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‘Metropolis algorithm’



Metropolis et al. (1953) (3/5)

NB: Equation of state: Pressure as a function of Volume.

NNB: Pressure: (Rift-Elimination probability)/(rift volume).

NNNB: Infinite Pressure ≡ Packing problems, energy minimization.



Markov chain, transition matrix

Sample space Ω ← disks in a box.
Markov chain ← Moves: Sequence of random variables
(X0 ∼ π{0},X1 ∼ π{1},X2 ∼ π{2} . . . )
Xt+1 depends on Xt through a transition matrix P .
A priori probability→ split matrix: Pij = AijPij for i ̸= j
A ⇔ a priori probability; P ⇔ filter
Examples: Metropolis filter, heatbath filter.
Monte Carlo rejections → Pii ⇔ (filter) rejection probability.
NB: Modern MCMC algorithms often have no rejections.

NB: Double role of P :
1 For probability distributions: π{t+1} = π{t}P (with

π{t}, π{t+1} non-explicit objects, often even for t →∞).
2 For samples: Pij : explicit probability to move from i to j .



Irreducibility

P irreducible ⇔ any i can be reached from any j .
π{0}: Initial probability (explicit, user-supplied). Often
concentrated on a single sample x ∈ Ω.
P irreducible ⇒ unique stationary distribution π with

πi =
∑
j∈Ω

πjPji ∀i ∈ Ω.

NB: Transition matrix P is stochastic, that is,
∑

j Pij = 1.



Irreducibility of hard-disk problem

Is the Metropolis algorithm for hard disks irreducible?
Rather not ...

Hoellmer et al. (2022), following Böröczky (1964)



Ergodic theorem

P irreducible ⇒ π unique, but maybe π{t} ̸→ π for t →∞.
P irreducible ⇒ Ergodic theorem (E (O) :=

∑
i∈ΩOiπi ):

Pπ{0}

[
lim
t→∞

1
t

∑
it

O(it) = E (O)

]
= 1

(Strong law of large numbers, applied to running average)

Time t
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‘
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‘Base’ and ‘tip’ configurations

N = 224 in square box (NB: 224 = 16× 14) with 16
√

3/2 ≃ 14.

Ψ6 =
1
N

∑
l

1
nbr(l)

nbr(l)∑
j=1

exp (6iϕlj) ,

NB: E (Ψ6) = (0, 0) (Ergodic theorem as a diagnostic tool).
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NB: Three hours on 2022 CPU (best MCMC algorithm) to equilibrate 870 disks in a box.



Probability flows—Global-balance condition

Global-balance condition:

πi =
∑
j∈Ω

flow j → i︷︸︸︷
πjPji︸︷︷︸
Fji

∀i ∈ Ω.

(NB: This is the steady state of π
{t+1}
i =

∑
j∈Ω π

{t}
j Pji )

Global-balance condition (second formulation):

πi =

flows entering i︷ ︸︸ ︷∑
j∈Ω
Fji ∀i ∈ Ω,

flows exiting i︷ ︸︸ ︷∑
k∈Ω
Fik =

flows entering i︷ ︸︸ ︷∑
j∈Ω
Fji ∀i ∈ Ω,

(NB: stochasticity condition used
∑

k∈Ω Pik = 1).



Reversibility—Detailed-balance condition

Reversible P satisfies the ‘detailed-balance’ condition:

flow i → j︷︸︸︷
πiPij︸︷︷︸
Fij

=

flow j → i︷︸︸︷
πjPji︸︷︷︸
Fji

∀i , j ∈ Ω.

General P satisfies the ‘global-balance’ condition

πi =
∑
j∈Ω

πjPji ∀i ∈ Ω.

Detailed balance implies global balance.
Global balance:

flows exiting i︷ ︸︸ ︷∑
k∈Ω
Fik =

flows entering i︷ ︸︸ ︷∑
j∈Ω
Fji ∀i ∈ Ω,



Spectrum of reversible transition matrix

Reversible P :
πiPij = πjPji ∀i , j ∈ Ω.

Reversible P : Aij = π
1/2
i Pijπ

−1/2
j is symmetric.

