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Lecture 5

1D models and the transfer matrix

In this lecture, we introduce to the statistical physics of one-dimensional systems,
starting from two examples, the one-dimensional gas of hard spheres, and the one-
dimensional Ising model with next-neighbor interactions. These models are both ex-
actly solvable. In finding the solutions, we will introduce to a fundamental concept
called “Transfer Matrix”. We will show that these models exist only in a single phase,
so that there cannot be a phase transition. Mathematically, this feature of the exact
solution derives from basic properties of the transfer matrix, via two fundamental
theorems. A physical argument will also be developed, namely the analysis of do-
main walls. As often, the well-understood and exactly solved cases are very closely
related to hard problems: We will analyze the Ising model with long-range interac-
tions which, understood by Thouless, became the starting point of the now famous
Kosterlitz–Thouless theory.

Figure 5.1: N = 4 one-dimensional hard spheres of radius σ on an interval of lengthL, without periodic
boundary conditions. Many of the properties of this model can be solved analytically. The position x of
each sphere is that of its center, so that σ < x < L−σ.

5.1 One-dimensional hard spheres
The one-dimensional hard-sphere model is exactly solvable (its thermodynamics and
some of its structural properties can be obtained in closed form). We will compute the
equation of state, check the equivalence of ensembles, introduce to the virial expan-
sion, and compute (what amounts to) correlation functions. In a nutshell, the model
can be mapped to non-interacting particles. Nevertheless, the model has non-trivial
correlation functions, that are so intricate that not all is known analytically about
them.
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Lecture 5. 1D models and the transfer matrix

We consider, as in Fig. 5.1, N one-dimensional spheres in a box of finite volume
(length)Lwithout any other interaction than the hard-sphere repulsion. Spheres have
velocities and positions, but the momenta can be integrated out in the partition func-
tion, so that only the configurational integral remains.

5.1.1 One-dimensional hard spheres - partition function
We can write down the partition function of this system is given by

ZN,L =
∫ L−σ

σ
dx1· · ·

∫ L−σ

σ
dxNf(x1, . . . ,xN ), (5.1)

where the Boltzmann weight f satisfies

f(x1, . . . ,xN ) = f(xP1 , . . . ,xPN ) =
{

1 if legal
0 otherwise

Note that π is symmetric under permutations. One often multiplies the partition func-
tion of eq. (5.1) by a factor 1/N !, in order to avoid the socalled Gibbs paradox. The
question of the presence or not of this factor 1/N ! is very interesting, and it has noth-
ing to do with quantum mechanics, see [?]. We will just leave it out.

5.1.2 Free energy by mapping to non-interacting particles
The statistical weight f , as discussed, and also the integration domain, are totally
symmetric under permutations (P1 . . .PN ) that each indicate a certain ordering of
particle indices. We are free to choose one of the N ! permutations (for example
x1 < x2 <,. . . ,< xN , and multiply the integral with this same factor N !:

ZN,L =N !
∫ L−σ

σ
dx1· · ·

∫ L−σ

σ
dxNf(x1, . . . ,xN )Θ(x1, . . . ,xN ) (5.2)

(the function Θ is equal to one if x1 < x2 < · · ·< xN and zero otherwise). Now, let us
change variables x→ y in the integral as follows:

y1 = x1−σ, . . . , yk = xk− (2k−1)σ, . . . , yN = xN − (2N −1)σ,

This transformation simply shrinks the radius of each sphere to zero, and the y1, . . . ,yN
are non-interacting points on an interval of length L−2Nσ. We obtain the integral

ZN,L =N !
∫ L−2Nσ

0
dy1· · ·

∫ L−2Nσ

0
dyNΘ(y1, . . . ,yN ), (5.3)

Look at this integral: the bounds for y1,y2, . . . are again symmetric, and we can undo
the trick that brought us from eq. (5.1) to eq. (5.2) by suppressing the ordering of
the variables y and also the factor N !. We arrive at the partition function of N non-
interacting particles:

ZN,L =
∫ L−2Nσ

0
dy1· · ·

∫ L−2Nσ

0
dyN =

{
(L−2Nσ)N if L > 2Nσ
0 otherwise

. (5.4)
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5.1. One-dimensional hard spheres

We may rewrite the partition function in terms of the density ρ= 2σN/L

ZN,ρ =
{
LN (1−ρ)N if ρ < 1
0 otherwise

. (5.5)

We see that this is an analytic function for all N and all ρ, and even that the free
energy per sphere − logZ/N is an analytic function, so that this model has no phase
transition at finite density.

