
Algorithms and computations in physics
(Oxford Lectures 2024)

Werner Krauth∗

Laboratoire de Physique, Ecole normale supérieure, Paris (France)
Rudolf Peierls Centre for Theoretical Physics & Wadham College

University of Oxford (UK)

Version 16 Jan 2024

First lecture (16 January 2024): Direct sampling, from children’s game in Monte
Carlo to the strong law of large numbers.

Contents

1 Direct sampling 1
1.1 Children on the beach in Monaco . 1

1.1.1 Sample spaces and random variables . 2
1.1.2 Pseudocode, pseudo-random numbers . 2
1.1.3 From Punch-card coding to Python and to ChatGPT 3

1.2 Direct sampling—discrete distributions . 4
1.2.1 Rejection sampling . 4
1.2.2 Tower sampling . 4
1.2.3 Walker’s method, O (1) sampling in the Saturday night problem 5

1.3 Direct sampling—continuous distributions . 6
1.3.1 Sample transformation—simple examples 6
1.3.2 Sample transformation—Gaussian, multidimensional Gaussians 7
1.3.3 Rejection method . 9

1.4 Direct sampling: fundamental aspects . 10
1.4.1 Laws of large numbers—importance sampling 11
1.4.2 Universal approach to the integrated distribution function 13
1.4.3 What we learn about π by throwing pebbles 13

1 Direct sampling

[1]

1.1 Children on the beach in Monaco

Direct sampling 1 is exemplified by a children’s game popular in Monaco, south of France,
whence the name “Monte Carlo” method. Children fling pebbles (small stones) into a square.

∗werner.krauth@ens.fr, werner.krauth@physics.ox.ac.uk
1The word sample has the same origin as example

1

mailto:werner.krauth@ens.fr
mailto:werner.krauth@physics.ox.ac.uk

Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

They then count how many of them fall into the circle inscribed in the square (see [2, Sect. 1.1]
for the full story).

1.1.1 Sample spaces and random variables

Figure 1: Children on the Monte Carlo beach, computing the number π.

The square in Fig. 1 constitutes a sample space Ω. 2 Modern probability theory, since
Kolmogoroff, then assigns probabilities, not in general to individual samples (x, y), but to subsets
of the sample space Ω. A small subset of size dx dy around a point (x, y) then has the probability

π□(x, y)dx dy =

{
const dx dy if x, y ∈ Ω□

0 else
. (1)

where, in this case, we know that const = 1/4. The pebbles that the children throw are
(exact, perfect) samples of the distribution π, and the act of throwing the pebbles is denoted as
“sampling (from) the distribution π”.
On the Monte Carlo beach, a circle is inscribed inside the square. While all pebbles inside

the square are referred to as trials, those inside the circle are hits. The function on the sample
space defines a “random variable” 3. O : Ω→ R:

O((x, y)) =

{
1 if (x, y) ∈ ⊙
0 else

(2)

Clearly, O is a Bernoulli random variable that we can in principle define without considering
the sample space

O =

{
1 P = π/4

0 P = 1− π/4
, (3)

illustrating that sample spaces tend to disappear in discussions of probability theory [1, p. 27].
Unfortunately, we have forgotten all about π, and thus need to estimate it from the pebble
throws, that is, from eq. (2). All of a sudden, we have a problem, not of probability theory, but
of statistics, and are back with the sample space, that is, the square on the Monte Carlo beach.

1.1.2 Pseudocode, pseudo-random numbers

The children’s game is the first of 150 algorithms that we will discuss in the present lecture
series. We will specify them through self-explanatory pseudo-code (see Alg. 1 (direct-pi)).

