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1 Wegner’s harmonic model - overview

We consider the harmonic model solved by Wegner[3],

H = −2Nd+
1

2

∑
r,r′

I(r− r′)(φr − φr′)2, (1)

a low-temperature approximation for the XY model on a d-dimensional lattice
of N sites, with the hamiltonian

HXY = −
∑
r,r′

I(r− r′) cos (φr − φr′) . (2)

In both eqs (1) and (2), the sum is unconstrained, and it counts each edge twice.
Wegner_LMC.py samples the partition function of eq. (1) using the Metropolis
algorithm in arbitrary spatial dimension d on a hypercubic lattice, where I(r−
r′) = 1 for nearest neighbors, and I(r− r′) = 0 else. Wegner_ECMC.py samples
eq. (1) with the event-chain algorithm. In this fact sheet, we obtain the exact
partition function, energy and spin correlation functions of this model on a finite
lattice with N = LD sites, slightly extending Wegner. Wegner_1d_Exact.py

contains a step-by-step implementation of the main analytic formulas of the
present fact sheet.

The goal of this fact sheet is double:

• On the one hand, we need the exact formulas for the pair correlation
function g[r = (L/2, . . . , L/2)], which we conjecture to be the slowest
variable in Wegner’s model, in order to describe the correlation time of
LMC and ECMC in this model.

• On the other hand, we derive from this exact solution the direct-sampling
algorithm Wegner_Direct.py for this model. Exactly solvable models
generally give rise to direct-sampling algorithms[2], and Wegner’s model
is no exception. It is however not clear how to generalize the direct-
sampling algorithm from the harmonic model to the XY -model, and it
is even more mysterious how to generalize from the analogous harmonic
solid[1] to the case of hard disks in the solid phase.
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2 Wegner in 1D, finite N

In one dimension, we consider L = N sites numbered r = (0, 1, . . . , N −1), with
Fourier modes k = (0, 2π/N, . . . , (N −1)2π/N). To simplify notation, we some-

times write
∑N−1
k=1 , when in fact we sum over the Fourier modes k1, . . . , kN−1.

Furthermore, we have

I(r) =

{
1 if r = −1, 1, with pbc

0 else.
(3)

Using this choice, we have

H = −2N +
N−1∑
r=0

(φr+1 − φr)2 (with pbc: N ≡ 0). (4)

2.1 Analytical solution

For each choice of (φ0 . . . φN−1) with
∑N−1
r=0 φr = 0, we define Fourier-transformed

angles:

φ̂k =
1√
N

N−1∑
r=0

e−ikrφr (5)

and express the orginal φr variables through them as:

φr =
1√
N

2(N−1)π/N∑
k=0,2π/N,...

e+ikrφ̂k. (6)

Wegner_1d_Exact implements this Fourier transform (through a direct summa-
tion as in eq. (38), rather than by FFT) and checks that it is consistent, and
leads to the expression of the Hamiltonian as

H = −2N +
∑

k=1,N−1

εkφ̂kφ̂N−k (7)

= −2N + 2
∑

k=1,N/2−1

εkφ̂kφ̂−k + 4 φ̂2N/2 (8)

with

εk = 4 sin2

(
k

2

)
. (9)

As the Hamiltonian of eq. (1) is real, we have φ̂N−k = φ̂−k = φ̂∗k (complex

conjugate) and φ̂N/2 is real.

2



The program Wegner_1d_Exact illustrates the passage from eq. (4) to eq. (8):

H = −2N +
∑
k

∑
k′

φ̂kφ̂k′
∑
r

[
eik(r+1) − eikr

] [
eik

′(r+1) − eik
′r
]

︸ ︷︷ ︸
4 sin2( k

2 )δ(k′+k,2π)

= −2N +

N−1∑
k=1

εkφ̂kφ̂N−k, (10)

where εk = 4 sin2 (k/2).
Next, one introduces the real-valued Fourier components Ψ̂ as

Ψ̂k =
1√
2

(
φ̂k + φ̂−k

)
for k = 1, . . . , N/2− 1 (11)

Ψ̂−k =
1

i
√

2

(
φ̂k − φ̂−k

)
for k = 1, . . . , N/2− 1 (12)

Ψ̂N/2 = φ̂N/2 (13)

with the inverse transform

φ̂k =
1√
2

(
Ψ̂k + iΨ̂−k

)
for k = 1, . . . , N/2− 1 (14)

φ̂−k =
1√
2

(
Ψ̂k − iΨ̂−k

)
for k = 1, . . . , N/2− 1, (15)

and arrives at the representation of the Hamiltonian

H = −2N +
∑

k=1,N/2−1

εk

(
Ψ̂2
k + Ψ̂2

−k

)
+ 4 φ̂2N/2. (16)

Note that we have again a factor of 2 with respect to Wegner, unless we take
his eq. (8) to imply a sum over the entire Brillouin zone.

