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eneral method, suitable for fast computing machines, for investigating such properties aslealuations of
stateffor substances consisting of interacting individual molecules is described. The method Col 0
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere

system have been os Alamos MANTAC and are presented here. These results are compared
to the free volum and to a four-term virial coefficient expansion.

@ NB: Equation of state: Pressure as a function of Volume.
@ NNB: Pressure: (Rift-Elimination probability)/(rift volume).
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Markov chain, transition matrix

@ Sample space € + disks in a box.
@ Markov chain < Moves: Sequence of random variables
(Xo ~ 0 Xy ~ 71 X ~ 712 )
Xia1 depends on X; through a transition matrix P.
@ A priori probability— split matrix: P;; = Aj;Pj; for i # j
A & a priori probability; P < filter
Examples: Metropolis filter, heatbath filter.
e Monte Carlo rejections — Pj; < (filter) rejection probability.
NB: Modern MCMC algorithms often have no rejections.
NB: Double role of P:
© For probability distributions: 7{tt1} = 7{t} p (with
it p{t+1} non-explicit objects, often even for t — o).
@ For samples: Pj: explicit probability to move from i to j.
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Irreducibility

@ P irreducible < any i can be reached from any ;.
o 710} Initial probability (explicit, user-supplied). Often
concentrated on a single sample x € Q.

@ P irreducible = unique stationary distribution 7 with

T = ZWJPJ‘; Vi e Q.
JjeQ

NB: Transition matrix P is stochastic, that is, Zj P =1.
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Irreducibility of hard-disk problem

Is the Metropolis algorithm for hard disks irreducible?
Rather not ...
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Hoellmer et al. (2022), following Bdréczky (1964)



Ergodic theorem

e P irreducible = 7 unique, but maybe 7t} 4 7 for t — 0.
@ P irreducible = Ergodic theorem (E (O) := ) :.q Ojm;):

o1 .
Pro | im -3 0() =E(0)| =1

(Strong law of large numbers, applied to running average)
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1092 METROPOLIS,

[N

dlstmgutsbed by pnmes lur cxample. Ay i given

schematically by the diagram

and mathematically as follows: if we define f(r;) by
flriy=1
flri)=0

ROSENBLUTH,

A3,3

it rg<d,
it ry>d,
then

A= f f dvidxdzadydysdys(frafeafo).

The schematics for the remaining integrals are indicated
in Fig. 6.
,T,he Fuqmcieqts Ass, Ay and Ay wrertrca.lc’u!ated

ROSENBLUTH, TELLER, AND TELLER

were put down at random, subject to fio=fo=fa
= fis=1. The number of trials for which fis= 1, divided
by the total number of trials, is just As 5.

The data on A4 s is quite reliable. We obtained

VI. CONCLUSION

The method of Monte Carlo integrations over con-
figuration space seems to be a feasible approach to
statistical mechanical problems which are as yet not
analytically soluble. At least for a single-phase system
a sample of several hundred particles seems sufficient.
In the case of two-dimensional rigid spheres, runs made
with 56 particles and with 224 particles agreed within
statistical error. For a computing time of a few hours
with presently available electronic computers, it seems
possible to obtain the pressure for a given volume and
temperature to an accuracy of a few percent.

In the case of two-dimensional rigid spheres our re-
sults are in agreement with the free volume approxima-
tion for A/A0< lfg
i 8.
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Metropolis et al. (1953) (
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‘Base’ and 'tip’ configurations

N = 224 in square box (NB: 224 = 16 x 14) with 16/3/2 ~ 14.

nbr(/)

1 1 .
Ve = N Z/: nbr(/) Jz:; exp (6i¢y)

NB: E (Vs) = (0,0) (Ergodic theorem as a diagnostic tool).
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PHYSICAL REVIEW VOLUME NUMBER 2

127,

IJUI.V 15, 1962
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The study of a two-dimensional system consisting of 870 hard-disk
region has shown that the isotherm has a van der Is-like loop. The

articles in the phase-transition
_nsity change across the transition

is about 4%, and the corresponding entropy change is small.

