
Algorithms and computations in physics
(Oxford Lectures 2025)

Werner Krauth∗

Laboratoire de Physique, Ecole normale supérieure, Paris (France)
Rudolf Peierls Centre for Theoretical Physics

University of Oxford (UK)

Version 20 Jan 2025

We start our parallel exploration of physics and of computing with the concept of
sampling, the process of producing examples (“samples”) of a probability distribu-
tion. In week 1, we consider “direct” sampling (the examples are obtained directly)
and, among the many connections to physics, will come across the Maxwell distri-
bution. In 1859, it marked the beginning of the field of statistical physics.

Contents

1 Direct sampling 1
1.1 Children on the beach in Monaco . 2

1.1.1 Sample spaces and random variables . 2
1.1.2 Pseudocode, pseudo-random numbers . 3
1.1.3 From Punch-card coding to Python and to ChatGPT 3

1.2 Direct sampling—discrete distributions . 4
1.2.1 Rejection sampling . 4
1.2.2 Tower sampling . 5
1.2.3 Complexity of discrete sampling—Walker’s method 5

1.3 Direct sampling—continuous distributions . 6
1.3.1 Sample transformation—simple examples 6
1.3.2 Sample transformation—Gaussian, multidimensional Gaussians 7
1.3.3 Rejection method . 10

1.4 Direct sampling: fundamental aspects . 11
1.4.1 Laws of large numbers—importance sampling 11
1.4.2 What we learn about π by throwing pebbles (not treated in week 1) . . . 13

1 Direct sampling

In this first lecture, I introduce to the concept of sampling. Some of the material can be found
in my textbook [2]. For background on statistics, one may consult the book by Wasserman [1],
among others.

∗werner.krauth@ens.fr, werner.krauth@physics.ox.ac.uk

1

mailto:werner.krauth@ens.fr
mailto:werner.krauth@physics.ox.ac.uk

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

1.1 Children on the beach in Monaco

Direct sampling 1 is exemplified by a children’s game popular in Monaco, south of France,
whence the name “Monte Carlo” method. Children fling pebbles (small stones) into a square.
They then count how many of them fall into the circle inscribed in the square (see [2, Sect. 1.1]
for the full story).

1.1.1 Sample spaces and random variables

Figure 1: Children on the Monte Carlo beach, computing the number π.

The square in Fig. 1 constitutes a sample space Ω. 2 Modern probability theory, since
Kolmogoroff, then assigns probabilities, not in general to individual samples (x, y), but to subsets
of the sample space Ω. A small subset of size dxdy around a point (x, y) then has the probability

π□(x, y)dxdy =

{
const dxdy if x, y ∈ Ω□

0 else
. (1)

where, in this case, we know that const = 1/4. The pebbles that the children throw are
(exact, perfect) samples of the distribution π, and the act of throwing the pebbles is denoted as
“sampling (from) the distribution π”.
On the Monte Carlo beach, a circle is inscribed inside the square. While all pebbles inside

the square are referred to as trials, those inside the circle are hits. The function on the sample
space defines a “random variable” 3. O : Ω→ R:

O[(x, y)] =

{
1 if (x, y) ∈ ⊙
0 else

(2)

The quantity O is a “Bernoulli random variable” that we can also sample, more directly, as

O[(x, y)] =

{
1 P = π/4

0 P = 1− π/4
, (3)

but then we need to know the value of π. The passage from eq. (2) to eq. (3) illustrates that
sample spaces tend to disappear in discussions of probability theory [1, p. 27]. If we have
forgotten the value of π, we may estimate it from the pebble throws. This moves us from
probability theory into the field of statistics.

1The word “sample” has the same origin as “example”
2Sample space: the set of all outcomes of the pebble-throw experiments
3random comes from an old French word that still survives in randonnée, in other words a hike

2

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

1.1.2 Pseudocode, pseudo-random numbers

The children’s game is the first of 150 algorithms that we will discuss in the present lecture
series. We will specify them through self-explanatory pseudo-code (see Alg. 1 (direct-pi)).
In Alg. 1 (direct-pi), as throughout this course, we take for granted the existence of uniform

procedure direct-pi

Nhits ← 0 (initialize)

for i = 1, . . . , N :
x← ran(−1, 1)
y ← ran(−1, 1)
if x2 + y2 < 1 Nhits ← Nhits + 1

output Nhits

——

Algorithm 1: direct-pi. Using the children’s game with N pebbles to compute π.

random numbers ran(a, b) in the interval between a and b. During 80 years, now, such numbers
have been generated as pseudo-random numbers, in other words deterministic procedures that
look random, and that condense deep concepts from number theory and cryptography. Up to
the year 2000, roughly, problems with random numbers were common, and users on high alert,
running batteries of checks on their results for different classes of random numnbers. In modern
times, the quality of random-number generators has much improved, although they continue to
have flaws and will themselves be superseded by even more sophisticated variants. What will
remain is the pseudo-code, as in Algorithm 1, and we will stick to it.