5.1.3 Partition function, Transfer-matrix derivation

Figure 5.2: Transforming three hard spheres on an interval of length L into two intervals (one of length
x−σ, and one of length L−x−σ) separated by a wall (represented by the center sphere, at position
x). Allowing for all possible x yields the partition function.

FIXME {This is a recursive solution, rather than a transfer-matrix one??} The sec-
ond derivation of the one-d hard-sphere partition function uses a transfer-matrix
strategy. Let us first compute the partition function for N = 1 (without invoking
eq. (5.4)). Evidently it is given by Z1,L = L− 2σ (of course only if L ≥ 2σ). It is zero
otherwise. Now we immediately go from one to three spheres (see Fig. 5.2). The
center sphere can be transformed into a wall. We find that

Z3,L =
∫ L−3σ

3σ
dx Z1,x−σZ1,L−x−σ (5.6)

=
∫ L−3σ

3σ
dx (x−3σ)(L−x−3σ) (5.7)

= 1
6(L−6σ)3 (5.8)

= 1
3!(L−2Nσ)3 (5.9)

The general case is relegated to the homework session of this lecture. It consists in
cutting up the partition function for N + 1 spheres into a partition function for N −1
spheres in front of a wall (represented by sphere N ) and a lone sphere N + 1.

51



Lecture 5. 1D models and the transfer matrix

5.1.4 Pressure and the equivalence of ensembles

As we have in our possession the partition function ZN,L = (L−2Nσ)N , we can com-
pute the pressure:

βP = ∂ logZ
∂L

=N
∂

∂L
[N log (L−2Nσ)] (5.10)

= N

L−2Nσ = N

L(1−ρ) , (5.11)

where ρ is the density (the fraction 2Nσ/L of space occupied by the spheres). The
eq. (5.11) is an analytic function, even in the limit N →∞, so that there is no phase
transition in the one-dimensional hard-sphere model in one dimension. The com-
pressibility

κ=− 1
L

∂V

∂P
(5.12)

is always positive (in a finite system as well as in the limit of L,N →∞. As discussed
in Lecture 4, this condition is a necessary stability condition in an infinite system but
it does not hold in a finite system, because of the possible presence of interfaces.

Our calculation, so far, has been in the NV T ensemble, where of course the role
of the volume is played by the length L (we are in one dimensions), and where the
temperature is irrelevant because we deal with hard spheres (π equals 0 or 1 at all
temperatures). But this gives an equation of state, where the control parameter is the
volume (in other words L), and we put it on the x-axis. We can compute the behavior
in other ensembles, for example at constant chemical potential and pressure, but let
us check, for the time being, the constant pressure (NPT ) ensemble (see [5, chap??]).
In constant pressure, but variable volume L, the partition function is:

ZNP =
∫
dLe−βPLZN,L (5.13)

=
∫ ∞

2Nσ
dL e−βPL (L−2Nσ)N︸             ︷︷             ︸

set L′=L−2Nσ

(5.14)

=
∫ ∞

0
dL′e−βP (L′+2Nσ)L′N = (5.15)

In the NPT ensemble, the volume L is an observable, and we can compute its expec-
tation value:

〈L−2Nσ〉= · · ·= N + 1
βP

, (5.16)

so that we obtain

P = N + 1
〈L−2Nσ〉 , (5.17)

which is almost the same as eq. (5.11). Task: For added symmetry, formulate eqs (5.17)
and (5.11) such that both contain a mean value.
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5.1. One-dimensional hard spheres

5.1.5 The virial expansion

An ideal gas satisfies PV = NRT or, in our variables of the one-dimensional hard-
sphere gas, it satisfies βPL/N = 1. This is nothing but the limit of eq. (5.11) in the
small-density limit ρ→ 0. The corrections to the ideal-gas behavior for physical sys-
tems in higher dimensions, and in particular for hard-sphere models, have fascinated
generations of physicists, starting with Boltzmann, in 1874. In the one-dimensional
hard-sphere gas, we can of course compute:

βPL/N = 1
1−ρ = 1 +ρ+ρ2 . . . (5.18)

= 1 +B
1
L

+C
1
L2 ... (5.19)

(the above equation is interpreted as a function of the volume L at fixed N ). The
coefficient B = 2Nσ is the second “virial” exponent. As mentioned in the lecture,
Boltzmann computed the fourth virial coefficent for three-dimensional hard spheres,
and it took half a century to check that his calculation was correct. It was believed that
the virial expansion of eq. (5.19) allowed one to access the behavior of real systems,
but this was not really true. In the one-dimensional hard-sphere gas, we can

1. compute all the virial coefficients,

2. prove that the virial expansion actually converges for all ρ < 1.

