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Metropolis et al (1953) (1/4)
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Equation of State Calculations by Fast Computing Machines
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neral method, suitable for fast computing machines, for mvestlgatmg such propertles agfequations of |

€
ls:gggior substances consisting of interacting individual molecules js de
modified Monte Carlo integration over configuration spacefl

system have been obtained on the Los Alamos MANTAC and"ar¢ prescrted Here. -
to the free volume equation of state and to a four-term virial coefficient expans:on

Département
de Physique
Ecole normale
supérieure



Metropolis et al (1953) (2/4)
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Metropolis et al (1953) (3/4)

1092 METROPOLIS,

[N

s RS A.. a..
distinguished by primes, For example, A; is given
schematically by the diagram

A3n3: A

and mathematically as follows: if we define f(r,) by
flrijy=1
flriy)=0

ROSENBLUTH,

it rg<d,
it ry>d,
then

1
Ay :=*f' . -frh‘ldxzdmsdy.dy,dya(/mfnfu).
wtd!

The schematics for the remaining integrals are indicated
in Fig. 6.
The Fugﬂicieqts Asz Ay and Ay wrererca.h:’u!ated

ROSENBLUTH, TELLER, AND TELLER

were put down at random, subject to fio=fa=fa
= fis=1. The number of trials for which fis= 1, divided
by the total number of trials, is just As 5.

The data on A4 is quite reliable. We obtained

VI. CONCLUSION

The method of Monte Carlo integrations over con-
figuration space seems to be a feasible approach to
statistical mechanical problems which are as yet not
analytically soluble. At least for a single-phase system
a sample of several hundred particles seems sufficient.
In the case of two-dimensional rigid spheres, runs made
with 56 particles and with 224 particles agreed within
statistical error. For a computing time of a few hours
with presently available electronic computers, it seems
possible to obtain the pressure for a given volume and
temperature to an accuracy of a few percent.

In the case of two-dimensional rigid spheres our re-
sults are in agreement with the free volume approxima-
tion for A/ 40 < lSandgui s

2 5. Wilhere s _no_indication of a_phase]

jLransition,
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Alder-Wainwright (1962)

PHYSICAL REVIEW VOLUME 127, NUMBER 2
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The study of a two-dimensional system consisting of 870 hard-disk
region has shown that the isotherm has a van der Waals-like loop. The

articles in the phase-transition
_nsity change across the transition

is about 4% and the corresponding entropy change is small.

STUDY has lJeLn made of a two-dimensional
éﬂs&;’mm g of 870 hard-disk particles,
Slmu]lancous mollons Of the particles have been calcu-

M™Clectronic computer as described

prevmusly ! The dlSkS were again placed in a periodi-
cally repeated rectangular array. The computer program

interchanges it was not possible to average the two
branches,

Two-dimensional systems were then studied, since
the number of particles required to form clusters of
particles of one phase of any given diameter is less than
in three dimensions. Thus, an 870 hard-disk system is
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(Peierls, Landau 1930s)
but they can turn solid (Alder & Wainwright, 1962).

@ Nature of transition disputed for decades.

@ Generic 2D systems cannot crystallize
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Kosterlitz—Thouless (1973)

Ordering, metastability and phase transitions in
two-dimensional systems

J M Kosterlitz and D J Thouless

versity of Birmingham, Birmingham B152TT, UK
Received 13 Nov :mbr

1. Introduction

Peierls (19351 has argued that thermal motion of long-wavelength phonons will destroy

1he lon e order of a Iv«u dlmrnmonal solld m lhe sense that [he mean suare

size of the sys!em and |he Brdgg peaks of thc d:ﬂ'ras.lmn pattern formed by the system
are broad instead of sharp. The absence of long-range order of this simple form has been
shown by Mermin (1968) using rigorous inequalities. Similar arguments can be used to
show that there is no spontaneous magnetization in a two-dimensional magnet with
spins with more than one degree of freedom (Mermin and Wagner 1966) and that the
cxpcctalmn \raluc of the superfluid order parameter in a two-dimensional Bose fluid