1.1.3 From Punch-card coding to Python and to ChatGPT

The pseudocode of Alg. 1 (direct-pi), and of all algorithms that follow must be communicated
to a computer. This, over the decades, first consisted in punching holes into cards, of which one
had huge piles. Later, pseudocode was to be translated into one or the other computer language,
with Python becoming more and more popular, although the language itself changes over time.
Today, pseudo-code as Alg. 1 (direct-pi) may be simply copied and pasted into a window of an
AI program See this ChatGPT output. This is extremely helpful, and it may make interfacing
with a computer appear as effortless as flinging 4×108 pebbles on a modern laptop rather than
on the Monte Carlo beach. Nevertheless, the concept of effortless creation certainly remains a
mirage. In whichever way one goes about it, actual running the short example programs of this
course will be a powerful way to confront oneself with its subjects. As this has become so easy,
why not implement them all?

Run Nhits Estimate of π

1 3156 3.156
2 3150 3.150
3 3127 3.127
4 3171 3.171
5 3148 3.148

Table 1: Results of five runs of Alg. 1 (direct-pi) with N = 4000. Approximations of π are obtained
by shifting a decimal point.

Implementing Alg. 1 (direct-pi), not in a computer, but on the beach, the children record
the proportion of “hits”, that is, of the fraction of pebbles inside the circle (see Table 1.1.3, for

3

https://chat.openai.com/share/ef784109-16e0-41c0-9885-205f20d17072
https://www.theguardian.com/commentisfree/2024/jan/13/ai-weiwei-ai-art-threat-technology

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

N = 4000). Without knowing it, they have computed a two-dimensional integral:

Nhits

trials
=

1

N

N∑
i=1

Oi︸ ︷︷ ︸
sampling

≃ ⟨O⟩ =
∫ 1
−1 dx

∫ 1
−1 dy π(x, y)O(x, y)∫ 1

−1 dx
∫ 1
−1 dy π(x, y)︸ ︷︷ ︸

integration

. (4)

On the left of eq. (4), there is the “running average” of the random variable O, evaluated at the
samples (xi, yi). The probability distribution π(x, y) is absent, rather than being evaluated, it
is sampled. By virtue of the law of large numbers, this running average converges (in a way we
will need to discuss precisely, later) to the expectation (mean value) of O, expressed as a ratio
of two two-dimensional integrals. The same approach allows one to evaluate (that is, to sample)
high-dimensional integrals in physics and other domains, if only we can think of how to do the
sampling. What would happen in the limit N → ∞ is easy to grasp, but we will later pursue
the more relevant question what precisely we learn from 3156 hits for 4000 trials.

1.2 Direct sampling—discrete distributions

Sampling defines the Monte Carlo method (and some other fields, like machine learning), and
direct sampling is the first step on this journey. In this section, we treat the case of a discrete
distribution in a sample space Ω = {1, . . . ,K}, with non-uniform weights {π1, . . . , πK}. The
sampling is non-trivial already for moderate values of K, as we experience ourselves each week in
the “Saturday night problem”, when the sample 1 and its probability π1 correspond to studying
(this course), 2 corresponds to cleaning the house, 3 to getting some exercise, and so on. There
are only a few choices but, clearly, it takes us so long to decide what to do, after all.
The optimal way to go about sampling a finite distribution has not been known for a very

long time [3], but we will first treat the standard approaches, rejection sampling, and tower
sampling, which are interesting in their own right.