2Sample space: the set of all outcomes of the pebble-throw experiments
3random comes from an old French word that still survives in modern French randonnée, which means hike

2

Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

In Alg. 1 (direct-pi), as throughout this course, we take for granted the existence of uniform

procedure direct-pi

Nhits ← 0 (initialize)

for i = 1, . . . , N :
x← ran(−1, 1)
y ← ran(−1, 1)
if x2 + y2 < 1: Nhits ← Nhits + 1

output Nhits

——

Algorithm 1: direct-pi. Using the children’s game with N pebbles to compute π.

random numbers ran(a, b) in the interval between a and b. During 80 years, now, such numbers
have been generated as pseudo-random numbers, in other words deterministic procedures that
look random, and that condense deep concepts from number theory and cryptography. Up to
the year 2000, roughly, problems with random numbers were common, and users on high alert,
running batteries of checks on their results for different classes of random numnbers. In modern
times, the quality of random-number generators has much improved [3], although they continue
to have flaws and will themselves be superseded by even more sophisticated variants. What will
remain is the pseudo-code, as in Algorithm 1, and we will stick to it.

1.1.3 From Punch-card coding to Python and to ChatGPT

The pseudocode of Alg. 1 (direct-pi), and of all algorithms that follow must be communicated
to a computer. This, over the decades, first consisted in punching holes into cards, of which one
had huge piles. Later, pseudocode was to be translated into one or the other computer language,
with Python becoming more and more popular, although the language itself changes over time.
Today, pseudo-code as Alg. 1 (direct-pi) may be simply copied and pasted into a window of an
AI program See this ChatGPT output. This is extremely helpful, and it may make interfacing
with a computer appear as effortless as flinging 4×108 pebbles on a modern laptop rather than
on the Monte Carlo beach. Nevertheless, the concept of effortless creation certainly remains a
mirage. In whichever way one goes about it, actual running the short example programs of this
course will be a powerful way to confront oneself with its subjects. As this has become so easy,
why not implement them all?

Run Nhits Estimate of π

1 3156 3.156
2 3150 3.150
3 3127 3.127
4 3171 3.171
5 3148 3.148

Table 1: Results of five runs of Alg. 1 (direct-pi) with N = 4000. Approximations of π are obtained
by shifting a decimal point.

Implementing Alg. 1 (direct-pi), not in a computer, but on the beach, the children record
the proportion of “hits”, that is, of the fraction of pebbles inside the circle (see Table 1.1.3, for
N = 4000). Without knowing it, they have computed a two-dimensional integral:

Nhits

trials
=

1

N

N∑
i=1

Oi︸ ︷︷ ︸
sampling

≃ ⟨O⟩ =
∫ 1
−1 dx

∫ 1
−1 dy π(x, y)O(x, y)∫ 1

−1 dx
∫ 1
−1 dy π(x, y)︸ ︷︷ ︸

integration

. (4)

3

https://chat.openai.com/share/ef784109-16e0-41c0-9885-205f20d17072
https://www.theguardian.com/commentisfree/2024/jan/13/ai-weiwei-ai-art-threat-technology

Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

On the left of eq. (4), there is the “running average” of the random variable O, evaluated at the
samples (xi, yi). The probability distribution π(x, y) is absent, rather than being evaluated, it
is sampled. By virtue of the law of large numbers, this running average converges (in a way we
will need to discuss precisely, later) to the expectation (mean value) of O, expressed as a ratio
of two two-dimensional integrals. The same approach allows one to evaluate (that is, to sample)
high-dimensional integrals in physics and other domains, if only we can think of how to do the
sampling. What would happen in the limit N → ∞ is easy to grasp, but we will later pursue
the more relevant question what precisely we learn from 3156 hits for 4000 trials.

1.2 Direct sampling—discrete distributions

Sampling defines the Monte Carlo method (and some other fields, like machine learning), and
direct sampling is the first step on this journey. In this section, we treat the case of a discrete
distribution in a sample space Ω = {1, . . . ,K}, with non-uniform weights {π1, . . . , πK}. The
sampling is non-trivial already for moderate values of K, as we experience ourselves each week in
the “Saturday night problem”, when the sample 1 and its probability π1 correspond to studying
(this course), 2 corresponds to cleaning the house, 3 to getting some exercise, and so on. There
are only a few choices but, clearly, it takes us so long to decide what to do, after all.
The optimal way to go about sampling a finite distribution has not been known for a very

long time [4], but we will first treat the standard approaches, rejection sampling, and tower
sampling, which are interesting in their own right.

