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Introduction

Some general information:

• Starting time: 14:00 AM, finishing time: 17:00 PM

• External material is not allowed (no books, scripts, calculators, computers, smart phones etc.).

• Use only paper provided by ENS.

• Do not forget to write your name onto the cover sheet.

• Please transfer your answers from the green scratch paper (brouillon) to the white exam paper.

• Do not forget to sign the register (“feuille d’émargement”).

Useful formulas, cheat sheet

Integral representation of the Dirac delta function

δ(x) =
1

2π

∫ ∞
−∞

dλ exp (iλx)

Integral representation of the Kronecker delta function

δj,k =
1

2π

∫ π

−π
dλ exp [iλ(j − k)]

Transforming sums into integrals Remember that sums over integer elements are best transformed as∑
n=1,2,...

f(n) ≡
∑

n=1,2,...

∆nf(n)

with the differential ∆n = 1. Substitutions of n then apply to ∆n.

Eigenvalues of the harmonic trap Remember that the eigenvalues of the harmonic oscillator are

~ω(n+ 1/2), n = 0, 1, 2, . . . (1)

You can (should) omit the 1/2 term.

Bose distribution function Remember that this function is given by

e−β(E−µ)

1− e−β(E−µ)
=

1

eβ(E−µ) − 1

Useful one-dimensional integrals Remember that∫ ∞
0

dxx
1

ex − 1
=
π2

6
,

∫ ∞
0

dxx2
1

ex − 1
= 2ζ(3),

∫ π

0

dθez cos θ = πI0(x) (mod. Bessel function)

n-dimensional Gaussian integral Remember [B = (B1, . . . , Bn)] that for symmetric positive definite matrices A:∫ ∞
−∞

dx1· · ·
∫ ∞
−∞

dxn exp

−1

2

n∑
i,j=1

Aijxixj +

n∑
i=1

Bixi

 =

√
(2π)n

detA
exp

(
1

2
BTA−1B

)
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I. BOSE–EINSTEIN CONDENSATION, DIMENSIONALITY, AND SATURATION NUMBERS

In this question, we consider the harmonic trap with ω = 1 in one dimension and, in dimensions d > 1, the isotropic
harmonic trap with ωx = ωy(= ωz) = 1. We set the mass m = 1 and, finally, ~ = 1. We omit the term 1/2 in eq. (1).

A. Single-particle state, N-body state (non-interacting particles)

Consider a harmonic trap in d = 2 (two) dimensions, with a single particle (of mass 1).

• Write down the (single-particle) states of low energy.

E = 0 and (0, 0) E = 1 and (0, 1), (1, 0) E = 2 and (0, 2), (2, 0), (1, 1) Density of states: N (E) = 1 for
E = 0, 1, 2... in d = 1, N (E) = E + 1 for E = 0, 1, 2... in d = 2, N (E) = (E + 1)(E + 2/2 for E = 0, 1, 2...
in d = 3,

• Then suppose you put three (non-interacting) particles into this trap. Write down the (three-particle) many-
body states of low energy (the energy of an N -body state is the sum of the single-particle energies).

Here, it is convenient to number the different single-particle states, for example σ = 0 ≡ (0, 0), σ = 1 ≡ (1, 0),
σ = 2 ≡ (0, 1), σ = 3 ≡ (1, 1), etc. A three-body state is then given through a tuple σ1, σ2, σ3.

• Give formal expressions for the exact partition function in terms of the 3-body states for the case of 3 distin-
guishable (non-interacting) particles and for the case of 3 (non-interacting) indistinguisable particles (bosonic
statistics).

For 3 distinguishable particles, we have

Z =
∑
σ1

∑
σ2

∑
σ3

exp {−β [E(σ1) + E(σ2) + E(σ3)]} =

[∑
σ

exp (−βE(σ))

]3
For 3 indistinguishable particles, we have

Z =
∑
σ1

∑
σ2≥σ1

∑
σ3≥σ2

exp {−β [E(σ1) + E(σ2) + E(σ3)]}

B. Chemical potential

We now consider different statistical ensembles.