Possible phases in two dimensions
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Phase  positional order orientational order

solid algebraic long-range
hexatic short-range algebraic
liquid short-range short-range B S



Detailed balance - global balance

g b
0 0 N/
f== a ¢ f= a ¢ f—> a—>c
7N\ V2R /7 N\
e d e d e d
global balance detailed balance maximal global balance

e flow into a = Boltzmann weight 7(a) (global balance
condition):

S 2D k)p(k — 2) = 70(a)
k

flow into aEk F(k—a)
o flow F(a — b) = flow F(b — a) (detailed balance condition):

w(b)pb—a) = m(a)p(a— b) g
— — IT1 cemmae
flow from b to a F(b—a)  F(a—b) flow from a to b EI@ Ecolenormae
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Detailed balance - global balance
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flow into a >, F(k—a)
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1d hard spheres with periodic boundary conditions

L

(a) !

o N spheres, diameter o, interval L, m(a) =1 Va
@ N spheres, diameter 0, interval L — No.

e Equivalent if local moves (no change of order).
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Reversible Metropolis algorithm, 1d (detailed balance)

20 0 00 00 (

-1 i i+1
@ Local Metropolis: x; — x; + € (reject if overlap, € > 0)
@ Detailed balance:
map(a — b) = mpp(b — a)
Ry
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Reversible Metropolis algorithm, 1d (detailed balance)

@ Local Metropolis: x; — x; + € (reject if overlap, € > 0)

@ Detailed balance:
map(a — b) = mpp(b — a)
G
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Reversible Metropolis algorithm, 1d (global balance)

@ Reversible Metropolis: x; — x; & € (reject if overlap, € > 0)

@ Global balance:

f;eV:QNZ (AF+ R + A + R =

—2for any €

o NB: Af () + R; (¢) =1 also A; (¢) + R (e) = 1.
m, e
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global balance)

Sequential Metropolis algorithm, 1

-1 i i+1

@ Sequential Metropolis: Update 0, then 1, then 2, ...

@ Global balance:

Ft = S (AF R+ A7 +R)) =1

1088 METROPOLIS, ROSENBLUTH, ROSENBLUTH, TELLER, AND TELLER

Our method in this respect is similar to the cell configurations with a probability exp(—E/kT) and
method except that our cells contain several hundred weight them evenly.
particles instead of one. One would think that such a This we do as follows : We place the
sample would be quite adequate for describing any one- ion._fo i
phase system. We do find, however, that in two-phase
systems the surface between the phases makes quite a
nerturhation. Also. statistical fluctuations mav he —

V particles in any
jce. Then
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global balance)

Sequential Metropolis algorithm, 1

-1 i i+1
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Forward Metropolis algorithm, 1d (global balance)

e Forward Metropolis: x; — x; + € (reject if overlap, € > 0)
°

Fom = S (A AR =1,

=1 for any ¢
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Lifted Forward Metropolis algorithm, 1d (global balance)

Move i forward until it is rejected by i + 1.

@ Then move i + 1 forward until it is rejected, etc.

NB: 1 time step: 1 particle move OR 1 lifting move.

Infinitesimal € — 0 version: Event-chain algorithm.
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Synopsis (Irreversible Markov chains in 1d)

Algorithm mixing discrete analogue
Rev. Metropolis N3log N Symmetric SEP
Forward Metropolis, Lifted (c0)  N°/2 TASEP

Event-chain, Lifted (restarts) N2log N lifted TASEP

e For Symmetric SEP mixing cf Lacoin (2014)

e For TASEP mixing cf Baik & Liu (2016)

@ All others cf Kapfer & Krauth (2017)

@ Mixing time for event-chain: Lei & Krauth (2018)

NB: All algorithms converge towards equilibrium
NNB: rigorous results, numerical results

Fx:(l Département

oo s de Physique
Ecol l
M) (4] fole romate

périeure



Hard-disk configuration

2 .
@ 1024 hard disks R

| de Physique

@ Bernard, Krauth (PRL 2011) UG



equation of state

n
0.72 0.715 0.71 0.705 0.7

9.2 A

9.195

9.19 1

9.185

BP(20)

9.18 1

9.175 A

9.17 1

1.1 1.11 1.12

@ lst-order liquid—hexatic (Bernard Lgfckrauth PRL (2011)).

e Many confirmations (Engel, Anderson, Glotzer, Isobe, Bernagd, s
Krauth, PRE Milestone (2013)). B fotrom




Soft disks

e Soft disks: V o< (o/r)".