1.2.1 Rejection sampling

Rejection sampling is the simplest approach one can think of: place all the items into a big box
such that they do not overlap, then throw pebbles into the box and stop when one of them hits
an item. It helps to make the box rectangular, and to place the items side by side (see Alg. 2
(reject-finite)).

procedure reject-finite

πmax ← maxKk=1 πk
1 k ← nran (1,K)

Υ← ran(0, πmax)
if Υ > πk: goto 1
output k
——

Algorithm 2: reject-finite. Sampling a finite distribution {π1, . . . , πK} with a rejection algorithm.

ho

Figure 2: Saturday night problem solved by Alg. 2 (reject-finite).

1.2.2 Tower sampling

In what we call “tower sampling”, the K probabilities are stacked onto each other, and all the
probabilities are added up as Π0 = 0, Π1 = π1, Π2 = π1 + π2, and so on. Then we throw a

4

Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

uniform pebble ran(0,ΠK).

procedure tower-sample

input {π1, . . . , πK}
Π0 ← 0
for l = 1, . . . ,K: Πl ← Πl−1 + πl
Υ← ran(0,ΠK)

∗ find k with Πk−1 < Υ < Πk

output k
——

Algorithm 3: tower-sample. Tower sampling of a finite distribution {π1, . . . , πK} without rejections.
The search indicated in the line marked with a ∗ makes its complexity to be O (logK)
per sample, once we have constructed the tower, in O (K) steps.

Tower sampling can be applied to discrete distributions with a total numberK in the hundreds,
thousands, or even millions. It is used when the naive rejection method of Fig. 2 fails because
of too many rejections. Tower sampling becomes impracticable only when the probabilities
{π1, . . . , πK} can no longer be listed. This rejection-free method is not optimal, but easy to
implement and of theoretical interest.

Π0 = 0
study

chores

jog

k
activity

Πk−1

Πk

movie

go out

K
activity

ΠK

Figure 3: Saturday night problem solved by tower sampling.

1.2.3 Walker’s method, O (1) sampling in the Saturday night problem

Tower sampling of the distribution π1, . . . , πK requires O (logK) operations for each time step
(after an initial preparation of O (K). Although a logarithm is not a high price to pay, it can
be avoided by the extremely clever Walker’s method [4] (see Fig. 4). To construct the table,
we separate the pile of larger-than-average pi (“tall”) from the pile of smaller-than-average ones
(“small”). At each time t = 1, . . . ,K, we set together a small and a large probability and cut
them off at the average. What remains is put back into the corresponding pile. As we used
up two pi (one from the small, one from the tall), and and put back one, the total size of the
two piles has decreased by one, and neither of the piles will empty. To sample from the table,
we sample i = nran (1,K), and a pebble to find out which of the two elements we belong to.
Walker’s algorithm is extremely useful when the pi do not change over time.

5

Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

Figure 4: Saturday night problem solved by Walker’s algorithm. There are at most two pieces in each
parquet

1.3 Direct sampling—continuous distributions

We now consider the sampling problem for continuous distributions, but start by approaching
the continuum limit from the aforementioned discretized problem. We discover a deep relation
between integration and sampling, and between the substitution of variables and what we call
a sample transformation.

1.3.1 Sample transformation—simple examples

0

2

0 1

π
(x

)

x

Figure 5: Tower sampling for a discretized version of π(x) = (γ + 1)xγ in the interval x ∈ (0, 1]. The
case γ = − 1

2 is shown).

We consider the continuum limit of tower sampling. As an example, let us sample random
numbers 0 < x < 1 distributed according to an algebraic function π(x) = (γ + 1)xγ (with
γ > −1) (see Fig. 5). A pebble in the tower must be identified with its corresponding x position.
In the continuum limit, we find

π(x) = (γ + 1)xγ for 0 < x < 1,

Π(x) =

∫ x

0
dx π(x′) = xγ+1 = ran(0, 1) ,

x = ran(0, 1)1/(γ+1) . (5)

The transformation method is best “seen” as a sample transformation: For the above algebraic
function, we can transform the integral over a flat distribution into the integral of the target
distribution: ∫ 1

0
dΥ

integral−−−−−−→
transform

const

∫ 1

0
dx xγ .