1.2.1 Rejection sampling

Rejection sampling is the simplest approach one can think of: place all the items into a big box
such that they do not overlap, then throw pebbles into the box and stop when one of them hits
an item. It helps to make the box rectangular, and to place the items side by side (see Alg. 2
(reject-finite)).

procedure reject-finite

πmax ← maxKk=1 πk
1 k ← nran (1,K)

Υ← ran(0, πmax)
if Υ > πk goto 1
output k
——

Algorithm 2: reject-finite. Sampling a finite distribution {π1, . . . , πK} with a rejection algorithm.

ho

Figure 2: Saturday night problem solved by Alg. 2 (reject-finite).

4

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

1.2.2 Tower sampling

In what we call “tower sampling”, the K probabilities are stacked onto each other, and all the
probabilities are added up as Π0 = 0, Π1 = π1, Π2 = π1 + π2, and so on. Then we throw a
uniform pebble ran(0,ΠK).

procedure tower-sample

input {π1, . . . , πK}
Π0 ← 0
for l = 1, . . . ,K: Πl ← Πl−1 + πl
Υ← ran(0,ΠK)

∗ find k with Πk−1 < Υ < Πk

output k
——

Algorithm 3: tower-sample. Tower sampling of a finite distribution {π1, . . . , πK} without rejections.
The search indicated in the line marked with a ∗ makes its complexity to be O (logK)
per sample, once we have constructed the tower, in O (K) steps.

Tower sampling can be applied to discrete distributions with a total numberK in the hundreds,
thousands, or even millions. It is used when the naive rejection method of Fig. 2 fails because
of too many rejections. Tower sampling becomes impracticable only when the probabilities
{π1, . . . , πK} can no longer be listed. This rejection-free method is not optimal, but easy to
implement and of theoretical interest.

Π0 = 0
study

chores

jog

k
activity

Πk−1

Πk

movie

go out

K
activity

ΠK

Figure 3: Saturday night problem solved by tower sampling.

1.2.3 Complexity of discrete sampling—Walker’s method

Suppose we have π1, . . . , πN , with N much larger than 1. What is the complexity of sampling
the distribution {π1, . . . , pN}? The tower method of Sec. ?? is of complexity O (logN), but
this is not optimal. An extremely useful algorithm called Walker’s method of aliases [3], proves
that the complexity of sampling an x ∼ π is O (1), that is, it is independent of N . In the
Saturday-night problems, if you had a billion 109 activities to choose from, it would take us only
O (1) operations to find out which one to choose. (There is an initialization step of complexity
O
(
109

)
, which limits the applicability of the method.) As illustrated in Fig. 4, we represent the

probabilities πi as “slabs”, then put these slabs into two buckets, one containing the small ones

5

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

and the other the large ones. Then we take a small one, and put a large one on top, then cut
off at the mean value. . . .

Figure 4: Walker’s algorithm. (a): Distribution {π1, . . . , πN} to be sampled. Each πi is represented by
a slab. The mean of the πi is shown. (b): Rearrangement of the slabs into a perfect
rectangle, from which the sampling is straightforward.

In a few weeks, we will implement discrete sampling for the Ising model, say, on a 1000×1000
lattice in two dimensions, where |Ω| = 21000000 = 9.9×10301029, where Walker’s method cannot
be used. But this is for a special choice of {π1, . . . , πN}.
Walker’s method, as discussed, samples one element, k, of {1, . . . , N}, with probability πk.

A related problem consists in sampling a subset of {1, . . . , N} (an element of the powerset of
{1, . . . , N}, where we chose each element k with probability πk. This can also be solved with
Walker’s method, but in a distorted way.

1.3 Direct sampling—continuous distributions

We now consider the sampling problem for continuous distributions, but start by approaching
the continuum limit from the aforementioned discretized problem. We discover a deep relation
between integration and sampling, and between the substitution of variables and what we call
a sample transformation.

1.3.1 Sample transformation—simple examples

0

2

0 1

π
(x

)

x

Figure 5: Tower sampling for a discretized version of π(x) = (γ + 1)xγ in the interval x ∈ (0, 1]. The
case γ = − 1

2 is shown).

We consider the continuum limit of tower sampling. As an example, let us sample random
numbers 0 < x < 1 distributed according to an algebraic function π(x) = (γ + 1)xγ (with
γ > −1) (see Fig. 5). A pebble in the tower must be identified with its corresponding x position.