Reversible P :∑
j∈Ω

π
1/2
i Pijπ

−1/2
j︸ ︷︷ ︸

Aij

xj = λxi ⇔
∑
j∈Ω

Pij

[
π
−1/2
j xj

]
= λ

[
π
−1/2
i xi

]
.

P and A have same eigenvalues.
A symmetric: (Spectral theorem): All eigenvalues real, can
expand on eigenvectors.
Irreducible, aperiodic: Single eigenvalue with λ = 1, all others
smaller in absolute value.



Metropolis algorithm / reversibility

1 The Metropolis et al. (1953) algorithm is reversible.

a a (+ move) b

a a (+ move) b

2 The algorithm used by Metropolis et al. (1953) is
non-reversible.



Total variation distance, mixing time

Total variation distance:

||π{t} − π||TV = max
A⊂Ω
|π{t}(A)− π(A)| = 1

2

∑
i∈Ω
|π{t}

i − πi |.

Distance:
d(t) = max

π{0}
||π{t}(π{0})− π||TV

Mixing time:

tmix(ϵ) = min{t : d(t) ≤ ϵ} (ϵ <
1
2
)

NB: ‘max
π{0} ’ ≡ ‘worst initial distribution π{0}’



Mixing time (poor man’s)

Metropolis algorithm on a single CPU: ≃ 1010 moves/hour
1 sweep ≃ 106 moves
109 sweeps ≃ 11.4 years.



Conductance (bottleneck ratio)

Φ ≡ min
S⊂Ω,πS≤ 1

2

FS→S

πS
= min

S⊂Ω,πS≤ 1
2

∑
i∈S ,j ̸∈S πiPij

πS
.

Reversible Markov chains:

1
Φ
≤ τcorr ≤

8
Φ2

(‘≤’: Sinclair & Jerrum (1986), Lemma (3.3))
Arbitrary Markov chain (see Chen et al. (1999)):

1
4Φ
≤ A ≤ 20

Φ2 ,

(set time: Expectation of maxS (tS × πS) from equilibrium)
NB: One bottleneck, not many. Lower and upper bound.



Lifting (Chen et al. (1999)) (1/2)

Markov chain Π ⇔ Lifted Markov chain Π̂

Ω ∋ v (sample space) ⇔ Ω̂ ∋ i (lifted sample space)
P (transition matrix) ⇔ P̂ (lifted transition matrix)
πv (stationary probability) ⇔ π̂i

Condition 1: sample space is copied (‘lifted’), π preserved

πv = π̂
[
f −1(v)

]
=

∑
i∈f −1(v)

π̂i ,

Condition 2: flows are preserved

πvPvu︸ ︷︷ ︸
collapsed flow

=
∑

i∈f −1(v),j∈f −1(u)

lifted flow︷︸︸︷
π̂i P̂ij .

Usually: Ω̂ = Ω× L, with L a set of lifting variables σ



Lifting (Chen et al. (1999)) (2/2)

Required: Mapping from Ω̂ (lifted sample space) to Ω that
preserves stationary probability distribution.
Required: Lifted transition matrix P̂ that preserves flow.
Optional: Ω̂ = Ω× L (with L: set of lifting variables).
Optional:

π̂(u, σ)

π(u)
=

π̂(v , σ)

π(v)
∀ u, v ∈ Ω; ∀ σ ∈ L. (1)

There are many liftings P̂ for a given lifted sample space Ω̂.
Liftings are popular for transfering parts of the moves into the
sample space.
Lifting do not increase conductance.



Metropolis algorithm on path graph (1/3)

Sample space = path graph Ω = {1, . . . , n}.
Phantom vertices and edges.

Metropolis algorithm (NB: Pij = AijPij for i ̸= j):
1 Move set L = {+,−}.
2 Flat a priori probability A: → σ = choice(L).
3 Metropolis filter: Accept with probability min(1, πj/πi ).

Reject: Don’t move.



