Fact sheet: Wegner's model for finite systems

Werner Krauth

December 1, 2019

1 Wegner's harmonic model - overview

We consider the harmonic model solved by Wegner[3],

$$
\begin{equation*}
H=-2 N d+\frac{1}{2} \sum_{\mathbf{r}, \mathbf{r}^{\prime}} I\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\left(\phi_{\mathbf{r}}-\phi_{\mathbf{r}^{\prime}}\right)^{2}, \tag{1}
\end{equation*}
$$

a low-temperature approximation for the $X Y$ model on a d-dimensional lattice of N sites, with the hamiltonian

$$
\begin{equation*}
H^{X Y}=-\sum_{\mathbf{r}, \mathbf{r}^{\prime}} I\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \cos \left(\phi_{\mathbf{r}}-\phi_{\mathbf{r}^{\prime}}\right) . \tag{2}
\end{equation*}
$$

In both eqs (1) and (2), the sum is unconstrained, and it counts each edge twice. Wegner_LMC.py samples the partition function of eq. (1) using the Metropolis algorithm in arbitrary spatial dimension d on a hypercubic lattice, where $I(\mathbf{r}-$ $\left.\mathbf{r}^{\prime}\right)=1$ for nearest neighbors, and $I\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=0$ else. Wegner_ECMC.py samples eq. (1) with the event-chain algorithm. In this fact sheet, we obtain the exact partition function, energy and spin correlation functions of this model on a finite lattice with $N=L^{D}$ sites, slightly extending Wegner. Wegner_1d_Exact.py contains a step-by-step implementation of the main analytic formulas of the present fact sheet.

The goal of this fact sheet is double:

- On the one hand, we need the exact formulas for the pair correlation function $g[\mathbf{r}=(L / 2, \ldots, L / 2)]$, which we conjecture to be the slowest variable in Wegner's model, in order to describe the correlation time of LMC and ECMC in this model.
- On the other hand, we derive from this exact solution the direct-sampling algorithm Wegner_Direct.py for this model. Exactly solvable models generally give rise to direct-sampling algorithms[2], and Wegner's model is no exception. It is however not clear how to generalize the directsampling algorithm from the harmonic model to the $X Y$-model, and it is even more mysterious how to generalize from the analogous harmonic solid[1] to the case of hard disks in the solid phase.

2 Wegner in $1 D$, finite N

In one dimension, we consider $L=N$ sites numbered $r=(0,1, \ldots, N-1)$, with Fourier modes $k=(0,2 \pi / N, \ldots,(N-1) 2 \pi / N)$. To simplify notation, we sometimes write $\sum_{k=1}^{N-1}$, when in fact we sum over the Fourier modes k_{1}, \ldots, k_{N-1}.

Furthermore, we have

$$
I(r)= \begin{cases}1 & \text { if } r=-1,1, \text { with pbc } \tag{3}\\ 0 & \text { else }\end{cases}
$$

Using this choice, we have

$$
\begin{equation*}
H=-2 N+\sum_{r=0}^{N-1}\left(\phi_{r+1}-\phi_{r}\right)^{2} \quad(\text { with pbc: } N \equiv 0) \tag{4}
\end{equation*}
$$

2.1 Analytical solution

For each choice of $\left(\phi_{0} \ldots \phi_{N-1}\right)$ with $\sum_{r=0}^{N-1} \phi_{r}=0$, we define Fourier-transformed angles:

$$
\begin{equation*}
\hat{\phi}_{k}=\frac{1}{\sqrt{N}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} \phi_{r} \tag{5}
\end{equation*}
$$

and express the orginal ϕ_{r} variables through them as:

$$
\begin{equation*}
\phi_{r}=\frac{1}{\sqrt{N}} \sum_{k=0,2 \pi / N, \ldots}^{2(N-1) \pi / N} \mathrm{e}^{+i k r} \hat{\phi}_{k} \tag{6}
\end{equation*}
$$