6

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

In the continuum limit, we find

π(x) = (γ + 1)xγ for 0 < x < 1,

Π(x) =

∫ x

0
dx π(x′) = xγ+1 = ran(0, 1) ,

x = ran(0, 1)1/(γ+1) . (5)

The transformation method corresponds to a sample transformation: For the above algebraic
function, we can transform the integral over a flat distribution into the integral of the target
distribution: ∫ 1

0
dΥ

integral−−−−−−→
transform

const

∫ 1

0
dx xγ .

We now treat Υ (“Upsilon”) as a sample Υ = ran(0, 1), and it transforms as follows:

dΥ = const · dx xγ .

ran(0, 1) = Υ = const′ · xγ+1 + const′′.

Finally (checking that the bounds of ran(0, 1) correspond to x = 0 and x = 1), this results in

x = ran(0, 1)1/(γ+1) , (6)

in agreement with eq. (5).
As a second example of sample transformation, we consider exponentially distributed random

numbers, so that π(x) ∝ e−λx for x ≥ 0. We again write∫ 1

0
dΥ = const

∫ ∞

0
dx e−λx (7)

and see on the left-hand side of eq. (7), that Υ = ran(0, 1), so that

dΥ = const · dx e−λx,

ran(0, 1) = Υ = const′ · e−λx + const′′.

Checking the bounds x = 0 and x =∞, this leads to

− 1

λ
log ran(0, 1) = x. (8)

Each “negative logarithm of ran(0, 1)” will from now be recognized as an exponential random
number.

1.3.2 Sample transformation—Gaussian, multidimensional Gaussians

In our exploration of sample transformations, we move ahead to more complex, and physically
relevant, cases involving Gaussian random numbers x that are a staple in many fields of science.
Restricting ourselves to unit variance σ2 = 1, they are distributed as

π(x) =
1√
2π

exp

[
−x2

2

]
.

Subroutines for Gaussian random numbers are readily available, but let us look under the hood
of the corresponding algorithms. Gaussians again illustrate sample transformation.

7

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

To evaluate the error integral ∫ ∞

−∞

dx√
2π

e−x2/2 = 1, (9)

we recall that we should square eq. (9):[∫ ∞

−∞

dx√
2π

exp
(
−x2/2

)]2
=

∫ ∞

−∞

dx√
2π

e−x2/2

∫ ∞

−∞

dy√
2π

e−y2/2 (10)

=

∫ ∞

−∞

dx dy

2π
exp

[
−(x2 + y2)/2

]
, (11)

introduce polar coordinates (dx dy = rdr dϕ),

. . . =

∫ 2π

0

dϕ

2π

∫ ∞

0
r dr exp

(
−r2/2

)
,

and finally substitute r2/2 = Υ (r dr = dΥ)

. . . =

ϕ=ran(0,2π)︷ ︸︸ ︷∫ 2π

0

dϕ

2π︸ ︷︷ ︸
1

Υ=− log ran(0,1)︷ ︸︸ ︷∫ ∞

0
dΥ e−Υ︸ ︷︷ ︸
1

. (12)

Equation (12) famously implies eq. (9), but it also shows us the way to obtaining independent
Gaussian samples x and y. It suffices to sample the uniform distribution of ϕ and the exponential
distribution for Υ, as indicated, and then to transform everything back to have two independent
Gaussian random variables x and y (see Alg. 4 (gauss), the computation of sines and cosines
can be avoided [2, Sect. 1.2.5]).

procedure gauss

input σ
ϕ← ran(0, 2π)
Υ← −log ran(0, 1)

r ← σ
√
2Υ

x← rcos ϕ
y ← rsin ϕ
output {x, y}
——

Algorithm 4: gauss. Two independent Gaussian random numbers obtained by sample transformation.

As we just learned to sample the one-dimensional Gaussian integral, we can also sample the
d-dimensional Gaussian integral,

1 =

∫
. . .

∫
dx1 . . . dxd︸ ︷︷ ︸

dV

(
1√
2π

)d

exp

[
−1

2
(x21 + · · ·+ x2d)

]
, (13)

by running Alg. 4 (gauss) d/2 times. This obtains {x1, . . . , xd}. We now substitute

dx1 . . . dxd = rd−1 dr dΩ

8

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

to obtain:

1 =

(
1√
2π

)d

some radial distribution︷ ︸︸ ︷∫ ∞

0
dr rd−1 exp

(
−r2/2

) ∫
dΩ︸ ︷︷ ︸

uniform solid angle

. (14)