• Following what we did in the lecture and in the homework, explain how one goes from the bosonic canonic
partition function (as a function of N and the inverse temperature β) of Section I A to the grand canonic
partition function, in terms of a chemical potential µ and β. (Hint: Look at the “Useful” formulas.)

We can write the partition function through occupation levels n0, n1, . . . for the single-particle states σ = 0, σ =
1, . . . . The correct number of particles is imposed through a Kronecker delta function. One then finds that
the partition function is given through

ZN (β) =

∫ π

−π

dλ

2π

∏
σ

[∑
nσ

enσ(−βEσ+iλ)

]

• Write down the grand-canonic partition function, quite generally, for ideal bosons, in terms of the density of
states N (E). Explain your formula for the grand-canonic partition function. (Attention: make sure that all the
signs and prefactors are OK.) What is the density of states in the harmonic trap in d = 1, and of the isotropic
harmonic trap, in d = 2, and d = 3?
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The grand-canonical partition function treats each single-particle state as independently occupied. The sta-
tistical weight of an N -body state is the product over all single-particle states of their probabilities. For
each of these states, the total statistical weight is the sum of the weights to put 0, 1, 2, . . . particles, that
is 1 + e−β(E−µ) + e−2β(E−µ) + · · · = 1/(1− e−β(E−µ)). Therefore

Z(β, µ) =
∏
σ

1

1− exp [−β(Eσ − µ)]
(2)

which can be written as

Z(β, µ) =
∏

E=0,1,2,...

[
1

1− exp [−β(E − µ)]

]N(E)

(3)

The density of state for the harmonic oscillators is:

N (E) =


1 for d = 1

E + 1 for d = 2

(E + 1)(E + 2)/2 for d = 3

C. Ideal Bosons and saturation numbers

As discussed in lectures and homeworks, we can describe the Bose–Einstein phase transition in terms of the satu-
ration number (the mean maximum number of particles in excited states).

• Formally express the saturation number in a harmonic trap in terms of the densities of states N (E). Connect
the saturation number to the phenomenon of Bose–Einstein condensation.

To compute the saturation number, we put µ = 0. It cannot get any bigger.

〈Nsat〉 =
∑
E>0

N (E)
1

exp (βE)− 1
.

(The total number 〈N〉 is the same expression, but summed over all states.) The saturation number gives
the maximum number of particles that can be put into the excited states. If we add more particles, they
must necessarily go into the ground state, that is, into the condensate.

• Explain why, in the harmonic trap in 1d, and in the isotropic harmonic trap in d > 1, the study of Bose-Einstein
condensation for large particle numbers 〈N〉 takes place at high temperature. Write the high-temperature limit
of the saturation number as an integral (rather than a sum over energies E). (Hint: take a look at the “Useful”
formulas for the transition from sums to integrals.)

The saturation number increases with the temperature (exp (βE) → 1 for β → 0. The expression for the
saturation number is

〈Nsat〉 =
∑
E>0

∆E
1

exp (βE)− 1

taking βE = x, so that dE = dx/β, we reach

=
1

β

∫ ∞
0

dx
1

exp (x)− 1

• Study the integral you just obtained (for d = 1) in the limit 〈N〉 → ∞. (Hint: study what happens at what
corresponds to small energies.) What does this imply for the phenomenon of Bose–Einstein condensation in a
one-dimensional trap?

The above integral diverges logarithmically at small x, as the integrand goes like 1/x at small x. The conse-
quence is that the energy levels are never saturated and that there is no Bose–Einstein condensation in a
one-dimensional harmonic trap.
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D. Ideal Bosons in isotropic two- and three-dimensional harmonic traps

• Compute the saturation number for the isotropic harmonic trap in d = 2 in the limit N → ∞. (Hint: See the
“Useful” formulas for integrals, if needed.) Determine the Bose–Einstein condensation temperature Tc and the
condensate fraction for large 〈N〉 below Tc.