6

Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

We now treat Υ (“Upsilon”) as a sample Υ = ran(0, 1), and it transforms as follows:

dΥ = const · dx xγ .

ran(0, 1) = Υ = const′ · xγ+1 + const′′.

Finally (checking that the bounds of ran(0, 1) correspond to x = 0 and x = 1), this results in

x = ran(0, 1)1/(γ+1) , (6)

in agreement with eq. (5).
As a second example of sample transformation, we consider exponentially distributed random

numbers, so that π(x) ∝ e−λx for x ≥ 0. We again write∫ 1

0
dΥ = const

∫ ∞

0
dx e−λx (7)

and see on the left-hand side of eq. (7), that Υ = ran(0, 1), so that

dΥ = const · dx e−λx,

ran(0, 1) = Υ = const′ · e−λx + const′′.

Checking the bounds x = 0 and x =∞, this leads to

− 1

λ
log ran(0, 1) = x. (8)

Each “negative logarithm of ran(0, 1)” will from now be recognized as an exponential random
number.

1.3.2 Sample transformation—Gaussian, multidimensional Gaussians

In our exploration of sample transformations, we move ahead to more complex, and physically
relevant, cases involving Gaussian random numbers x that are a staple in many fields of science.
Restricting ourselves to unit variance σ2 = 1, they are distributed as

π(x) =
1√
2π

exp

[
−x2

2

]
.

Subroutines for Gaussian random numbers are readily available, and we may lack the curiosity
to look under the hood of the corresponding algorithms. However, in our “School-of-seeing”
approach, Gaussians again illustrate sample transformation and connect with what we learned
a long time ago.
To evaluate the error integral ∫ ∞

−∞

dx√
2π

e−x2/2 = 1, (9)

we recall that we should square eq. (9):[∫ ∞

−∞

dx√
2π

exp
(
−x2/2

)]2
=

∫ ∞

−∞

dx√
2π

e−x2/2

∫ ∞

−∞

dy√
2π

e−y2/2 (10)

=

∫ ∞

−∞

dx dy

2π
exp

[
−(x2 + y2)/2

]
, (11)

7

Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

introduce polar coordinates (dx dy = rdr dϕ),

. . . =

∫ 2π

0

dϕ

2π

∫ ∞

0
r dr exp

(
−r2/2

)
,

and finally substitute r2/2 = Υ (r dr = dΥ)

. . . =

ϕ=ran(0,2π)︷ ︸︸ ︷∫ 2π

0

dϕ

2π︸ ︷︷ ︸
1

Υ=− log ran(0,1)︷ ︸︸ ︷∫ ∞

0
dΥ e−Υ︸ ︷︷ ︸
1

. (12)

Equation (12) famously implies eq. (9), but it also shows us the way to obtaining independent
Gaussian samples x and y. It suffices to sample the uniform distribution of ϕ and the exponential
distribution for Υ, as indicated, and then to transform everything back to have two independent
Gaussian random variables x and y (see Alg. 4 (gauss), the computation of sines and cosines
can be avoided [2, Sect. 1.2.5]).

procedure gauss

input σ
ϕ← ran(0, 2π)
Υ← −log ran(0, 1)

r ← σ
√
2Υ

x← rcos ϕ
y ← rsin ϕ
output {x, y}
——

Algorithm 4: gauss. Two independent Gaussian random numbers obtained by sample transformation.

As we just learned to sample the one-dimensional Gaussian integral, we can also sample the
d-dimensional Gaussian integral,

1 =

∫
. . .