This is much more than we can usually achieve.

5.1.6 The probability to be at position x

Computing [5] the probability π(x) to be at x, for N one-dimensional hard spheres on
an interval of length L, is represented by the statistical weight of having a sphere at x
and then k more spheres to the left of x and N−1−k spheres to its right. As, initially,
we have to choose one sphere out of N to put it at x and then k spheres out of the
remaining N −1, x is given by the sum of the statistical weights of putting k disks to
the left (in the remaining left interval of length x−σ) and the N −1 remaining disks
to the right (length of interval L−x−σ):

π(x) =
N−1∑
k=0

1
ZN,L

(
N −1
k

)
Zk,x−σZN−1−k,L−x−σ︸                                                ︷︷                                                ︸
πk(x)

. (5.20)

The function π(x) is easy to write down, and also to evaluate numerically (this is
done in a program on a web site. You must to make sure that both cases in eq. (5.4)
are implemented, that is, that ZN,L = 0 if L < 2Nσ. (see Fig. 5.3). For ρ < 1/2, there
is a central region, where the density π(x) is strictly independent of x. You can check
this out numerically, but to prove it is really complicated [?].

53



Lecture 5. 1D models and the transfer matrix

Figure 5.3: Probability to be at x in the one-dimensional hard-sphere gas. It is computed by placing a
first sphere at position x and by asking about the statistical weight of all possible configurations of k
spheres to the left and N −1−k spheres to the right.

5.1.7 Hard spheres on a ring of length L, correlation functions

One might think that in the problem of one-dimensional hard spheres, all we did was
to consider boundary effects close to a wall. After all, in the center of the system,
the density is constant. This reasoning is wrong: The probability to be at a point x is
closely related to the correlation function at distance x (that is, the probability to have
two disks a distance x apart).

5.2 One-dimensional Ising model

5.2.1 Partition function, Transfer-matrix derivation h = 0
We consider the Ising model in one dimensions (Ising chain), for the moment without
a magnetic field. The hamiltonian (the energy) of the system is given by

H =−J
N−1∑
i=1

σiσi+1. (5.21)

Open boundary conditions

Let us first compute the partition function for two sites (N = 2) without periodic
boundary conditions. It is given by the following four configurations and the par-
tition function is the sum of their statistical weights:

Z2 =
∑↑↑ eβJ
↑↓ e−βJ
↓↑ e−βJ
↓↓ eβJ

= 2
(
eβJ + e−βJ

)
= 4cosh (βJ) . (5.22)

In a typical “transfer-matrix” approach, we can now move from the partition func-
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5.2. One-dimensional Ising model

tion with N −1 spins to the partition function with N spins and find:

ZN =
∑ . . . ↑ ↓ = 1

2ZN−1 exp(−βJ)
. . . ↑ ↑ = 1

2ZN−1 exp(βJ)
. . . ↓ ↓ = 1

2ZN−1 exp(βJ)
. . . ↓ ↑ = 1

2ZN−1 exp(−βJ)

= 2
(
eβJ + e−βJ

)
= 4cosh (βJ) (5.23)

where each of the boxes contains all the configurations of N − 1 spins with the spin
N−1 oriented as indicated. We notice that the basic symmetry between up and down
spins requires that the partition function of a system of N−1 spins with the final spin
in up position is simply 1

2ZN−1. We find

ZN = ZN−1 [2cosh (βJ)] = Z2 [2cosh (βJ)]N−2 = 2[2cosh (βJ)]N−1 (5.24)

so that one has

F =−kT logZN = 1
β

[log2 + (N −1) log [2cosh (βJ)]] . (5.25)

Clearly this is an analytic function at all temperatures and there is no phase transition.
We used in eq. (5.23) that the partition function Z↓N−1 = . . . ↓ was the same as

Z↑N−1 = . . . ↑ . More generally, we have that

Z↑N = Z↑N−1× ↑↑+Z↓N−1× ↓↑ (5.26)

Z↓N = Z↑N−1× ↑↓+Z↓N−1× ↓↓, (5.27)

where we remember that Z↑N is the partition function of the Ising model with the
restriction that the final spin (spin N ) is “up”. We write eq. (5.27) as[

Z↑N
Z↓N

]
=
[

eβJ e−βJ
e−βJ eβJ

]
︸                ︷︷                ︸
Transfer Matrix T

[
Z↑N−1
Z↓N−1

]
(5.28)

where the 2×2 matrix here is called the transfer matrix. Clearly we have:[
Z↑N
Z↓N

]
= TN−1

[
Z↑1
Z↓1

]
(5.29)

With Z↑1 = Z↓1 = 1, you easily check the value of eq. (??) for Z2.

