/learn/statistical-mechanics

L.aboratoire de Physique Statistique, Ecole Normale Superieure
24, rue Lhomond, 75231 Parls (edex 05, France

Tel {+33) {0)1 44 32 34 24

Fax {+33) {0)1 44 32 34 33

krauth@lps ., ens.fr  htip://www.lps.ens, fr/-krauth/

10/18/2016 08:13 P




ctex-homework(cosine models)

Subject: vortex-homework(cosine models)

From: Ze Lei <leizelaser@gmail.com>

Date: 10/16/2016 08:17 PM

To: Werner Krauth <krauth@toumesot.|ps.ens.fr>'

Hi Wermner,
Here | collected some data:
The core energy: E core = E fotal-pilnt(asa = 1)

forL = 8 , energy = 8.63203435584 , core energy = 2.09927608493
forL= 16 , energy = 10.8240288449 , core energy = 2.11368448373
fort = 32 , energy = 13.0050815665 , core energy = 2.11715111498
for L= 64 , energy = 15.1835264432 , core energy = 2.11800990142
Then Tommaso helped using C, and run for quite long:

L =1024, energy = 23.8941552245, core energy =2.11829432

[ think it almost converged.

Vortex pair energy and ] R calculation
As for a vortex-antivortex pair { { use core energy = 2.118, E_pair = E_total - 2E_core)

L = 64 (dst is the horizontal displacement from vortex to antivortex, the real distance should be
muitiplied by sqrt(2)

dst =3, E=21.26398%

dst =4, E = 22971028

dst =5, E = 24.207665

dst =6, E = 25137539

dst = 7, E = 25.845934

dst = 8, E = 26.383322

dst =9, E = 26.7822772

E pair - In{dst) or (E - In{dst}) is almost linear:

E = 5.0518 dst + 15.91729729, correlation coefficient: r = 0,9965

the rest of the energy is far from twice the core energy. Snce the theory treated a quite distance pair,
it may be acceptable.

from the thesis, the factor should be pi *} R, then | R(T = 0} ~ 1.137, quite close to 1, it's almost
self-consistent,

This may make a good homework,

1ofl 10/18/2016 08:16 P
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