In d = 2, we have

〈Nsat〉 =
1

β2

∫ ∞
0

dxx
1

exp (x)− 1
=
π2

6
(kBT )2 (4)

The saturation number is finite (and it grows with temperature). The Bose–Einstein-condensation tem-

perature is when 〈Nsat〉 = 〈N〉. This gives kBTc =
√

6 〈N〉/π. To get the condensate fraction, we put
〈Nsat〉+ 〈N0〉 = N . This gives for T < Tc:

N0

N
= 1− 〈Nsat〉

〈N〉
= 1−

(
T

Tc

)2

for T < Tc, in d = 2

• Obtain the critical temperature Tc for Bose–Einstein condensation and the condensate fraction below Tc for a
three-dimensional isotropic harmonic trap. (Hint: See the “Useful” formulas, if needed.)

In d = 3, as discussed in the lecture, we have

〈Nsat〉 =
1

2β3

∫ ∞
0

dxx2
1

exp (x)− 1
= ζ(3)(kBT )3 (5)

This gives kBTc = (〈N〉 /ζ(3))
1/3

and

N0

N
= 1− 〈Nsat〉

〈N〉
= 1−

(
T

Tc

)3

for T < Tc, in d = 3

• In all of physics, the ideal Bose gas is the only system of not mutually interacting particles that features a phase
transition. Can you explain why that is so?

Two answers are possible:

1. In terms of wave functions, the symmetrization of Bosonic wave functions introduces an effective
interaction, even for non-interacting particles ψBos(x, y) = ψ1(x)ψ2(y) + ψ1(y)ψ2(x). However, it is
amazing that the symmetrization does not appear in the calculation leading to the equation of states,
but only influences the density of states.

2. In terms of path integrals, the same symmetrization applies to the arguments of the diagonal density
matrix.



5

II. THE SPHERICAL MODEL

We consider an hypercubic lattice of length L in d dimensions (with periodic boundary conditions) with a spin σi
on each vertex i. There are N = Ld spins in the system. We consider the “spherical model” solved in 1952 by Berlin
and Kac. The spherical model stands out because it can be solved in a non-zero magnetic field. Although we will not
solve it up to the very end, it has a phase transition in high dimensions, but not in low dimensions, just like the Ising
model.

The spherical model is defined through an energy that is similar to the one of the Ising model:

E = −J
∑
(i,j)

σiσj −H
N∑
i=1

σi, (6)

where are (i, j) are neighboring sites on the d-dimensional hypercubic lattice. However, instead of taking only the
values ±1, each spin can take on any real value σi ∈ [−∞,+∞]. Together, the spins σ1, . . . , σN are subject only to
the global constraint that

N∑
i=1

σ2
i = N.

In the following, we write K = βJ and h = βH.

A. Partition function, using Dirac delta function

Formally write the partition function of the model using a Dirac delta function.

ZN =
1

2π

∫ ∞
−∞

...

∫ ∞
−∞

dσ1...dσN exp

K∑
(i,j)

σiσj + h
∑
i

σi

 δ

(∑
i

σ2
i −N

)

With the constraint aN − a
∑
i σ

2
i = 0 for all a. Therefore, adding such a term does not change the energy.

B. Partition function, using the integral representation of the Dirac delta function

Note that we can modify the energy in eq. (6) by adding a term E → E + aN − a
∑
i σ

2
i without affecting the

partition function. From now on we will keep this term.
We denote σ = (σ1, σ2, ..., σN ) (an N -dimensional column vector). Use the integral representation of the Dirac

delta function to show that the partition function can be written as:

ZN =
1

2π

∫ ∞
−∞

...

∫ ∞
−∞

dσ

∫ ∞
−∞

ds exp
(
−σTV σ + h

T
σ + (a+ is)N

)
(Hint: Take a look at the “Useful” formulas.) Find the expressions for V and h.

first we write the partition function as :

ZN =

∫ ∞
−∞

...

∫ ∞
−∞

dσ1...dσN

∫ ∞
−∞

ds exp

K∑
(i,j)

σiσj + h
∑
i

σi + (aN − a
∑
i

σ2
i )

 δ

(∑
i

σ2
i −N

)

=
1

2π

∫ ∞
−∞

...

∫ ∞
−∞

dσ1...dσN exp

K∑
(i,j)

σiσj + h
∑
i

σi + (aN − a
∑
i

σ2
i )

∫ +∞

−∞
ds eis(

∑
i σ

2
i−N)

=
1

2π

∫ ∞
−∞

...

