Advanced topics in Markov-chain Monte Carlo

Lecture 6:

Sampling π (stationary distributions), computing π (Free energies)

Part 1/2: Introduction

Werner Krauth

ICFP -Master Course Ecole Normale Supérieure, Paris, France

22 February 2023

References

 D. A. Levin, Y. Peres, E. L. Wilmer, Markov Chains and Mixing Times, (American Mathematical Society, 2008),

Characteristic times in MCMC 1/2

- Correlation time: Time to move from one i ($\sim \pi$) to an independent j ($\sim \pi$).
- Mixing time: Time to reach a $j \sim \pi$ (to some precision) starting from $i \sim \pi^{\{0\}}$ with worst $\pi^{\{0\}}$.
- Cover time: Time to have seen all samples, starting from the worst initial sample x: $t_{cov} = \max_{x \in \Omega} \mathbb{E} \left[\tau_{cov}(x) \right]$ (with $\tau_{cov}(x)$ the time to have seen all $i \in \Omega$).

Characteristic times in MCMC 1/2

- Correlation time: Time to move from one i ($\sim \pi$) to an independent j ($\sim \pi$).
- Mixing time: Time to reach a $j \sim \pi$ (to some precision) starting from $i \sim \pi^{\{0\}}$ with worst $\pi^{\{0\}}$.

Characteristic times in MCMC 2/2

Example (SSEP of *N* hard spheres on path graph \mathcal{P}_{2N}):

- Mixing time: $\propto N^3 \log N$.
- Cover time: N^N.

Consequences:

- **1** Difficult to know normalization of π :
 - ... What is $Z = \sum_{x} \pi_{x}$? (Thermodynamic integration)
- ② Difficult to know Ω:
 - ... What is $\min_{x} \pi_{x}$?
 - ... What is $\max_x \pi_x$? (Simulated annealing)
 - ... What is conductance?
- Oifficult to explore Ω:
 - Is $\Omega = \emptyset$?
 - Have we seen all of Ω? (Multicanonical MC)

Thermodynamic integration, simulated annealing, etc.

- "Regular" MCMC algorithm development
- "Lifted" MCMC algorithms (weeks 2-4)
- Meta: Thermodynamic integration, simulated annealing, sim. tempering, parallel tempering (weeks 6-7)

MCMC variant	π	Р	Ω
"regular"	keep	change	keep
"lifted"	keep	keep	change
"meta"	change	keep	keep

- Mixtures of strategies possible.
- Sampling algorithms development vs. Metaheuristics.
- We will study metaheuristics for a single particle on the path graph \mathcal{P}_n