The {x1, . . . , xN} are samples, and so is r =
√
x21 + · · ·+ x2N , and so is the solid angle Ω 4. With

a little rearrangement of the radius, we either obtain uniformly distributed pebbles within the
unit d-dimensional hypersphere (Algorithm 5) or on its surface (Algorithm 6, see also Fig. 6).

procedure direct-sphere

Σ← 0
for k = 1, . . . , d:{

xk ← gauss(σ)
Σ← Σ+ x2k

Υ← ran(0, 1)1/d

for k = 1, . . . , d:{
xk ← Υxk/

√
Σ

output {x1, . . . , xd}
——

Algorithm 5: direct-sphere. Uniform random vector inside the d-dimensional unit sphere. The
output is independent of σ.

procedure direct-surface

σ ← 1/
√
d

Σ← 0
for k = 1, . . . , d:{

xk ← gauss(σ)
Σ← Σ+ x2k

for k = 1, . . . , d:{
xk ← xk/

√
Σ

output {x1, . . . , xd}
——

Algorithm 6: direct-surface. Random vector on the surface of the d-dimensional unit sphere. For
large d, Σ approaches one (see Fig. 6).

Figure 6: Random samples on the surface of the 3-dimensional sphere, from Alg. 6 (direct-surface)

4not to be confused with the sample space

9

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

The Gaussian is unique in combining into a d-dimensional isotropic integral. The transforma-
tion from eq. (13) to eq. (14), that is, Alg. 6 (direct-surface), was already known to Maxwell,
and was the key to his invention of the Maxwell distribution. Later generalized by Boltzmann,
it became the core of all of statistical mechanics. So, maybe it was worth looking under the
hood of the Gaussian algorithm.

1.3.3 Rejection method

We have a closer look at rejection sampling, after Sec. 1.2.1, but now for a continuum distribu-
tion. In preparation of Lecture 2 and following Ref. [4], we consider the Boltzmann distribution
of the anharmonic oscillator ∫ ∞

−∞
dx exp

(
−x2

2
− x4

4

)
︸ ︷︷ ︸

π24(x)

, (15)

that we need not normalize, and likewise for the Gaussian π2.

Figure 7: Naive and state-of-the-art algorithms to sample the Boltzmann distribution for the
anharmonic oscillator as uniformly distributed pebbles. (a): The naive algorithm introduces
a cutoff xmax and discards many pebbles. (b): Sampling pebbles (x, y) below the Gaussian
curve and then discarding those samples (x, y) above π24(x) is a winning strategy (see
eq. (17)

It is straightforward to enclose π24 in a rectangular box between x = ±xmax and to adapt
Alg. 2 (reject-finite) (see Fig. 7a). But this is wasteful of pebbles and potentially dangerous
because of the cutoff. The box in Fig. 7a is nothing but a bounding function that satisfies two
conditions: it can be sampled and it dominates the distribution of interest. For the anharmonic
oscillator of eq. (15), the Gaussian is an alternative bounding function, so that we can write:∫ ∞

−∞
dx exp

(
−x2

2
− x4

4

)
=

∫ ∞

−∞
dx exp

(
−x2

2

)
︸ ︷︷ ︸

sample

exp

(
−x4

4

)
︸ ︷︷ ︸
accept/reject

(16)

This suggests that to sample the anharmonic oscillator, we may sample a Gaussian, and then
accept the pebble x with probability exp

(
−x4/4

)
(see Alg. 7 (direct-anharm)). But to convince

us that this brashly introduced algorithm is actually correct, we sample the Gaussian in x, then
spread pebbles out evenly on the y-axis with a ran

(
0, exp

(
−x2/2

))
. We now have uniform

pebbles in the two-dimensional region below the Gaussian. It suffices to reject all pebbles above
π24, and this is what Alg. 7 (direct-anharm) implements.

10

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

To see how to proceed in general, we write:

∫ ∞

−∞
dx exp

(
−x2

2

)
︸ ︷︷ ︸

sample

exp

(
−x4

4

)
︸ ︷︷ ︸
accept/reject

=

∫ ∞

−∞
dx exp

(
−x2

2

)
︸ ︷︷ ︸

sample x

exp
(
−x2

2 −
x4

4

)
exp

(
−x2

2

)
︸ ︷︷ ︸
sample y, see Fig. 7b

. (17)

In conclusion, to sample a distribution, such as π24, we may divide by and multiply it with
another distribution, such as π2, under the two conditions that we know to sample the latter,
and that it is always larger than the former. Remarkably, neither distribution (neither π2 nor
π24) need be normalized. The procedure works if the proportion of pebbles we must discard is
not too large.

procedure direct-anharm

while True:
x← gauss(0, 1/

√
β)

y ← ran[0, π2(x)]
if y < π24(x) break

output x
——

Algorithm 7: direct-anharm. Sampling π24 through the rejection of Gaussians samples from Eq. (17).