" soft disk: |
a) N=-85k — -
; N = 25%:
6 x X 3 liquid &
liquid hexatic &
8 o E solid &
i © Yukawa --—- ]
solid 3
s
r-]
c 16 E 5
+ ]
hex BN
o
a
64 |- @ o} A =
coex
1024 | B
- T
-0.02 0.00 0.02 E 0.04
0~ Ppey &= djq

o Kapfer & Krauth (PRL 2015).

o Two melting scenarios depending on softness n of potentlaI@@ s
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Factorized Metropolis algorithm (1/2)

"Metropolis" paradigm "Beyond-Metropolis" paradigm

(Metropolis et al, 1953) Michel , Kapfer & Krauth, 2014]
Detailed balance
vanishing probability flows
Metropolis algorithm
energy driven
Rejections
finite random moves

Global balance
steady-state probability flows

Factorized Metropolis algorithm
consensus driven

Liftings
infinitesimal persistent moves

@ Metropolis algorithm

Met(

p ¢ (a— b) = min 1,Hexp (—BAU; )

i<j
e Factorized Metropolis algorithm (Michel, Kapfer, Krauth 2014)

pFe<t(a — b) Hmm [1,exp (—BAU; )]
i<j

)’x'( Département
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Factorized Metropolis algorithm (2/2)

o Total system potential

U({st,...,sn}) = Y Uul{si:i € Iu}).

MeQ

@ M = (I, Ty) factor,lpy: index set, Ty: factor type.

o Factorized Metropolis algorithm:

pFact(C =)= H min [1,exp (—8AUNM)],
M

@ Consensus:

XFact(c 5 ) = /\ Xm(em — cy)-
MeQ
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Event-chain algorithm with factor fields (1/4)

@ Hard-sphere event-chain algorithm (standard version):

90 —0-06-00(

i-1 i i+1
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Event-chain algorithm with factor fields (2/4)

@ Hard-sphere event-chain algorithm (factor field version):

Factor field
i (i-1)

Factor field
i (i+1)
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Event-chain algorithm with factor fields (3/4)

@ Hard-sphere event-chain algorithm (variable factor field):

Factor field Factor field
i (i+1) i (i-1)
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Event-chain algorithm with factor fields (4/4)

@ Scaling of auto-correlation times (optimal factor field):

Metropolis

7 (ox sweeps)
>
>

o
.
.
ot
o

102}

ECMC-ff no-restart

10°
102 104

N (particle number)

o Algebraic correlations of event steps u € {—1,1} with event
time s: (u(0)u(s)) ~ s=2/3, P s
o Lei, Krauth, Maggs (PRE, 2019). B e



All-Atom Coulomb problem (1/5)

: :
ST
1 .7\./’
./‘\-'_‘ S

@ 3D water model: bond, bending, Lennard-Jones, Coulomb
(SPC/Fw). m e



All-Atom Coulomb problem (2/5)

. :
«\/\..}

VJ.;,'YV
M~ A

@ 3D water model: bond, bending, Lennard-Jones, Coulomb
(SPC/Fw).

@ Factors and types. B, e



All-Atom Coulomb problem (3/5)

./'\-')L

>

— .

./\b
-\.)
. Vel

e Factor M = (Iy, Tm): |Im| = 6, two molecules. Ty =
‘Coulomb’. P B
E



All-Atom Coulomb problem (4/5)

/‘\-'}‘

LAV

@ Water model: bond, bending, Lennard-Jones, Coulomb
(SPC/Fw). m e

./\6
.\c/
i



All-Atom Coulomb problem (5/5)

>
'—-.
e Complexity O(1) per ‘lifting’ move.