∫
dx1 . . . dxd︸ ︷︷ ︸

dV

(
1√
2π

)d

exp

[
−1

2
(x21 + · · ·+ x2d)

]
, (13)

by running Alg. 4 (gauss) d/2 times. This obtains {x1, . . . , xd}. We now substitute

dx1 . . . dxd = rd−1 dr dΩ

to obtain:

1 =

(
1√
2π

)d

some radial distribution︷ ︸︸ ︷∫ ∞

0
dr rd−1 exp

(
−r2/2

) ∫
dΩ︸ ︷︷ ︸

uniform solid angle

. (14)

The {x1, . . . , xN} are samples, and so is r =
√
x21 + · · ·+ x2N , and so is the solid angle Ω 4. With

little rearrangements of the radius, we either obtain uniformly distributed pebbles within the
unit d-dimensional hypersphere (Algorithm 5) or on its surface (Algorithm 6, see also Fig. 6).
The Gaussian is unique in combining into a d-dimensional isotropic integral. The transforma-

tion from eq. (13) to eq. (14), that is, Alg. 6 (direct-surface), was already known to Maxwell,

4not to be confused with the sample space

8

Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

procedure direct-sphere

Σ← 0
for k = 1, . . . , d:{

xk ← gauss(σ)
Σ← Σ+ x2k

Υ← ran(0, 1)1/d

for k = 1, . . . , d:{
xk ← Υxk/

√
Σ

output {x1, . . . , xd}
——

Algorithm 5: direct-sphere. Uniform random vector inside the d-dimensional unit sphere. The
output is independent of σ.

procedure direct-surface

σ ← 1/
√
d

Σ← 0
for k = 1, . . . , d:{

xk ← gauss(σ)
Σ← Σ+ x2k

for k = 1, . . . , d:{
xk ← xk/

√
Σ

output {x1, . . . , xd}
——

Algorithm 6: direct-surface. Random vector on the surface of the d-dimensional unit sphere. For
large d, Σ approaches one (see Fig. 6).

and was the key to his invention of the Maxwell distribution. Later generalized by Boltzmann,
it became the core of all of statistical mechanics. So, maybe it was worth looking under the
hood of the Gaussian algorithm.

1.3.3 Rejection method

We have a closer look at rejection sampling, after Sec. 1.2.1, but now for a continuum distribu-
tion. In preparation of Lecture 2 and following Ref. [5], we consider the Boltzmann distribution
of the anharmonic oscillator ∫ ∞

−∞
dx exp

(
−x2

2
− x4

4

)
︸ ︷︷ ︸

π24(x)

, (15)

Figure 6: Random samples on the surface of the 3-dimensional sphere, from Alg. 6 (direct-surface)

9

Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

that we need not normalize, and likewise for the Gaussian π2.

Figure 7: Naive and state-of-the-art algorithms to sample the Boltzmann distribution for the
anharmonic oscillator as uniformly distributed pebbles. (a): The naive algorithm introduces
a cutoff xmax and discards many pebbles. (b): Sampling pebbles (x, y) below the Gaussian
curve and then discarding those samples (x, y) above π24(x) is a winning strategy (see
eq. (17)

It is straightforward to enclose π24 in a rectangular box between x = ±xmax and to adapt
Alg. 2 (reject-finite) (see Fig. 7a). But this is wasteful of pebbles and potentially dangerous
because of the cutoff. The box in Fig. 7a is nothing but a bounding function that satisfies two
conditions: it can be sampled and it dominates the distribution of interest. For the anharmonic
oscillator of eq. (15), the Gaussian is an alternative bounding function, so that we can write:∫ ∞

−∞
dx exp

(
−x2

2
− x4

4

)
=

∫ ∞

−∞
dx exp

(
−x2

2

)
︸ ︷︷ ︸

sample

exp

(
−x4

4

)
︸ ︷︷ ︸
accept/reject

(16)

This suggests that to sample the anharmonic oscillator, we may sample a Gaussian, and then
accept the pebble x with probability exp

(
−x4/4

)
(see Alg. 7 (direct-anharm)). But to convince

us that this brashly introduced algorithm is actually correct, we sample the Gaussian in x, then
spread pebbles out evenly on the y-axis with a ran

(
0, exp

(
−x2/2

))
. We now have uniform

pebbles in the two-dimensional region below the Gaussian. It suffices to reject all pebbles above
π24, and this is what Alg. 7 (direct-anharm) implements.