The partition function is given by (maybe some constant prefactors missing)

Z =
∏
k

∫ ∞
−∞

dΨ̂k exp
[
−βεkΨ̂2

k

]
. (17)

Let us count degrees of freedom in this system, between the Fourier-transformed
version and the real-space version. Indeed, the Fourier modes 1, . . . , N/2 − 1

and N/2 + 1, . . . N − 1 are complex, but they satisfy φ̂k = φ̂∗N−k (this gives
N − 2 degrees of freedom). The Fourier mode N/2 is real and gives one degree
of freedom, and a total of N − 1, just as the number of φr, if we impose that
they sum to zero.

The system energy satisfies

〈E〉 = −2N +
∑
k

εk

∫∞
−∞ dΨ̂kΨ̂2

k exp
[
−βεkΨ̂2

k

]
∫∞
−∞ dΨ̂k exp

[
−βεkΨ̂2

kc
] = −2N +

∑
k

kBT

2
, (18)

with
∫∞
−∞ dx exp

(
−ax2

)
=
√
π/
√
a and

∫∞
−∞ dxx2 exp

(
−ax2

)
=
√
π/(2a3/2).
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2.2 Spin correlation function

Following Wegner[3], in order to compute the spin-correlation function

g(r) = 〈cos (φ0 − φr)〉 = Re 〈exp [i(φ0 − φr)]〉 , (19)

we note that

φ0 − φr =
1√
N

N−1∑
k=1

φ̂k [1− exp (ikr)]

=
1√
N

N/2−1∑
k=1

φ̂k
(
1− eikr

)
+ φ̂N/2(1− eiπr) +

N/2−1∑
k=1

φ̂−k
(
1− e−ikr

) . (20)

Writing out the exponentials into sines and cosines, this gives

φ0 − φr =

√
2

N

N/2−1∑
k=1

[
Ψ̂k (1− cos kr) + Ψ̂−k sin kr

]
+

1− (−1)r√
N

Ψ̂N/2. (21)

These terms are put together as follows for the correlation function (where we
integrate over the modes just as in eq. (18)):

A : exp

−
[ √

2√
N

(1− cos kr)

]2
/(4βεk)

 terms with Ψ̂k, (22)

B : exp

−
{ √

2√
N

[1− (−1)r]√
2

}2

/(16β)

 term with Ψ̂N/2, (23)

C : exp

−
[ √

2√
N

sin kr)

]2
/(4βεk)

 terms with Ψ̂−k. (24)

This yields, in agreement with Wegner’s eq. (11), except for the boundary term,

g(r) = exp

−2kBT

N

N/2−1∑
k=1

sin2
(
kr
2

)
εk

+
1

32
(1− (−1)r)2

 . (25)

To derive eq. (25), one uses∫
dx exp

(
−ax2

)
=

√
π√
a

(26)

and ∫
dx exp

(
−ax2 + ibx

)
=

exp
(
− b2

4a

)√
π

√
a

, (27)

so that the ratio of the two integrals equals exp
(
− b2

4a

)
.
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2.3 Direct-sampling algorithm for Wegner’s model in one
dimension

The direct-sampling algorithm for Wegner’s model in one dimension first sam-
ples

Ψ̂k = gauss(σk = 1/
√

2βεk) (28)

Ψ̂−k = gauss(σk = 1/
√

2βεk) (29)

φ̂k =
1√
2

(
Ψ̂k + iΨ̂−k

)
(30)

φ̂−k =
1√
2

(
Ψ̂k − iΨ̂−k

)
(31)

φ̂N/2 = gauss(σk = 1/
√

8β) (32)

φ̂0 = 0 (33)

and then performs the inverse Fourier transform of eq. (38). This is implemented
in Wegner_1d_Direct.py by direct calculation. For large N , fast Fourier meth-
ods will be called for.

