Tutorial 1, Advanced MCMC 2022/23 ICFP Master (second year)

Werner Krauth
ENS Paris
(Dated: 11 January 2023)

1. A priori probabilities and filters
(a) In the lecture, we discussed a priori probabilities \mathcal{A} and filters \mathcal{P}. Discuss those for the 3×3 pebble game.
(b) We discussed that a finite Markov chain takes place on a graph. Draw this graph for the 3×3 pebble game.

2. Irreducibility and uniqueness of stationary distribution

In the lecture, we discussed that an irreducible transition matrix has a unique stationary distribution (but that convergence is not guaranteed). We now consider the matrix:

$$
P=\left(\begin{array}{lll}
0 & 1 & 0 \tag{1}\\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Show that P is a transition matrix of a Markov chain.
(b) Draw the graph of P.
(c) Is P irreducible?
(d) Does P have a unique stationary distribution?
(e) Is there a contradition with what was said in the lecture?? (look up "Unique essential communicating class" in Levin \& Peres).

3. Different categories of transition matrices

In the lecture, we discussed the different categories of transition matrices. We now consider the matrix:

$$
P=\left(\begin{array}{ccc}
5 / 12 & 5 / 12 & 1 / 6 \tag{2}\\
1 / 4 & 1 / 4 & 1 / 2 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right)
$$

(a) Is P the transition matrix of a Markov chain?
(b) If yes, is P an irreducible transition matrix?
(c) If yes, is P an aperiodic transition matrix?
(d) Is P reversible or non-reversible?
(e) What is its category?

4. Total variation distance and mixing time

In the lecture, we discussed the total variation distance (TVD)
(a) There was a "tiny" theorem to be proven... Prove it!
(b) Compute the TVD for the 3×3 pebble game, starting from the upper right corner, for the first few steps (if you have no computer) or for all t (if you have a computer).
(c) Compute the quantity $d(t)$ (with the maximum taken over initial configurations), and the mixing time as a function of the parameter ϵ (with a computer).

5. Conductance on the path graph

The path graph $P_{n}=(\Omega, V)$ is the one-dimensional lattice without periodic boundary conditions, with $\Omega=\{1, \ldots, n\}$, and $V=\{(1,2), \ldots,(n-1, n)\}$. In week 2 , we will consider a number of different MCMC algorithms, variants of the Metropolis algorithm, where one proposes a move from i to $j=i \pm 1$ with probability $\frac{1}{2}$, and accepts it with probability $\min \left(1, \pi_{j} / \pi_{i}\right)$. It will be interesting to know the conductance of the Metropolis algorithm for different choices of π.
(a) What is the conductance for the Metropolis algorithm for the constant distribution $\pi_{i}=$ const? (NB: the distribution must be normalized)
(b) What is the conductance for the Metropolis algorithm for the square-wave distribution $\pi_{2 k-1}=\frac{2}{3 n}, \pi_{2 k}=\frac{4}{3 n} \forall k \in\{1, \ldots, n / 2\}$ (for even n)?
(c) What is the conductance for the Metropolis algorithm for the V-shaped distribution: $\pi_{i}=\mathrm{const}\left|\frac{n+1}{2}-i\right| \forall i \in\{1, \ldots, n\} ?$

NB: Next week, we will connect these conductances to the mixing and correlation times. If you have time, you can compute the TVD (by simulation) as a function of time (start from configuration $i=1$).