Metropolis algorithm on path graph (2/3)

Detailed balance:
πiPij︸︷︷︸
Fij

= πjPji︸︷︷︸
Fji

Metropolis algorithm:

Fij =
1
2 min (πi , πj)⇔ Pij =

1
2 min (1, πj/πi )

Metropolis filter (NB: Pij = AijPij):

Pij = min (1, πj/πi )



Metropolis algorithm on path graph (3/3)

Global balance (πi =
∑

j πjPji =
∑

j Fji ):



Lifting on the path graph (1/2)
General probability distribution π = (π1, . . . , πn)

‘Lifted’ sample space Ω̂ = {1, . . . , n} × {+,−} :

‘Lifted’ non-reversible Markov chain Ω̂ = Ω× {−,+}:

Diaconis et al. (2000) ‘



Lifting on the path graph (2/2)

‘Lifted’ non-reversible Markov chain: NB:‘ only Transport treated

NB: The 1
2 ⇔ π̂i ,σ = 1

2πi



1d hard spheres 1/2

N spheres, with a sample space Ω, and a move space L.
Metropolis algorithm samples {−,+} × {1, . . . ,N} at each
time step.

Many choices for non-reversible liftings:
Sequential Ω̂ = Ω× {1, . . . ,N}: Move one disk after the other.

Forward Ω̂ = Ω× {(−),+}: Move only in forward direction.
Particle-lifted forward Ω̂ = Ω× {1, . . . ,N} × {(−),+}: Always

move the same disk forward, until it is blocked...



1d hard spheres 2/2
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Algorithm mixing discrete analogue
Rev. Metropolis N3 logN Symmetric SEP
Forward Metropolis, Lifted (∞) N5/2 TASEP
Event-chain, Lifted (restarts) N2 logN lifted TASEP

Kapfer—Krauth (2017)



Hard disks: event-chain Monte Carlo (ECMC)

Bernard, Krauth, Wilson (2009).
Michel, Kapfer, Krauth (2014) (smooth potentials).
Many variants.



ECMC and the hard-disk model

109 sweeps ≡ 11.4 years (Metropolis, LMC, MPMC)
106 sweeps ≡ 4.2 days (Event-chain Monte Carlo)



Synopsis large hard-disk system

Li et al. (2022)
NB: Pressures are required precisely for further analysis.



Hard disks at infinite pressure 1/3

Infinite-pressure configuration (packing)



Hard disks at infinite pressure 2/3

Crystal: Positional long-range order



Hard disks at infinite pressure 3/3

Crystal: Orientational long-range order



No crystal at finite pressure 1/2

Classic paper on crystallization.
No crystal in two dimensions at finite pressure.



No crystal at finite pressure 2/2

No crystal in two dimensions at finite pressure.
Displacement of center box T ≳ log (N).
Specific to (two-dimensional) hard disks.



Kosterlitz–Thouless (1973)



Possible phases for hard disks

density η = 0.48 η = 0.72

Phase positional order orientational order
crystal long-range long-range 1

solid algebraic long-range (NB: phase not proven to exist)

hexatic short-range algebraic (NB: phase not proven to exist)

liquid short-range short-range 2

1Feyes (1940), only at P = ∞ (Peierls 1935, Richthammer 2016)
2Exists at small P (Lebowitz–Penrose 1964)



Phase diagram for hard disks

Phase positional order orientational order
solid algebraic long-range
hexatic short-range algebraic
liquid short-range short-range

Hexatic phase exists.

Liquid–hexatic transition of first order.

Hexatic–solid transition of Kosterlitz–Thouless type.



Remarkable results, big & small open problems

Remarkable results:
D. B. Wilson (1999): Coupling-from-the-past for hard spheres.
Kannan, Mahoney, Montenegro (2003): Switcheroo hard-disk
algorithm with proven O (N logN) mixing times.
Helmuth, Perkins, Petti (2021): Proof that ‘algorithm
converges fast’ =⇒ ‘particle system is fluid’.
Richthammer (2016): Lone star theorem at high density.

Big & small open problems:
Existence of crystal at finite pressure in any dimension > 2.
Existence of solid at finite pressure in dimension 2.
‘Decent’ MCMC algorithm for hard disks at high density.
Inner workings of lifted Markov chains.