Wegner_1d_Exact implements this Fourier transform (through a direct summation as in eq. (38), rather than by FFT) and checks that it is consistent, and leads to the expression of the Hamiltonian as

$$
\begin{align*}
H & =-2 N+\sum_{k=1, N-1} \epsilon_{k} \hat{\phi}_{k} \hat{\phi}_{N-k} \tag{7}\\
& =-2 N+2 \sum_{k=1, N / 2-1} \epsilon_{k} \hat{\phi}_{k} \hat{\phi}_{-k}+4 \hat{\phi}_{N / 2}^{2} \tag{8}
\end{align*}
$$

with

$$
\begin{equation*}
\epsilon_{k}=4 \sin ^{2}\left(\frac{k}{2}\right) \tag{9}
\end{equation*}
$$

As the Hamiltonian of eq. (1) is real, we have $\hat{\phi}_{N-k}=\hat{\phi}_{-k}=\hat{\phi}_{k}^{*}$ (complex conjugate) and $\hat{\phi}_{N / 2}$ is real.

The program Wegner_1d_Exact illustrates the passage from eq. (4) to eq. (8):

$$
\begin{array}{r}
H=-2 N+\sum_{k} \sum_{k^{\prime}} \hat{\phi}_{k} \hat{\phi}_{k^{\prime}} \underbrace{\sum_{r}\left[\mathrm{e}^{i k(r+1)}-\mathrm{e}^{i k r}\right]\left[\mathrm{e}^{i k^{\prime}(r+1)}-\mathrm{e}^{i k^{\prime} r}\right]}_{4 \sin ^{2}\left(\frac{k}{2}\right) \delta\left(k^{\prime}+k, 2 \pi\right)} \\
=-2 N+\sum_{k=1}^{N-1} \epsilon_{k} \hat{\phi}_{k} \hat{\phi}_{N-k} \tag{10}
\end{array}
$$

where $\epsilon_{k}=4 \sin ^{2}(k / 2)$.
Next, one introduces the real-valued Fourier components $\hat{\Psi}$ as

$$
\begin{align*}
\hat{\Psi}_{k} & =\frac{1}{\sqrt{2}}\left(\hat{\phi}_{k}+\hat{\phi}_{-k}\right) \quad \text { for } k=1, \ldots, N / 2-1 \tag{11}\\
\hat{\Psi}_{-k} & =\frac{1}{i \sqrt{2}}\left(\hat{\phi}_{k}-\hat{\phi}_{-k}\right) \quad \text { for } k=1, \ldots, N / 2-1 \tag{12}\\
\hat{\Psi}_{N / 2} & =\hat{\phi}_{N / 2} \tag{13}
\end{align*}
$$

with the inverse transform

$$
\begin{gather*}
\hat{\phi}_{k}=\frac{1}{\sqrt{2}}\left(\hat{\Psi}_{k}+i \hat{\Psi}_{-k}\right) \quad \text { for } k=1, \ldots, N / 2-1 \tag{14}\\
\hat{\phi}_{-k}=\frac{1}{\sqrt{2}}\left(\hat{\Psi}_{k}-i \hat{\Psi}_{-k}\right) \quad \text { for } k=1, \ldots, N / 2-1 \tag{15}
\end{gather*}
$$

and arrives at the representation of the Hamiltonian

$$
\begin{equation*}
H=-2 N+\sum_{k=1, N / 2-1} \epsilon_{k}\left(\hat{\Psi}_{k}^{2}+\hat{\Psi}_{-k}^{2}\right)+4 \hat{\phi}_{N / 2}^{2} \tag{16}
\end{equation*}
$$

Note that we have again a factor of 2 with respect to Wegner, unless we take his eq. (8) to imply a sum over the entire Brillouin zone.

The partition function is given by (maybe some constant prefactors missing)

$$
\begin{equation*}
Z=\prod_{k} \int_{-\infty}^{\infty} d \hat{\Psi}_{k} \exp \left[-\beta \epsilon_{k} \hat{\Psi}_{k}^{2}\right] \tag{17}
\end{equation*}
$$

Let us count degrees of freedom in this system, between the Fourier-transformed version and the real-space version. Indeed, the Fourier modes $1, \ldots, N / 2-1$ and $N / 2+1, \ldots N-1$ are complex, but they satisfy $\hat{\phi}_{k}=\hat{\phi}_{N-k}^{*}$ (this gives $N-2$ degrees of freedom). The Fourier mode $N / 2$ is real and gives one degree of freedom, and a total of $N-1$, just as the number of ϕ_{r}, if we impose that they sum to zero.