2.4 Test of the correlations

The Python programs Wegner_LMC.py, Wegner_ECMC.py, Wegner_1d_Exact.py,
and Wegner_1d_Direct.py cross-check the different ways of computing the cor-
relation functions. Results for 〈cos (φ(0)− φ(r))〉 are as follows, for β =

√
2 and

N = 8:

r LMC ECMC Exact Direct
0 1.0 1.0 1.0 1.0
1 0.856557 0.85670 0.85668960 0.8566973
2 0.767048 0.76697 0.76707933 0.7670832
3 0.717807 0.71787 0.71787752 0.7178946
4 0.702133 0.70205 0.70218850 0.7021766

2.5 Asymptotic behavior

Neglecting the oscillating factor in eq. (25), the spin correlation starts at r = 1
as

g(1) = exp

(
−kBT

4

)
= exp (−r/ξ) with ξ(r = 1) = 4/(kBT ). (34)

Using
N/2−1∑
i=1

sin2
(
πi
2

)
4 sin2

(
πi
N

) → N2

4π2

∞∑
i=1

sin2
(
πi
2

)
i2

=
N2

32
, (35)
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we see that for r = N/2, this gives

g(N/2) = exp

(
−kBT

8

N

2

)
= exp (−r/ξ) with ξ(r = N/2) = 8/(kBT ). (36)

Fig. 1 shows how the effective correlation length, defined by g(r) = exp [−r/ξ(r)],
interpolates between 4β (at r = 1) and 8β (at r = N/2). The latter is enhanced
as clockwise and anticlockwise correlations contribute equally across the peri-
odic lattice. The true effective correlation length in the infinite chain equals 4β,
as we take the N →∞ limit before the r →∞ limit.

Figure 1: Effective correlation length in the one-dimensional harmonic model
with N = 1000, β = 1. The absolute correlation at half-lattice equals
exp (−500/8) = 7×10−28.

3 Wegner in 2D (and general D), finite N

The higher-dimensional calculation is performed analogously to the one of Sec-
tion 2, with Fourier-transformed angles φ̂k expressed in terms of the real-space
angles φr:

φ̂k =
1√
N

∑
r

e−ikrφr (37)

and the inverse Fourier transform as:

φr =
1√
N

∑
k∈B1

e+ikrφ̂k. (38)
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Here, the real-space vectors satisfy r = (x, y) with x, y = 0, 1, . . . , L−1, whereas
the momentum vectors in the first Brillouin zone B1 satisfy k = (kx, ky) with
kx, ky = 0, 2π/L...(L− 1)2π/L. vectors r = (x, y), with x, y = 0, 1, . . . , L.

The N − 1 momentum vectors in the first Brillouin zone are arbitrarily
partitioned into the sets B+, B−, and Bs (with : B+∪B−∪Bs = B1): For any
vector k ∈ B+, there is a vector −k ∈ B−. The vectors with k = −k (modulo
2π) make up the symmetric part of the Brillouin zone, Bs. To achieve the
partitioning in program Wegner_2d_Exact.py, the elements of B1 are inspected
one after the other. If a vector k satisfies −k 6= k( mod 2π), it is added
to B+ and −k is discarded. Otherwise (−k = k), it is added to Bs (see
Wegner_2d_Exact).

3.1 Test of the correlations (2D)

The Python programs Wegner_LMC.py, Wegner_ECMC.py, Wegner_2d_Exact.py,
and Wegner_2d_Direct.py cross-check the different ways of computing the cor-
relation function 〈cos [φ(0)− φ(r)]〉. Results are as follows, for β =

√
2 and

N = L2 = 16:

r LMC ECMC Exact Direct
(0, 0) 1.0 1.0 1.0 1.0
(1, 0) 0.920335 0.920584 0.920476 0.920448
(2, 0) 0.902103 0.901939 0.902018 0.901984
(3, 0) 0.920455 0.920390 0.920476 0.920550
(0, 1) 0.920412 0.920537 0.920476 0.920405
(1, 1) 0.902135 0.901904 0.902018 0.901788
(2, 1) 0.893888 0.893726 0.893752 0.893438
(3, 1) 0.901951 0.902335 0.902018 0.901848
(0, 2) 0.902025 0.901893 0.902018 0.901683
(1, 2) 0.893785 0.893815 0.893752 0.893466
(2, 2) 0.888785 0.889009 0.888828 0.888513
(3, 2) 0.893733 0.893855 0.893752 0.893334
(0, 3) 0.920403 0.920445 0.920476 0.920476
(1, 3) 0.901776 0.902109 0.902018 0.901854
(2, 3) 0.893715 0.893916 0.893752 0.893614
(3, 3) 0.901903 0.902021 0.902018 0.901873
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