1.4 Direct sampling: fundamental aspects

Many fundamental aspects of sampling already manifest themselves in the direct-sampling frame-
work, and then translate, mutatis mutandis, to the much more complicated Markov chains of
subsequent lectures. For example, the strong law of large numbers that we need to understand
for direct samples will turn into the famous ergodic theorem for Markov chains. We also discuss
importance sampling that permeates all of Monte Carlo and discuss the frequentist interpretation
of probabilities at the core of the method.

1.4.1 Laws of large numbers—importance sampling

To discuss the convergence of Markov chains, we consider a frankly difficult sampling problem,
the γ integral:

I(γ) =

∫ 1

0
dx xγ =

1

γ + 1
for γ > −1 (18)

(see [2, Sect. 1.4.2] for the full context). We attempt to compute the integral in a sample space
Ω[0,1], the unit interval between 0 and 1.

I(γ) =

∫ 1

0
dx xγ =

∫ 1

0
(1dx)︸ ︷︷ ︸

x=ran(0,1)

O︷︸︸︷
xγ (19)

As we discussed before, the random variable O has its own probability distribution:

π(O) = (α− 1)O−α, (20)

11

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

with α = 1 − 1/γ. Its mean value of the random variable O can be equivalently written with
π(O) or in the original sample space:

⟨O⟩ = (α− 1)

∫ ∞

1
dO OO−α =

∫ 1

0
dxxγ . (21)

The same holds for any higher moments.
After these preliminaries, let us now actually compute the γ integral with a running average

of a sum of uniform random numbers to the power of γ (see Algorithm 8). We compute the
integral I(γ) as the mean value of xγ , with x = ran(0, 1), and likewise “try” to compute the
error through the Gaussian error formula

Error
?
=

√
⟨O2⟩ − ⟨O⟩2
√
N

(22)

This is implemented in Alg. 8 (direct-gamma) (which we should modify to output the Gaussian
error). The calculation works well for large enough γ ≳ −0.5 but seems to fail for −1 < γ < −0.5.

procedure direct-gamma

Σ← 0
for i = 1, . . . , N :{

xi ← ran(0, 1)
Σ← Σ+ xγi (running average: Σ/i)

output Σ/N
——

Algorithm 8: direct-gamma. Computing the γ-integral in eq. (18) by direct sampling.

γ Σ/N ± Error 1/(γ + 1)

2.0 0.334± 0.003 0.333 . . .
1.0 0.501± 0.003 0.5
0.0 1.000± 0.000 1
−0.2 1.249± 0.003 1.25
−0.4 1.682± 0.014 1.666 . . .
−0.8 3.959± 0.110 5.0

Table 2: Output of Alg. 8 (direct-gamma) for various values of γ (N = 10 000, standard empirical
error shown). The computation for γ = −0.8 is in trouble.

γ ζ Σ/N ζ+1
γ+1

−0.4 0.0 1.685± 0.017 1.66
−0.6 −0.4 1.495± 0.008 1.5
−0.7 −0.6 1.331± 0.004 1.33
−0.8 −0.7 1.508± 0.008 1.5

Table 3: Output of Alg. 9 (direct-gamma-zeta) with N = 10 000. All pairs {γ, ζ} satisfy 2γ − ζ > −1
so that

〈
O2

〉
<∞.