Periodic boundary conditions

The Ising chain of N spins with periodic boundary conditions is the same as an Ising
chain on N + 1 spins with open boundary conditions and two additional conditions:

1. If spin 1 is ↑, then spin N + 1 is ↑.

2. If spin 1 is ↓, then spin N + 1 is ↓.
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Lecture 5. 1D models and the transfer matrix

(Next week, you’ll need full understanding of the above sentence in a much more
complicated setting, so don’t hesitate to spend 20 minutes having the above sink in:
With the two conditions, we have N independent spins, and spin N + 1 is simply
glued onto spin 1, making the two to be one and the same.) We can impose these
two condition separately by considering only Z↑N+1 for the case where [Z↑1 ,Z

↓
1 ] = [1,0]

and by considering only Z↓N+1 for the case where [Z↑1 ,Z
↓
1 ] = [0,1]. We find that the

partition function is given by

Z
period
N = (TN )(1,1) + (TN )(2,2) = Tr

(
TN

)
(5.30)

where Tr stands for the trace of the matrix, the sum of its diagonal elements. TN is the
N th power of the matrix T . In eq. (5.30), one first takes the N th power of the matrix,
then sums the diagonal elements.

5.2.2 Ising partition function (finite field)
If we consider the short-range Ising model in a magnetic field, then the hamiltonian
is given by

H =−J
N−1∑
i=1

σiσi+1−h
N∑
i=1

σi (5.31)

and we may write the magnetic-field dependent term as 1
2h(σi+σi+1), altough that is

not a big deal. In any case, the transfer matrix is[
eβ(J+h) e−βJ
e−βJ eβ(J+h)

]
(5.32)

Example: For a two-site Ising chain with periodic boundary conditions, square the
matrix and take the trace, and then check that this corresponds to the naive sum over
the four terms. This is a useful exercise for next week. The outcome is

TrZ2 = e2β(J+h) + e−2βJe2β(J−h)e−2βJ . (5.33)

Also, using for a matrix
[
a b
c d

]
that the eigenvalues are

λ1,2 = 1
2
(
a+d±

√
a2 +d2‘ + 4bc−2ad

)
(5.34)

and using that the partition function with periodic boundary conditions is ZN = λN1 +
λN2 ... you easily compute the free energy. One can also compute m = −1/N∂F/∂h =
. . . and one easily finds, with “un coup de Mathematica”,

m= sinh (βh)√
sinh2 (βh) + e−4βJ

(5.35)

so that one obtains m= 0 for h→ 0 for all temperatures T .
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5.3. Absence of phase transition in one-dimensional statistical systems

5.2.3 Spin correlations
The two-point function 〈sisi+`〉 can be computed within the transfer-matrix formal-
ism with the insertion of (−σz)’s:

〈sisi+`〉= tr[T iσzT `σzTN−i−`]
Z

→ λ−`+ 〈λ+|σzT `σz|λ+〉

= 〈λ+|σz|λ+〉2 +
(λ+
λ−

)−`
| 〈λ+|σz|λ−〉 |2 (5.36)

The first term is nothing but the magnetization per unit length, so the connected cor-
relation is given by

〈sisi+`〉−〈si〉〈si+`〉=
(λ+
λ−

)−`
| 〈λ+|σz|λ−〉 |2 (5.37)

and the correlation length is

ξ =
(
log λ+

λ−

)−1
. (5.38)

We note that the correlation length depends on the subleading eigenvalue of the trans-
fer matrix. Again, this is quite general.

More explicitly we find

ξ =

log
cosh(βJh) +

√
sinh2(βJh) + e−4βJ

cosh(βJh)−
√

sinh2(βJh) + e−4βJ

−1

i=

2arctanh

√
sinh2(βJh) + e−4βJ

cosh(βJh)

−1

. (5.39)

5.3 Absence of phase transition in one-dimensional
statistical systems

We discuss two reasons why in one-dimensional statistical-physics systems a phase
transition is often absent. One of the reasons is mathematical: The transfer matrix is
irreducible, so that its dominant eigenvalue is non-degenerate (there is only a single
one of them). Furthermore, one can prove that if the matrix elements are analytic
functions, then so must be the largest eigenvalue. The second reason is more qualita-
tive, often wrong, but essential to be known. It is related to domain walls.