The system energy satisfies

$$
\begin{equation*}
\langle E\rangle=-2 N+\sum_{k} \epsilon_{k} \frac{\int_{-\infty}^{\infty} d \hat{\Psi}_{k} \hat{\Psi}_{k}^{2} \exp \left[-\beta \epsilon_{k} \hat{\Psi}_{k}^{2}\right]}{\int_{-\infty}^{\infty} d \hat{\Psi}_{k} \exp \left[-\beta \epsilon_{k} \hat{\Psi}_{k}^{2} c\right]}=-2 N+\sum_{k} \frac{k_{B} T}{2} \tag{18}
\end{equation*}
$$

with $\int_{-\infty}^{\infty} d x \exp \left(-a x^{2}\right)=\sqrt{\pi} / \sqrt{a}$ and $\int_{-\infty}^{\infty} d x x^{2} \exp \left(-a x^{2}\right)=\sqrt{\pi} /\left(2 a^{3 / 2}\right)$.

2.2 Spin correlation function

Following Wegner[3], in order to compute the spin-correlation function

$$
\begin{equation*}
g(r)=\left\langle\cos \left(\phi_{0}-\phi_{r}\right)\right\rangle=\operatorname{Re}\left\langle\exp \left[i\left(\phi_{0}-\phi_{r}\right)\right]\right\rangle \tag{19}
\end{equation*}
$$

we note that

$$
\begin{align*}
& \phi_{0}-\phi_{r}=\frac{1}{\sqrt{N}} \sum_{k=1}^{N-1} \hat{\phi}_{k}[1-\exp (i k r)] \\
= & \frac{1}{\sqrt{N}}\left[\sum_{k=1}^{N / 2-1} \hat{\phi}_{k}\left(1-\mathrm{e}^{i k r}\right)+\hat{\phi}_{N / 2}\left(1-\mathrm{e}^{i \pi r}\right)+\sum_{k=1}^{N / 2-1} \hat{\phi}_{-k}\left(1-\mathrm{e}^{-i k r}\right)\right] \tag{20}
\end{align*}
$$

Writing out the exponentials into sines and cosines, this gives

$$
\begin{equation*}
\phi_{0}-\phi_{r}=\sqrt{\frac{2}{N}} \sum_{k=1}^{N / 2-1}\left[\hat{\Psi}_{k}(1-\cos k r)+\hat{\Psi}_{-k} \sin k r\right]+\frac{1-(-1)^{r}}{\sqrt{N}} \hat{\Psi}_{N / 2} \tag{21}
\end{equation*}
$$

These terms are put together as follows for the correlation function (where we integrate over the modes just as in eq. (18)):

$$
\begin{align*}
& A: \exp \left\{-\left[\frac{\sqrt{2}}{\sqrt{N}}(1-\cos k r)\right]^{2} /\left(4 \beta \epsilon_{k}\right)\right\} \text { terms with } \hat{\Psi}_{k} \tag{22}\\
& B: \exp \left\{-\left\{\frac{\sqrt{2}}{\sqrt{N}} \frac{\left[1-(-1)^{r}\right]}{\sqrt{2}}\right\}^{2} /(16 \beta)\right\} \text { term with } \hat{\Psi}_{N / 2} \tag{23}\\
& \left.C: \exp \left\{-\left[\frac{\sqrt{2}}{\sqrt{N}} \sin k r\right)\right]^{2} /\left(4 \beta \epsilon_{k}\right)\right\} \text { terms with } \hat{\Psi}_{-k} \tag{24}
\end{align*}
$$

This yields, in agreement with Wegner's eq. (11), except for the boundary term,

$$
\begin{equation*}
g(r)=\exp \left\{-\frac{2 k_{B} T}{N}\left[\sum_{k=1}^{N / 2-1} \frac{\sin ^{2}\left(\frac{k r}{2}\right)}{\epsilon_{k}}+\frac{1}{32}\left(1-(-1)^{r}\right)^{2}\right]\right\} \tag{25}
\end{equation*}
$$

To derive eq. (25), one uses

$$
\begin{equation*}
\int d x \exp \left(-a x^{2}\right)=\frac{\sqrt{\pi}}{\sqrt{a}} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\int d x \exp \left(-a x^{2}+i b x\right)=\frac{\exp \left(-\frac{b^{2}}{4 a}\right) \sqrt{\pi}}{\sqrt{a}} \tag{27}
\end{equation*}
$$

so that the ratio of the two integrals equals $\exp \left(-\frac{b^{2}}{4 a}\right)$.