The problem has to do that for γ < −1
2 , the variance of O is infinite, so that the Gaussian error

analysis no longer applies. A modified program, Alg. 9 (direct-gamma-zeta), uses importance

12

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

Figure 8: Running average of Alg. 8 (direct-gamma) for γ = −0.8. The strong law of large numbers
guarantees that Σi/i converges towards 5, that is, that for any ϵ, there is an iϵ such that
|Σj/j − 5| < ϵ∀j > iϵ.

sampling to reduce the non-Gaussian fluctuations. It computes, not I(γ), but I(γ)/I(ζ):

Σ/N =
1

N

N∑
i=1

Oi ≃ ⟨O⟩ =
∫ 1
0 dx π(x)O(x)∫ 1

0 dx π(x)

=

∫ 1
0 dx xζxγ−ζ∫ 1

0 dx xζ
=

∫ 1
0 dx xγ∫ 1
0 dx xζ

=
I(γ)

I(ζ)
=

ζ + 1

γ + 1
. (23)

(see [2, eq. 1.74] for details).

procedure direct-gamma-zeta

Σ← 0
for i = 1, . . . , N :{

xi ← ran(0, 1)1/(ζ+1)
(π(xi) ∝ xζ

i , see eq. (6))

Σ← Σ+ xγ−ζ
i

output Σ/N
——

Algorithm 9: direct-gamma-zeta. Using importance sampling to compute the γ-integral (see
eq. (23)).

1.4.2 What we learn about π by throwing pebbles (not treated in week 1)

What can we learn (about π) by throwing pebbles? This question about the role and the value
of statistics, in other contexts, is hotly debated. Fundamentally, we may suppose
Our first Monte Carlo simulation, on the Monte Carlo beach, generated 3156 hits for 4000 trials

(see Table 1.1.3). We shall now see what this result tells us about π, at the most fundamental
level of understanding. Hits and nonhits were generated by the Bernoulli distribution:

ξi =

{
1 with probability θ

0 with probability (1− θ)
, (24)

but the value of π/4 = θ = ⟨ξi⟩ is supposed unknown. Instead of the original variables ξi, we
consider random variables ηi shifted by this unknown mean value:

ηi = ξi − θ.

13

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford Lectures)

The shifted random variables ηi now have zero mean and the same variance as the original
variables ξi:

⟨ηi⟩ = 0, Var ηi = Var ξi = θ(1− θ) ≤ 1

4
.

Without invoking the limit N →∞, we can use the Chebyshev inequality to obtain an interval
around zero containing at least 68% of the probability:{

with 68%
probability

}
:

∣∣∣∣∣ 1N
N∑
i=1

ηi

∣∣∣∣∣︸ ︷︷ ︸
see eq. (??)

1.77σ√
N

<
1.77

2
√
4000

= 0.014.

This has implications for the difference between our experimental result, 0.789, and the math-
ematical constant π. The difference between the two, with more than 68% chance, is smaller
than 0.014:

π

4
= 0.789± 0.014⇔ π = 3.156± 0.056, (25)

where the value 0.056 is an upper bound for the 68% confidence interval that in physics is called
an error bar. The quite abstract reasoning leading from eq. (24) to eq. (25)—in other words from
the experimental result 3156 to the estimate of π with an error bar—is extremely powerful, and
not always well understood. To derive the error bar, we did not use the central limit theorem,
but the more general Chebyshev inequality. We also used an upper bound for the variance.
With these precautions we arrived at the following result. We know with certainty that among
an infinite number of beach parties, at which participants would play the same game of 4000
as we described in Sec. 1.1 and which would yield Monte Carlo results analogous to ours, more
than 68% would hold the mathematical value of π inside their error bars. In arriving at this
result, we did not treat the number π as a random variable—that would be nonsense, because
π is a mathematical constant.

References

[1] L. Wasserman, All of Statistics. New York: Springer, 2004.

[2] W. Krauth, Statistical Mechanics: Algorithms and Computations. Oxford University Press,
2006.

[3] A. J. Walker, “An Efficient Method for Generating Discrete Random Variables with General
Distributions,” ACM Trans. Math. Softw., vol. 3, no. 3, pp. 253–256, 1977.

[4] G. Tartero and W. Krauth, “Concepts in Monte Carlo sampling,” American Journal of
Physics, vol. 92, no. 1, p. 65–77, 2024.

14

	Direct sampling
	Children on the beach in Monaco
	Sample spaces and random variables
	Pseudocode, pseudo-random numbers
	From Punch-card coding to Python and to ChatGPT

	Direct sampling—discrete distributions
	Rejection sampling
	Tower sampling
	Complexity of discrete sampling—Walker's method

	Direct sampling—continuous distributions
	Sample transformation—simple examples
	Sample transformation—Gaussian, multidimensional Gaussians
	Rejection method

	Direct sampling: fundamental aspects
	Laws of large numbers—importance sampling
	What we learn about by throwing pebbles (not treated in week 1)

