
Algorithms and computations in physics
(Oxford Lectures 2025)

Werner Krauth∗

Laboratoire de Physique, Ecole normale supérieure, Paris (France)
Rudolf Peierls Centre for Theoretical Physics

University of Oxford (UK)

Seventh lecture: 04 March 2025
(version: 03/03/2025)

This is the second of two lectures on computational quantum statistical mechanics.
Building on the quantum harmonic oscillator, the density matrices and the Feynman
path integral introduced in the sixth lecture, we will discuss a direct-sampling quan-
tum Monte Carlo algorithm for bosons that illustrates the phenomenon of Bose–
Einstein condensation. Before doing that, however, we must discuss quantum statis-
tics of indistinguishable particles and set up a naive program against which to check
our state-of-the-art simulation code.

Contents

7 Quantum statistical mechanics: Bosons 1
7.1 Preparations . 1

7.1.1 Counting and sampling permutations . 1
7.1.2 Recursive permutation counting and sampling 2
7.1.3 Symmetric density matrix and N -particle wave functions 5

7.2 Bosonic partition function . 6
7.2.1 Condensate fraction . 8
7.2.2 Cycle-length distribution . 9
7.2.3 Direct-sampling algorithm for ideal bosons 11

7 Quantum statistical mechanics: Bosons

7.1 Preparations

7.1.1 Counting and sampling permutations

In this section, as a preparation for our quantum statistical mechanics. The next more compli-
cated objects, after integers, are permutations of K distinct objects, which we may take to be
the integers {1, . . . ,K}. A permutation P can be written as a two-row matrix1

∗werner.krauth@ens.fr, werner.krauth@physics.ox.ac.uk
1Anticipating our applications of permutations to bosons, we write permutations “bottom-up” as

(
P1 . . . PK
1 . . . K

)
rather than “top-down”

(
1 . . . K
P1 . . . PK

)
, as is more common.

1

mailto:werner.krauth@ens.fr
mailto:werner.krauth@physics.ox.ac.uk

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

P =

(
P1 P2 P3 P4 P5

1 2 3 4 5

)
. (7.1)

We can think of the permutation in eq. (7.1) as balls labeled {1, . . . , 5} in the order {P1, . . . , P5},
on a shelf (ball Pk is at position k).

procedure ran-perm

{P1, . . . , PK} ← {1, . . . ,K}
for k = 1, . . . ,K − 1:{

l← nran (k,K)
Pl ↔ Pk

output {P1, . . . , PK}
——

Algorithm 7.1: ran-perm. Generating a uniformly distributed random permutation of K elements.

For K = 4, this program will produce each of the 24 permutations of 4 elements with the same
probability (we also notice that Alg. 7.1 (ran-perm) is almost identical to the top-to-random
shuffle that we studied in an earlier lecture). Now let us modify the above program a bit, and
study the cycle structure of random permutations.
Permutations can also be arranged into disjoint cycles

P =

(
P2 P3 P4 P1

P1 P2 P3 P4︸ ︷︷ ︸
first cycle

P6 P7 P8 P9 P5

P5 P6 P7 P8 P9︸ ︷︷ ︸
second cycle

.

.︸ ︷︷ ︸
other cycles

)
, (7.2)

which can be written in a cycle representation as

P = (P1, P2, P3, P4)(P5, . . . , P9)(. . .)(. . .). (7.3)

where, evidently, the cycle (P1, P2, P3, P4) is identical to the cycle (P4, P1, P2, P3), etc..
Let us now study the cycle structure of random permutations. More precisely, we’re inter-

ested in knowing the probability distribution of the cycle lengths for the cycle containing the
element N − 1. A program is easily written, either from scratch or using the Python library
sympy.combinatorics. The outcome is striking: The probability that element N is in a cycle
of length k is 1/K. This statement is a probability statement, but also an enumerative one.

7.1.2 Recursive permutation counting and sampling

Permutations play a pivotal role in the path-integral description of quantum systems, and we
shall soon need to count permutations with weights, that is, compute general “partition func-
tions” of permutations of N particles

YN =
∑

permutations P

weight(P).

If the weight of each permutation is 1, then YN = N !, the number of permutations of N elements.
For concreteness, we shall consider the permutations of four elements (see Fig. 7.1). For more
generality, we allow arbitrary weights depending on the length of the cycles. For coherence with
the later application, we denote the weight of a cycle of length k by zk.
We now derive a crucial recursion formula for YN . In any permutation of N elements, the

last element (in our example the element N = 4) is in what may be called the last-element
cycle. (In permutation [5] in Fig. 7.1, the last-element cycle, of length 3, contains {2, 3, 4}. In

2

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

[1] (1234
1234) (1)(2)(3)(4)

[2] (1243
1234) (1)(2)(34)

[3] (1324
1234) (1)(23)(4)

[4] (1342
1234) (1)(234)

[5] (1423
1234) (1)(243)

[6] (1432
1234) (1)(24)(3)

[7] (2134
1234) (12)(3)(4)

[8] (2143
1234) (12)(34)

[9] (2314
1234) (123)(4)

[10] (2341
1234) (1234)

[11] (2413
1234) (1243)

[12] (2431
1234) (124)(3)

[13] (3124
1234) (132)(4)

[14] (3142
1234) (1342)

[15] (3214
1234) (13)(2)(4)

[16] (3241
1234) (134)(2)

[17] (3412
1234) (13)(24)

[18] (3421
1234) (1324)

[19] (4123
1234) (1432)

[20] (4132
1234) (142)(3)

[21] (4213
1234) (143)(2)

[22] (4231
1234) (14)(2)(3)

[23] (4312
1234) (1423)

[24] (4321
1234) (14)(23)

Figure 7.1: All 24 permutations of four elements.