2.3 Direct-sampling algorithm for Wegner's model in one dimension

The direct-sampling algorithm for Wegner's model in one dimension first samples

$$
\begin{align*}
\hat{\Psi}_{k} & =\operatorname{gauss}\left(\sigma_{k}=1 / \sqrt{2 \beta \epsilon_{k}}\right) \tag{28}\\
\hat{\Psi}_{-k} & =\operatorname{gauss}\left(\sigma_{k}=1 / \sqrt{2 \beta \epsilon_{k}}\right) \tag{29}\\
\hat{\phi}_{k} & =\frac{1}{\sqrt{2}}\left(\hat{\Psi}_{k}+i \hat{\Psi}_{-k}\right) \tag{30}\\
\hat{\phi}_{-k} & =\frac{1}{\sqrt{2}}\left(\hat{\Psi}_{k}-i \hat{\Psi}_{-k}\right) \tag{31}\\
\hat{\phi}_{N / 2} & =\operatorname{gauss}\left(\sigma_{k}=1 / \sqrt{8 \beta}\right) \tag{32}\\
\hat{\phi}_{0} & =0 \tag{33}
\end{align*}
$$

and then performs the inverse Fourier transform of eq. (38). This is implemented in Wegner_1d_Direct. py by direct calculation. For large N, fast Fourier methods will be called for.

2.4 Test of the correlations

The Python programs Wegner_LMC.py, Wegner_ECMC.py, Wegner_1d_Exact.py, and Wegner_1d_Direct. py cross-check the different ways of computing the correlation functions. Results for $\langle\cos (\phi(0)-\phi(r))\rangle$ are as follows, for $\beta=\sqrt{2}$ and $N=8$:

r	LMC	ECMC	Exact	Direct
0	1.0	1.0	1.0	1.0
1	0.856557	0.85670	0.85668960	0.8566973
2	0.767048	0.76697	0.76707933	0.7670832
3	0.717807	0.71787	0.71787752	0.7178946
4	0.702133	0.70205	0.70218850	0.7021766

2.5 Asymptotic behavior

Neglecting the oscillating factor in eq. (25), the spin correlation starts at $r=1$ as

$$
\begin{equation*}
g(1)=\exp \left(-\frac{k_{B} T}{4}\right)=\exp (-r / \xi) \quad \text { with } \xi(r=1)=4 /\left(k_{B} T\right) \tag{34}
\end{equation*}
$$

Using

$$
\begin{equation*}
\sum_{i=1}^{N / 2-1} \frac{\sin ^{2}\left(\frac{\pi i}{2}\right)}{4 \sin ^{2}\left(\frac{\pi i}{N}\right)} \rightarrow \frac{N^{2}}{4 \pi^{2}} \sum_{i=1}^{\infty} \frac{\sin ^{2}\left(\frac{\pi i}{2}\right)}{i^{2}}=\frac{N^{2}}{32} \tag{35}
\end{equation*}
$$

we see that for $r=N / 2$, this gives

$$
\begin{equation*}
g(N / 2)=\exp \left(-\frac{k_{B} T}{8} \frac{N}{2}\right)=\exp (-r / \xi) \quad \text { with } \xi(r=N / 2)=8 /\left(k_{B} T\right) \tag{36}
\end{equation*}
$$

Fig. 1 shows how the effective correlation length, defined by $g(r)=\exp [-r / \xi(r)]$, interpolates between 4β (at $r=1$) and 8β (at $r=N / 2$). The latter is enhanced as clockwise and anticlockwise correlations contribute equally across the periodic lattice. The true effective correlation length in the infinite chain equals 4β, as we take the $N \rightarrow \infty$ limit before the $r \rightarrow \infty$ limit.

Figure 1: Effective correlation length in the one-dimensional harmonic model with $N=1000, \beta=1$. The absolute correlation at half-lattice equals $\exp (-500 / 8)=7 \times 10^{-28}$.