STUDY lms been made of a two-dimensional
g of 870 hard-disk particles.
Simulmncous mollons B the particles have been calcu-

Welectronic computer as described
previously.! lhe dlsks were again placed in a periodi-
cally repeated rectangular array. The computer program

interchanges it was not possible to average the two
branches.

Two-dimensional systems were then studied, since
the number of particles required to form clusters of
particles of one phase of any given diameter is less than
in three dimensions. Thus, an 870 hard-disk system is
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Alder—Wainwright (1962) (2/4)
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Alder-Wainwright (1962) (3/4)
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Alder-Wainwright (1962) (4/4)

o Cluster average
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NB: Three hours on 2022 CPU (best MCMC algorithm) to equilibrate 870 disks in a box. ,XI:rl 35":;(;;’252‘
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Probability flows—Global-balance condition

o Global-balance condition:

flow j — i

~ =~
7T,':Z 7TJ'PJ',' Vi e Q.

JjeEQ
Fii

(NB: This is the steady state of 7rl.{t+1} = Zjen ﬁj.{t} Pji)

@ Global-balance condition (second formulation):

flows entering i

—~
i = Z]:J, VieQ,

JjeQ
flows exiting i flows entering i
—— —
E Fiue = E .7:j,' Vi e Q,
keQ i€
’ e
(NB: stochasticity condition used Y, o Pik = 1). DO



Reversibility—Detailed-balance condition

@ Reversible P satisfies the ‘detailed-balance’ condition:

flow i — j flow j — i

~= ~ ..
7T,'P,'j = 7TJ'PJ',' Vi, Jj e Q.
~—— ~

o General P satisfies the ‘global-balance’ condition

T = ZWJPJ,’ Vi e Q.
Jjeq
@ Detailed balance implies global balance.

@ Global balance:

flows exiting i flows entering i
— —
E Fixk = E f},‘ Vi e Q,
kE Q j EQ Fx:(l ::Dirle:gjgt
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Spectrum of reversible transition matrix

@ Reversible P:

7[','P,'J' = 7TJ'PJ',' Vi,j € Q.
o Reversible P: Ajj = 7r,.1/2P,-J-7rj_1/2 is symmetric.
@ Reversible P:

125 -1 -1/2 -1/2
ZW/PUJ/XJ—)\X,@ZPU[ / }—)\[ /,].
je~——— jeQ

ij
@ P and A have same eigenvalues.
e A symmetric: (Spectral theorem): All eigenvalues real, can

expand on eigenvectors.

@ Irreducible, aperiodic: Single eigenvalue with A = 1, all others

smaller in absolute value.
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Metropolis algorithm / reversibility

@ The Metropolis et al. (1953) algorithm is reversible.

Q0 ||0o
Co O%

a a (4 move) b
o0 0O
Co Cgo Co
a a (4 move) b

@ The algorithm used by Metropolis et al. (1953) is
non-reversible.

1088 METROPOLIS, ROSENBLUTH, ROSENBLUTH, TELLER, AND TELLER

Qur method in this respect is similar to the cell configurations with a probability exp(—E/kT) and
method except that our cells contain several hundred ~weight them evenly.
particles instead of one. One would think that such a This we do as follows : We place th
sample would be quite adequate for describing any one- ion.fo
phase system. We do find, however, that in two-phase
systems the surface between the phases makes quite a
nerturbation. Alsn. statistical fluctuations mav he

V particles in any
attice. Then
b ccording

Département
de Physique

L L"J Ecole normale

supérieure




Total variation distance, mixing time

@ Total variation distance:

1
t _ t _ {t} .
I = vy = max w1 (4) — w(A) = 5 D |/ — il
ieQ
@ Distance:
d(t) = max ||7 {8 (710 — 7||ry

{0}

@ Mixing time:

toix(€) = min{t - () < ¢} (e < ;)

NB: 'maxﬂ_{o}' = ‘worst initial distribution 7 {°}"
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Mixing time (poor man's)

N=10242,n=0.708,a=(1:1)

0.8 1

07 1~ — MPMC, this work

0.6 1
— 0.5
©
>
— 0.4
0.3 1
0.2 1

0.1
0.0 =

LMC, Bernard 2011

Metropolis algorithm on a single CPU: ~ 1

o 1 sweep ~ 10° moves

@ 102 sweeps ~ 11.4 years.