∫ ∞
−∞

dσ1...dσN

∫ ∞
−∞

ds exp

K∑
(i,j)

σiσj + h
∑
i

σi + (a+ is)N − (a+ is)
∑
i

σ2
i
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Clearly h = (h, . . . , h).
V is such that σTV σ =

∑
jl σjVjlσl = (a+ is)

∑
j σ

2
j −K

∑
(i,j) σiσj . So Vii = (a+ is) and Vij = −K if sites i

and j are neighbors.

C. Partition function, from Gaussian integral

Show that ZN can be rewritten as:

ZN =
1

2
π
N
2 −1

∫ ∞
−∞

ds [detV ]
− 1

2 exp

{
(a+ is)N +

1

4
h
T
V −1h

}
(Hint: again take a look at the “Useful” formulas.)

Because of the periodic boundary conditions of the hypercubic lattice, one can show that the eigenvalues of V are

λ(ω1, ..., ωd) = a+ is−K (cosω1 + ...+ cosωd) where each ωj can take value in
{

0, 2πL ,
4π
L , ...,

2π(L−1)
L

}
.

In the limit of large L, show that log (detV ) can be written as :

log (detV ) = N [log(K) + g(z)]

with z = a+is−Kd
K . What is the expression for g(z)?

log (detV ) = log (Πω1
...Πωdλ(ω1, ..., ωd)) =

∑
ω1

...
∑
ωd

log [λ(ω1, ..., ωd)]

=
N

(2π)d

∫ 2π

0

...

∫ 2π

0

dω1...dωd log(a+ is−K (cosω1 + ...+ cosωd))

=
N

(2π)d

(
log(K)(2π)d +

∫ 2π

0

...

∫ 2π

0

dω1...dωd log

(
a+ is−Kd

K
+ d− cosω1 − ...− cosωd

))
= N (log(K) + g(z))

with z = a+is−Kd
K and

g(z) =
1

(2π)d

∫ 2π

0

...

∫ 2π

0

dω1...dωd log (z + d− cosω1 − ...− cosωd)

D. Partition function, as a one-dimensional complex integral

Using the fact that h is the eigenvector associated with the smallest eigenvalue of V , show that : h
T
V −1h = Nh2

Kz .
We can rewrite ZN as:

ZN =
K

2πi

( π
K

)N
2

∫ c+i∞

c−i∞
dz eNφ(z).

What are the expressions for c and of φ(z) ?

h is the eigenvector associated with the smallest eigenvalue of V . The smallest eigenvalue of V is obtained when

ω1 = ... = ωN = 0, therefore : λmin = a+ is−Kd = Kz. Clearly: h
T
V −1h = (Kz)−1h

T
h = Nh2

Kz .

If we go back to expression (II C) and use the formula for det(V ) and for h
T
V −1h that we’ve computed we get

ZN =
1

2
π
N
2 −1

∫ ∞
−∞

dsK−
N
2 e−

g(z(s))N
2 (a+is)N+ Nh2

4Kz(s)

we change variable from s to z = a+is−Kd
K and get :

ZN =
K

2πi

( π
K

)N
2

∫ a−Kd
K +i∞

a−Kd
K −i∞

dze
N
(
Kz+Kd− g(z)2 + h2

4Kz

)

Hence: c = a−Kd
K and φ(z) = Kz +Kd− g(z)

2 + h2

4Kz .
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This expression of ZN actually does not depend on the choice of c as long as Re(z) is positive. One can show that
limz→0 φ(z) = limz→+∞ φ(z) = +∞ and that φ′′(z) > 0. Therefore, φ has a minimum on the real axis which we call
z0. We choose the arbitrary constant c to be z0.