@ This is the cell-veto algorithm (Kapfer, Krauth (2016)). .
e Thinning, Walker (1977). ¥, fgnxznnimls

(\b
&
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ECMC for all-atom water simulations

e ECMC: Event-driven, approximation-free, canonical.

@ here oxygen—oxygen distance for 32 water molecules.

Lo reversible MC
----- ECMC (inside-first)
< 08
2
=
g 0.6
g
= 04
o}
o)
=
T 02
0.0

2 3 4 5 6 7 8
oxygen-oxygen separation [roo| [A]
il e
U{ﬂ Ecole normale
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See: Faulkner, Qin, Maggs, Krauth (2018).



Lifting schemes and performance (1/3)

o Lifting schemes for factors M with Iyy > 2 (here, Iy = 4)

®) o,,un O un  © (@

PAL

022 Unt] 1025 Und] ~1/Jr[! ~ 1/
ratio

inside-first. ontside-first

I' -I :léDPir:'lEmeH[
ok e Physique
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Lifting schemes and performance (2/3)

e Events / Angstrom in SPC/Fw water

event rates [A1]

——  (Qcoulomb)
(Qbona)

—— (Quy)

——

Quending)

e ——— % & 'y
16 32 64 128 256
Nu,0

&,
e}
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Lifting schemes and performance (3/3)

o Local moves with far-away mediators

0 ratio outside-first inside-first
0
log(Ni,0) —— .
log(Vy -« ! -
<« los(io) (Vo) Nitso=12
1 — Nu,o=256
=
a0
2 e
S
S
U
10!
10° 10t 10° 10t 10° 10t

Ir[ [A]

See: Faulkner, Qin, Maggs, Krauth (2018).
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ECMC - JeLLyFysh (1/2)

Learn Git and GitHub without any code!

Using the Hello World guide, you'll start a branch, write comments, and open a pull request.

© Code Issues 1 Pull requests 0 Projects 1 Wiki Security Insights Settings

JeLLyFysh - a Python application for all-atom event-chain Monte Carlo. Version 1.0 (August 1st, 2019) Ea

Manage topics

@2 commits ¥ 1 branch © 0 releases 21 contributor s GPL:3.0
Branch:master> | New pull request Createnewfile  Uploadfiles ~ Find File
T Wernerkrauth versiont 0 Latost commit 4453449 on Aug 1
msc Version!.0 last month
= unittests Versiont.0 month
B -giignore Version1.0 last month
B AUTHORS.md Version1.0 last month
£ CODE_OF_CONDUCT.md Version1.0 last month
B CONTRIBUTING.md Version1.0 last month
[ EXTERNAL_DEPENDENCIES.md Version1.0 last month

o cf Héllmer, Qin, Faulkner, Maggs & Krauth:
e see arXiv:1907.12502 (2019)

o 'JeLLyFysh' Open-source Python application i
. . . Ecole normale
for irreversible Markov chains i



ECMC - JeLLyFysh (2/2)

{(o—a—

(aa—3 t4 e L L
as t.2

—&—k -
—

S b E

‘ : o
| (e
&5 —
@

s —
(s i}

o cf Hollmer, Qin, Faulkner, Maggs & Krauth:
o see arXiv:1907.12502 (2019)

o 'JeLLyFysh' Open-source Python application
for irreversible Markov chains

trash (candidate event)
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Conclusions

e From hard disks to SPC/Fw water all-atom
@ Detailed balance - global balance

e Sampling exp (—8U) without knowing U
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Conclusions

e From hard disks to SPC/Fw water all-atom
o Equilibrium - steady state

o Consensus replacing force calculations
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Conclusions

e From hard disks to SPC/Fw water all-atom
@ Equilibrium - steady state (indistinguishable from equilibrium)

e Factors & factorized Metropolis algorithm
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