10° 107 10°
t (sweeps)

0% moves/hour
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Conductance (bottleneck ratio)

Fsis . 2iesjgsTiPi

ScQumrs<it TS ScQms<i Ts

@ Reversible Markov chains:

1. .38
¢_Tcorrf¢2

(‘<": Sinclair & Jerrum (1986), Lemma (3.3))
o Arbitrary Markov chain (see Chen et al. (1999)):

1 20
< A< ==
4<D_A_CD2’

(set time: Expectation of maxs (ts X 7s) from equilibrium)

NB: One bottleneck, not many. Lower and upper bound. P B

de Physique

@ {ﬂ Ecole normale

supérieure



Lifting (Chen et al. (1999)) (1/2)

e Markov chain M < Lifted Markov chain [1
Q 5 v (sample space) < Q 5 i (lifted sample space)

°
o P (transition matrix) < P (lifted transition matrix)
e m, (stationary probability) < 7;
e Condition 1: sample space is copied (‘lifted’), 7 preserved
m =& [fH(v)] = i,
ief—1(v)
@ Condition 2: flows are preserved
lifted flow
—/
TPy = > 7P

collapsed flow ief~1(v)jef~1(uv)

A . Pt . RFl Département
Usually: Q = Q x £, with £ a set of lifting variables o Uil

supérieure



Lifting (Chen et al. (1999)) (2/2)

o Required: Mapping from (lifted sample space) to Q that
preserves stationary probability distribution.

o Required: Lifted transition matrix P that preserves flow.
e Optional: = Q x £ (with £: set of lifting variables).
e Optional:

#(u,0)  #(v,0) oy Vo
= ) Veveavoel (1)

o There are many liftings P for a given lifted sample space .

@ Liftings are popular for transfering parts of the moves into the
sample space.

@ Lifting do not increase conductance.
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Metropolis algorithm on path graph (1/3)

52 XL

>—& B

0 L h
=0 Ly

@ Sample space = path graph Q ={1,...,n}.
@ Phantom vertices and edges.
Metropolis algorithm (NB: P;; = A;Pj; for i # j):
Q@ Move set £ = {+,—}.
@ Flat a priori probability A: — o = choice(L).
© Metropolis filter: Accept with probability min(1, 7;/7;).
Reject: Don't move.



Metropolis algorithm on path graph (2/3)

>—& B

01 n ht
=0 T,

@ Detailed balance:

@ Metropolis algorithm:
]:ij = % min (7T,',7Tj) = P,'j = %min (].,7Tj/7r,')
@ Metropolis filter (NB: Py = A;Pj):

. R SR i
Pjj = min (1, 7/7;) Ul

périeure



Metropolis algorithm on path graph (3/3)

&2 b4
—e PPN ® o
01 n

=0 My =0

o Global balance (m; = >_; m;P; = >, Fji):

i — %min(ﬂ'i,ﬂ'i_l) — %Inill(ﬂi,ﬂi+1)

- %mill(ﬂi_l.ﬂ,j) - %Hlin(ﬂ';.ﬂ;+1) -
i-1 ' i+1

% min(m;,mi—1) % min(7m;41,7m;)
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Lifting on the path graph (1/2)
General probability distribution 7 = (71, ..., 7,)
o 'Lifted’ sample space {2 = {1,....n} x {+,—}:

S X X

¢oe>

0 n
-0 T =0

o 'Lifted’ non-reversible Markov chain 0 = Q x {—, +}:

el
5 >

El 1 n;M
Ti=0 < T

) . . P e rormote
e Diaconis et al. (2000) D e



Lifting on the path graph (2/2)

o ‘Lifted’ non-reversible Markov chain: ng:

only Transport treated

(i-1,+1)

% min(m;—1,7;)

i,+1

6,
5 min(7m;,mig1) [,
2 o i+1,+1

& [mi—min(m;,mi 41 )]‘H% [mi—min(m;_1,7)]

% min(m;—1,7;) 5 min(m;,miy1)

NB: The 3 & #j, = im;

&,
e}
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@ N spheres, with a sample space €2, and a move space L.

@ Metropolis algorithm samples {—,+} x {1,..., N} at each
time step.

Many choices for non-reversible liftings:
Sequential ) = Q x {1,..., N}: Move one disk after the other.
Forward § = Q x {(—=),+}: Move only in forward direction.
m Département

Particle-lifted forward 0 = Q x {1,..., N} x {(=),+}: Always _
move the same disk forward, until it is blocked... FJ ki
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1d hard spheres 2/2

© N2 N2 logN
Tmix - A
100 | s 1
g ® ¢ Heabath O |
) ', " Seq. Heatbath
108 F K3 Metropolis ©
Seq. Metropolis @
E Forward Metropolis A 7
6 Lifted Metropolis (w/o rest.) @ 1
10 Lifted Metropolis (with rest.) @
Event-chain ¢ |
0.00 0.02 0.04 .
3
t / (N~ logN
(V" logh) 107 10° 10 N
Algorithm mixing discrete analogue
Rev. Metropolis N3log N Symmetric SEP

Forward Metropolis, Lifted (c0)  N°/2 TASEP
Event-chain, Lifted (restarts) N2log N lifted TASEP
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Hard disks: event-chain Monte Carlo (ECMC)

e Bernard, Krauth, Wilson (2009).
e Michel, Kapfer, Krauth (2014) (smooth potentials).

@ Many variants.



ECMC and the hard-disk model

N=1024%2,n=0.708,a=(1:1)

0.8 1 —— ECMC, Bernard 2011
——— LMC, Bernard 2011
0.7 '> —— MPMC, this work

064 —— ECMC, this work

[We|

10° 107 10°
t (sweeps)

11.4 years (Metropolis, LMC, MPMC)
@ 10° sweeps = 4.2 days (Event-chain Monte Carlo) R
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Synopsis large hard-disk system

n
0.72 0.71 0.7
8.05 9.2953
i 0.9167 0.9040 0.8912 ]
+ P
e Qi2014,a=(1:V3/2) e Mak 2006, a = mixed
[ Engel 2013, a=(1:1) X this work, a=(1:1)
£ Bernard 2011, a=(1:1) X this work, a=(1:V3/2)
8.00 ’ . x 9.2376
- = o
< i / * ¥ 3
< | == S
& ™ e & &
/ B *
* ”’ . . ® *
e -
7.95 A 9.1799
! R
N =10242 v *
(20)?
1.0912 1.0999  1.1085  1.1172  1.1258
1.26 1.27 1.28 1.29 1.30
VIVo

o Lietal (2022)

NB: Pressures are required precisely for further analysis.
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Hard disks at infinite pressure 1/3

\/

/
\/ \ [ \/ \/ \/(

@ Infinite-pressure configuration (packing)

&
3
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Hard disks at infinite pressure 2/3

@ Crystal: Positional long-range

\/(
A

- a=(9:8V3/2)

\/ \/

order

/

&
3
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Hard disks at infinite pressure 3/3

/\ /\ A
O o= (9:8V3/2
/\ /\
\/ Y/

\/ \/ \/ \/( \/

@ Crystal: Orientational long-range order

/

&
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No crystal at finite pressure 1/2

R. PEIERLS

Quelques propriétés typiques des corps solides

Annales de 'l H. P, tome 5, n® 3 (1935), p. 177-222.

tinction )
Iiquide Ia coherence ne se conserve pas a ongue distance quoique
naturellement les atomes 3z & ce les arrange-
ments d’énergie minimu la différence

entre solide et liquide ne serart quefjuantitativeflet, au lieu d'un point
de fusion bien déterminé, on aurait 14 un passage continu.