To see how to proceed in general, we write:

∫ ∞

−∞
dx exp

(
−x2

2

)
︸ ︷︷ ︸

sample

exp

(
−x4

4

)
︸ ︷︷ ︸
accept/reject

=

∫ ∞

−∞
dx exp

(
−x2

2

)
︸ ︷︷ ︸

sample x

exp
(
−x2

2 −
x4

4

)
exp

(
−x2

2

)
︸ ︷︷ ︸
sample y, see Fig. 7b

. (17)

In conclusion, to sample a distribution, such as π24, we may divide by and multiply it with
another distribution, such as π2, under the two conditions that we know to sample the latter,
and that it is always larger than the former. Remarkably, neither distribution (neither π2 nor
π24) need be normalized. The procedure works if the proportion of pebbles we must discard is
not too large.

1.4 Direct sampling: fundamental aspects

Many fundamental aspects of sampling already manifest themselves in the direct-sampling frame-
work, and then translate, mutatis mutandis, to the much more complicated Markov chains of
subsequent lectures. For example, the strong law of large numbers that we need to understand
for direct samples will turn into the famous ergodic theorem for Markov chains. We also discuss

10

Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

procedure direct-anharm

while True:
x← gauss(0, 1/

√
β)

y ← ran[0, π2(x)]
if y < π24(x): break

output x
——

Algorithm 7: direct-anharm. Sampling π24 through the rejection of Gaussians samples from Eq. (17).

importance sampling that permeates all of Monte Carlo and discuss the frequentist interpretation
of probabilities at the core of the method.

1.4.1 Laws of large numbers—importance sampling

To discuss the convergence of Markov chains, we consider a frankly difficult sampling problem,
the γ integral:

I(γ) =

∫ 1

0
dx xγ =

1

γ + 1
for γ > −1 (18)

(see [2, Sect. 1.4.2] for the full context). We attempt to compute the integral in a sample space
Ω[0,1], the unit interval between 0 and 1.

I(γ) =

∫ 1

0
dx xγ =

∫ 1

0
(1dx)︸ ︷︷ ︸

x=ran(0,1)

O︷︸︸︷
xγ (19)

As we discussed before, the random variable O has its own probability distribution:

π(O) = (α− 1)O−α, (20)

with α = 1 − 1/γ. Its mean value of the random variable O can be equivalently written with
π(O) or in the original sample space:

⟨O⟩ = (α− 1)

∫ ∞

1
dO OO−α =

∫ 1

0
dxxγ . (21)

The same holds for any higher moments.
After these preliminaries, let us now actually compute the γ integral with a running average

of a sum of uniform random numbers to the power of γ (see Algorithm 8). This calculation
works well for large enough γ ≳ −0.5 but fails for −1 < γ < −0.5. In the graph of the running
average Σ, we notice a sequence of “false plateaux”, which seem to indicate convergence, and
might prompt us to write research papers. However, in between the plateaux, there are huge
jumps caused by particularly large samples and that we should by no means eliminate. Overall,
the strong law of large numbers applies to the sum of independent random variables with finite
mean, that is, to Alg. 8 (direct-gamma). It guarantees almost sure convergence of any single
trajectory of Σ, which will never again step out of the red box shown in Fig. 8, and which exists
for any vertical size ϵ.