E. Free energy, magnetization, equation of state

The free energy per site is f = − 1
β limN→∞N−1 log(ZN ). Express f as a function of K and φ(z0) (Hint: Remember

that we are in the N →∞ limit. You can use a saddle-point integration.)

directly we have:

f = − 1

β
lim
N→∞

(
−1

2
log

(
K

π

)
+N−1 log

(∫ z0+i∞

z0−i∞
dzeNφ(z)

))

We now use the saddle-point method to get N−1 log
[∫ z0+i∞
z0−i∞ dzeNφ(z)

]
→ log [φ(z0)] when N → ∞. We end

up with : f = − 1
β

(
− 1

2 log
(
K
π

)
+ φ(z0)

)
Show that the magnetization is given by M = −∂Hf . Find the expression of M ( as a function of J , H and z0.

z0 is a minimum of φ, then φ′(z0) = 0 which gives us that K − h2

4Kz20
= g′(z0)

2

We differentiate the expression of f and use the previous equation to get:

M =
h

2Kz0
+ φ′(z0)

dzO
dh

Then once again we remember that φ′(z0) = 0 to get M = h
2Kz0

= H
2Jz0

Use this result for M to write the exact equation of state (i.e. the relation between M , H and T ) of the spherical
model. (Hint: This expression will involve the function g.)

from M H
2Jz0

and K − h2

4Kz20
= g′(z0)

2 , one obtains:

2J(1−M2) = kBTg
′
(
H

2M

)
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III. THE XY MODEL, AND ITS HARMONIC APPROXIMATION

In this question, we consider the XY model described by the hamiltonian

H = −J
∑
〈i,j〉

SiSj = −J
∑
〈i,j〉

cos (φi − φj) (7)

where Si and Sj are classical spins in the eponymous (that is, name-giving) XY plane with |Si| = 1.

A. One-dimensional XY model, exact treatment

Compute the partition function and the free energy per particle of the one-dimensional XY model (N spins with
free boundary conditions). (Hint: check out the “Useful” formulas). What does the temperature behavior of the
free-energy per particle establish about the phase behavior of the model?

The one-dimensional XY model is described through the N − 1 relative angles between particles and an overall
rotation. One finds:

Z = 2π

∫
dφ12eβJ cos φ12 · · ·

∫
dφN−1,NeβJ cos φN−1,N = 2π [2πI0(βJ)]

N−1

For N →∞, the free energy per particle is

f = − 1

β
log [2πI0(βJ)]

There is no phase transition.

B. Two-dimensional XY model (harmonic approximation)

Explain in what consists the harmonic approximation of the XY model, and what are its fundamental properties
in dimensions d = 1, d = 2, and d > 2. Discuss the correlations of φ(x) and φ(y) and the spin correlation function
〈cos [φ(x)− φ(y)]〉. Discuss the behavior at low temperature and at high temperature.

The harmonic model replaces the cos(φi−φj) by 1− 1
2 (φi−φj)2 There is no phase transition in this model, but the

spin correlation function decays differently in d = 1 (exponential) d = 2 (algebraic) and d = 3 (constant).

C. Kosterlitz–Thouless picture of the phase behavior in the two-dimensional XY model

Explain the basic insight of Kosterlitz and Thouless (1973) concerning the physics of the low- and high-temperature
phases in the XY model. Discuss both the low-temperature and at high-temperature behavior.

Kosterlitz and Thouless explained the pertinence of vortex and anti-vortex excitations. A single vortex has energy
∼ JR logL, but its entropy is also in the logarithm of the system size. The entropy and the energy do not
depend on temperature, but because of F = E − TS, the free energy does. At low temperature, the free energy
for creating a single vortex goes to infinite, at high temperature it goes to −∞. A pair of vortices has finite
energy, so it is always stable. Kosterlitz and Thouless described the phase transition in the XY model as a
vortex-antivortex unbinding.

D. Fröhlich and Spencer and the nature of the phase transition

As discussed in the lecture, Fröhlich and Spencer essentially proved that at low temperatures, the harmonic ap-
proximation of the XY model is OK. Explain what this means, and explain why this (while establishing the existence
of the low-temperature phase), does not establish the existence of a Kosterlitz–Thouless phase transition. Discuss
other possible scenarios in this model.
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At low temperature, vortices and antivortices are thus effectively bound. The KT argument gives a temperature
of unbinding through entropic effects. This is however relevant only if at this temperature, the vortices and
antivortices are still bound. A first-order phase transition can have interfered before.