@ Classic paper on crystallization.
@ No crystal in two dimensions at finite pressure.

o Département
) de Physique

Ecole normale
supérieure

&,
e}



No crystal at finite pressure 2/2

Lower Bound on the Mean Square Displacement
of Particles in the Hard Disk Model

Thomas Richthammer'

1Commun. Math. Phys. 345, 1077-1099 (2[)16)

Qoo0222

@ No crystal in two dimensions at finite pressure.

@ Displacement of center box ¥ 2> log (N).

o DéDirlEment
Lol ysique

e : : : %
e Specific to (two-dimensional) hard disks. O e



Kosterlitz—Thouless (1973)

Ordering, metastability and phase transitions in
two-dimensional systems

J M Kosterlitz and D J Thouless

Versity of Birmingham, Birmingham B152TT, UK
Received 13 Nov :mbr

1. Introduction

Peierls (1935) has argued that thermal motion of long-wavelength phonons will destroy

the lon -range order of a Iwu-dim:nsional solid in the sense that the mean suare

size of the sys!em and the Bragg peaks of the diffraction pattern formed by the system
are broad instead of sharp. The absence of long-range order of this simple form has been
shown by Mermin (1968) using rigorous inequalities. Similar arguments can be used to
show that there is no spontaneous magnetization in a two-dimensional magnet with
spins with more than one degree of freedom (Mermin and Wagner 1966) and that the
cxpcctalmn value of the superfluid order parameter in a two-dimensional Bose fluid




Possible phases for hard disks

density n=0.48

Phase  positional order orientational order

crystal  long-range long-range !

solid algebraic long-range (NB: phase not proven to exist)
hexatic  short-range algebraic (NB: phase not proven to exist)
liquid  short-range short-range 2

!Feyes (1940), only at P = co (Peierls 1935, Richthammer 2016)

]
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2Exists at small P (Lebowitz—Penrose 1964)



Phase diagram for hard disks

, 155704 (2011) PHYSICAL REVIEW LETTERS 7080

Two-Step Melting in Two Dimensions: First-Order Liquid-Hexatic Transition

Etienne P. Bernard* and Werner Krauth”
sire de Physique Statistique Ecole Normale Supérieure, UPMC, CNRS 24 rue Lhomond, 75231 Paris Cedex 0
(Received 6 July 2011; published 7 October 2011)
Melting in two spatial dimensions, as realized in thin films or at interfaces, represents one of the most
mumung ph.m transtionsin nature, but t emains poorly understood. Even for the findamegigl bard,

R e
ss the thermodynamic

Phase  positional order orientational order

solid algebraic long-range
hexatic  short-range algebraic
liquid  short-range short-range

@ Hexatic phase exists.
@ Liquid—hexatic transition of first order.

@ Hexatic—solid transition of Kosterlitz—Thouless type. Département
de Physique
@ Ecole normale
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Remarkable results, big & small open problems

Remarkable results:
e D. B. Wilson (1999): Coupling-from-the-past for hard spheres.
e Kannan, Mahoney, Montenegro (2003): Switcheroo hard-disk
algorithm with proven O (N log N) mixing times.
@ Helmuth, Perkins, Petti (2021): Proof that ‘algorithm
converges fast' = ‘particle system is fluid'.
@ Richthammer (2016): Lone star theorem at high density.
Big & small open problems:
@ Existence of crystal at finite pressure in any dimension > 2.

o Existence of solid at finite pressure in dimension 2.
@ 'Decent’ MCMC algorithm for hard disks at high density.

@ Inner workings of lifted Markov chains.
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