Although, in Alg. 8 (direct-gamma), there is law and order, that is, almost sure convergence,
the wide spread of the random variable O, from ∼ 1 to ∼ 1, 000.000, thwarts direct attempts to
compute the integral of eq. (18). The founding concept of importance sampling was invented to

11

Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

Figure 8: Running average of Alg. 8 (direct-gamma) for γ = −0.8. The strong law of large numbers
guarantees the existence of boxes (for any ϵ), which contain the running averages up to
infinite times.

procedure direct-gamma

Σ← 0
for i = 1, . . . , N :{

xi ← ran(0, 1)
Σ← Σ+ xγi (running average: Σ/i)

output Σ/N
——

Algorithm 8: direct-gamma. Computing the γ-integral in eq. (18) by direct sampling.

contain the spread of O. It consists in writing eq. (22) as

I(γ) =

∫ 1

0
dx xγ =

∫ 1

0
(xζdx)︸ ︷︷ ︸

x=ran(0,1)1/(ζ+1)

O︷︸︸︷
xγ−ζ (22)

If γ ≃ ζ, the fluctuations in the random variable are manageable, and the variance of O remains
finite. This is implemented in Algorithm 9, which samples xi ∼ xζ , then takes them to the power
γ− ζ. However, there is an normalization issue, and the program computes I(γ)/I(ζ). Running
Algorithm 9 for a sequence of (γ, ζ) values implements importance sampling, and illustrates the
concept of thermodynamic integration. Inputting only the value of I(0) = 1, and performing
a carefully designed sequence of runs of Algorithm 9, we can compute I(−0.8) ∼ 5 (from the
product of the last column in Table 1.4.1), which appeared previously impossible.

procedure direct-gamma-zeta

Σ← 0
for i = 1, . . . , N :{

xi ← ran(0, 1)1/(ζ+1)
(π(xi) ∝ xζ

i)

Σ← Σ+ xγ−ζ
i

output Σ/N
——

““

Algorithm 9: direct-gamma-zeta. Using importance sampling to compute the ratio I(γ)/I(ζ).

12

Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

γ Σ/N ± Error 1/(γ + 1)

2.0 0.334± 0.003 0.333 . . .
1.0 0.501± 0.003 0.5
0.0 1.000± 0.000 1
−0.2 1.249± 0.003 1.25
−0.4 1.682± 0.014 1.666 . . .
−0.8 3.959± 0.110 5.0

Table 2: Output of Alg. 8 (direct-gamma) for various values of γ (N = 10 000, standard empirical
error shown). The computation for γ = −0.8 is in trouble.

γ ζ Σ/N ζ+1
γ+1

−0.4 0.0 1.685± 0.017 1.66
−0.6 −0.4 1.495± 0.008 1.5
−0.7 −0.6 1.331± 0.004 1.33
−0.8 −0.7 1.508± 0.008 1.5

Table 3: Output of Alg. 9 (direct-gamma-zeta) with N = 10 000. All pairs {γ, ζ} satisfy 2γ − ζ > −1
so that

〈
O2

〉
<∞.

1.4.2 Universal approach to the integrated distribution function

1.4.3 What we learn about π by throwing pebbles

References

[1] L. Wasserman, All of Statistics. New York: Springer, 2004.

[2] W. Krauth, Statistical Mechanics: Algorithms and Computations. Oxford University Press,
2006.

[3] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator,” ACM Transactions on Modeling and Computer
Simulation, vol. 8, no. 1, p. 3–30, 1998.

[4] A. J. Walker, “An Efficient Method for Generating Discrete Random Variables with General
Distributions,” ACM Trans. Math. Softw., vol. 3, no. 3, pp. 253–256, 1977.

[5] G. Tartero and W. Krauth, “Concepts in Monte Carlo sampling,” American Journal of
Physics, vol. 92, no. 1, p. 65–77, 2024.

13

	Direct sampling
	Children on the beach in Monaco
	Sample spaces and random variables
	Pseudocode, pseudo-random numbers
	From Punch-card coding to Python and to ChatGPT

	Direct sampling—discrete distributions
	Rejection sampling
	Tower sampling
	Walker's method, O(1) sampling in the Saturday night problem

	Direct sampling—continuous distributions
	Sample transformation—simple examples
	Sample transformation—Gaussian, multidimensional Gaussians
	Rejection method

	Direct sampling: fundamental aspects
	Laws of large numbers—importance sampling
	Universal approach to the integrated distribution function
	What we learn about by throwing pebbles