5.3.1 Frobenius–Perron Theorem
The result obtained in Section 5.2.1 is in fact rather general, indeed one can show
that models with finite-dimensional transfer matrices can have phase transitions only
if there are forbidden (infinite energy) configurations. This is a consequence of two
theorems. The first is known as Perron-Frobenius theorem:
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Lecture 5. 1D models and the transfer matrix

Theorem 5.3.1 Let A be an irreducible matrix with non-negative elements; the maximum
eigenvalue is positive and non-degenerate.

We remind that a matrixM is reducible if and only if it can be placed into block upper-
triangular form by simultaneous row/column permutations. Clearly, a matrix with
strictly positive elements is automatically irreducible.

P tMP =
(
X Y
0 Z

)
, (5.40)

where P is a permutation matrix and X and Z are square matrices.
The second useful theorem is a well-known result in complex analysis. It can be

expressed as follows:

Theorem 5.3.2 If T (β) is a complex matrix with elements analytic functions of β, the eigen-
values are (branches) of analytic functions of β with algebraic singularities only localized at
the points at which eigenvalues split or coalesce [].

In statistical physics, the elements of the transfer matrix are generally exponen-
tials, therefore, if any configuration is allowed, all the elements of a finite transfer
matrix are nonzero and the matrix is in turn irreducible. By the Frobenius–Perron
theorem, the leading eigenvalue is non-degenerate and, from Theorem 5.3.2, turns
out to be an analytic function of β. This explains why the simplest one-dimensional
(classical) models do not exhibit phase transitions. In this argument it is of impor-
tance that the transfer matrix in a one-dimensional system does not itself depend on
N . This changes in more than one dimension, or for long-ranged interactions.

5.3.2 Domain walls in the 1D Ising model (local interactions)
Domain walls are excitations where the system of Ising spins is separated into one
part with all up spins, followed by a part with all down spins. However, it is easy to
see that the energy of a domain wall is J , but the entropy of a domain wall (entropy:
Logarithm of the number of microstates), the log of the number of possibilities, which
is L/a, where L is the system size and a = 1 the lattice parameter. We find that the
free energy is

∆F ∼−kT log
(
L

a

)
(5.41)

which is negative. It is therefore favorable to add a domain wall, or two domain walls,
and destroy the ferromagnetic ground state. We should be warned that domain wall
(or spin wave) arguments are in general easy, and very often they turn out to be
wrong.

5.3.3 Domain walls in the 1D Ising model with 1/r2 interac-
tions

Notable work on the one-dimensional Ising model with 1/r2 interaction (all spins
interacting, but with an energy decreasing with the square of the distance) is due to
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5.3. Absence of phase transition in one-dimensional statistical systems

Fisher et al (1972)[12]. There was also the influential mathematical proof by Dyson[13],
which showed that for interactions decaying slower than 1/r2, there had to be a phase
transition, however this did not clear up the situation of the 1/r2 interaction.

Of particular interest is the two-page 1969 article by Thouless[14], which uses spin
waves to explain that something unexpected must happen for the 1/r2 Ising model.
This work cleared the way for the establishment of Kosterlitz–Thouless theory. In-
deed, the one-dimensional Ising model with a 1/r2 interaction undergoes such a tran-
sition. There is also important work by Kosterlitz [15].

Figure 5.4: Phase diagram of long-range Ising models in D dimensions with interaction 1/rD+σ

(Illustration from a talk by Synge Todo, Univ of Tokyo)

This is an example of where the domain wall argument is not easy, and (as much
research has shown) not wrong. It goes back to Thouless[14]. Consider a hamiltonian
with interactions

H =−
∑
i,j

σiσj
(i− j)2 (5.42)

The cost of a domain wall at position x is

E = J

∫ x−a/2

0

∫ L

x+a/2

dx1 dx2
(x1−x2)2 (5.43)

Integrating this energy twice, one may see that the energy of a domain wall on a
system of length Lwith lattice parameter a is logL/a. (This precise calculation will be
the object of Homework 06). Both the energy of a domain wall and its entropy now
scale like logL. At low temperature, it becomes unfavorable to put a domain wall,
while at high temperature, domain walls are favored. This result of Thouless[14] has
been confirmed by much further research. See Fig. 5.4 for the general situation of
long-range Ising models in D dimensions.
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