3 Wegner in 2D (and general D), finite N

The higher-dimensional calculation is performed analogously to the one of Section 2, with Fourier-transformed angles $\hat{\phi}_{\mathbf{k}}$ expressed in terms of the real-space angles $\phi_{\mathbf{r}}$:

$$
\begin{equation*}
\hat{\phi}_{\mathbf{k}}=\frac{1}{\sqrt{N}} \sum_{\mathbf{r}} \mathrm{e}^{-i \mathbf{k} \mathbf{r}} \phi_{\mathbf{r}} \tag{37}
\end{equation*}
$$

and the inverse Fourier transform as:

$$
\begin{equation*}
\phi_{r}=\frac{1}{\sqrt{N}} \sum_{\mathbf{k} \in B_{1}} \mathrm{e}^{+i \mathbf{k r}} \hat{\phi}_{\mathbf{k}} \tag{38}
\end{equation*}
$$

Here, the real-space vectors satisfy $\mathbf{r}=(x, y)$ with $x, y=0,1, \ldots, L-1$, whereas the momentum vectors in the first Brillouin zone B_{1} satisfy $\mathbf{k}=\left(k_{x}, k_{y}\right)$ with $k_{x}, k_{y}=0,2 \pi / L \ldots(L-1) 2 \pi / L$. vectors $\mathbf{r}=(x, y)$, with $x, y=0,1, \ldots, L$.

The $N-1$ momentum vectors in the first Brillouin zone are arbitrarily partitioned into the sets B^{+}, B^{-}, and B^{s} (with : $B^{+} \cup B^{-} \cup B^{s}=B_{1}$): For any vector $\mathbf{k} \in B^{+}$, there is a vector $-\mathbf{k} \in B^{-}$. The vectors with $\mathbf{k}=-\mathbf{k}$ (modulo 2π) make up the symmetric part of the Brillouin zone, B^{s}. To achieve the partitioning in program Wegner_2d_Exact.py, the elements of B_{1} are inspected one after the other. If a vector \mathbf{k} satisfies $-\mathbf{k} \neq \mathbf{k}(\bmod 2 \pi)$, it is added to B^{+}and $-\mathbf{k}$ is discarded. Otherwise $(-\mathbf{k}=\mathbf{k})$, it is added to B^{s} (see Wegner_2d_Exact).

3.1 Test of the correlations (2D)

The Python programs Wegner_LMC.py, Wegner_ECMC.py, Wegner_2d_Exact.py, and Wegner_2d_Direct.py cross-check the different ways of computing the correlation function $\langle\cos [\phi(0)-\phi(\mathbf{r})]\rangle$. Results are as follows, for $\beta=\sqrt{2}$ and $N=L^{2}=16$:

\mathbf{r}	LMC	ECMC	Exact	Direct
$(0,0)$	1.0	1.0	1.0	1.0
$(1,0)$	0.920335	0.920584	0.920476	0.920448
$(2,0)$	0.902103	0.901939	0.902018	0.901984
$(3,0)$	0.920455	0.920390	0.920476	0.920550
$(0,1)$	0.920412	0.920537	0.920476	0.920405
$(1,1)$	0.902135	0.901904	0.902018	0.901788
$(2,1)$	0.893888	0.893726	0.893752	0.893438
$(3,1)$	0.901951	0.902335	0.902018	0.901848
$(0,2)$	0.902025	0.901893	0.902018	0.901683
$(1,2)$	0.893785	0.893815	0.893752	0.893466
$(2,2)$	0.888785	0.889009	0.888828	0.888513
$(3,2)$	0.893733	0.893855	0.893752	0.893334
$(0,3)$	0.920403	0.920445	0.920476	0.920476
$(1,3)$	0.901776	0.902109	0.902018	0.901854
$(2,3)$	0.893715	0.893916	0.893752	0.893614
$(3,3)$	0.901903	0.902021	0.902018	0.901873

References

[1] B. Jancovici. Infinite Susceptibility Without Long-Range Order: The TwoDimensional Harmonic "Solid". Physical Review Letters, 19:20-22, July 1967.
[2] W. Krauth. Statistical Mechanics: Algorithms and Computations. Oxford University Press, USA, nov 2006.
[3] F. Wegner. Spin-ordering in a planar classical heisenberg model. Zeitschrift für Physik, 206(5):465-470, 1967.