3

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

permutation [23], the last-element cycle, of length 4, contains all elements). Generally, this last-
element cycle involves k elements {n1, . . . , nk−1, N}. Moreover, N − k elements do not belong
to the last-element cycle. The partition function of these elements is YN−k, because we know
nothing about them, and they are unrestricted. YN is determined by the number of choices for
k and the cycle weight zk, the number of different sets {n1, . . . , nk−1} given k, the number of
different cycles given the set {n1, . . . , nk−1, N}, and the partition function YM of the elements
not participating in the last-element cycle:

YN =

N∑
k=1

zk


number of
choices for
{n1, . . . , nk−1}




number of
cycles with
{n1, . . . , nk}

YN−k. (7.4)

From Fig. 7.1, it follows that there are (k − 1)! cycles of length k with the same k elements.
Likewise, the number of choices of different elements for {n1, . . . , nk−1} is

(
N−1
k−1

)
. We find

YN =
N∑
k=1

zk

(
N − 1

k − 1

)
(k − 1)! YN−k =

N∑
k=1

1

N
zk

N !

(N − k)!
YN−k (with Y0 = 1). (7.5)

The eq. (7.5) describes a recursion because it allows us to compute YN from {Y0, . . . , YN−1}. If
we take zk = 1 ∀k in this equation, we know that YN−k = (N − k)!, and see that YN is the sum
of constant terms, showing that the number of permutations with N in a cycle of length k is
independent of k.
As a nontrivial application of the recursion in eq. (7.5), we now count, then sample, permuta-

tions containing only cycles of length 1 and 2. Now {z1, z2, z3, . . . , zN} = {1, 1, 0, . . . , 0} (every
permutation has, say, the same weight, under the condition that it contains no cycles of length
> 2). For convenience, we set Y−1 = 0, and furthermore Y0 = 1 and Y1 = 1, and from eq. (7.5)
obtain the recursion relation

YN = YN−1 + (N − 1) YN−2, (7.6)

so that YN , the number of permutations with cycles of length at most 2, is given by:

{Y−1, Y0, Y1, Y2, Y3, Y4, . . . } = {0, 1, 1, 2, 4, 10, . . . }. (7.7)

This sequence of integers is referenced in the online encyclopedia
The recursion in eq. (7.6) is implemented in Alg. 7.2 (two-cycles), a sampling algorithm for

random permutations whose cycles only have length one or two. It is implemented in a short
Python program Two-cycles.py, available on my website.

procedure two-cycles

input {Y−1, Y0, Y1, . . . , YN−1} (from eq. (7.7))

Q← shuffle{1, . . . , N}
M ← N
P ← {}
while M > 0:

Υ← ran(0, YM)
if Υ < YM−1: P ← P ∪ {(QM)};M ←M − 1
else: P ← P ∪ {(QM , QM−1)};M ←M − 2

output P (P in cycle representation (see eq. (7.3)))

——

Algorithm 7.2: two-cycles. Sampling a random permutation with cycles of length ≤ 2.

4

https://oeis.org/A000085
http://www.lps.ens.fr/~krauth/index.php/Two_cycles.py

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

7.1.3 Symmetric density matrix and N-particle wave functions

In Lecture 6, the density matrix of a single-particle quantum system was shown to be

ρ
(
x, x′, β

)
=
∑
n

ψn(x)e
−βEnψ∗

n(x
′),

with orthonormal wave functions ψn (
∫
dx |ψn(x)|2 = 1 etc.). The partition function is the trace

of the density matrix:

Z =
∑
n

e−βEn = Tr ρ =

∫
dx ρ(x, x, β) .

We may move from one to many particles without changing the framework simply by replacing
single-particle states by N -particle states:{

many-particle
density matrix

}
: ρdist

(
{x1, . . . , xN}, {x′1, . . . , x′N}, β

)
=

∑
orthonormal
N -particle
states ψn

ψn(x1, . . . , xN)e
−βEnψn(x

′
1, . . . , x

′
N). (7.8)

For distinguishable particles, this definition is sufficient.
The bosonic density matrix is defined in analogy with eq. (7.8):

ρsym
(
x,x′, β

)
=

∑
symmetric, orthonormal

N -particle wave functions ψsym
n

ψsym
n (x)e−βEnψsym

n (x′).

Here, “symmetric” refers to the interchange of particles xk ↔ xl. Again, all wave functions are
normalized. We remember from introductory Quantum Mechanics that symmetrized wave func-
tions have characteristic, nontrivial normalization factors. For concreteness, we go on with two
noninteracting particles in two single-particle states, σ1 and σ2. The wave functions belonging
to this system are the following:

ψsym
{1,1}(x1, x2) = ψ1(x1)ψ1(x2),

ψsym
{1,2}(x1, x2) =

1√
2
[ψ1(x1)ψ2(x2) + ψ1(x2)ψ2(x1)] ,

ψsym
{2,2}(x1, x2) = ψ2(x1)ψ2(x2).

(7.9)

These three wave functions are symmetric with respect to particle exchange (for example,
ψsym
11 (x1, x2) = ψsym

11 (x2, x1) = ψ1(x1)ψ1(x2)). They are orthonormal (
∫
dx1 dx2 ψ

sym
12 (x1, x2)

2 =
1, etc.). Hence the ideal-boson density matrix is given by

ρsym
(
{x1, x2}, {x′1, x′2}, β

)
= ψsym

11 (x1, x2)e
−βE11ψsym

11 (x′1, x
′
2)

+ ψsym
12 (x1, x2)e

−βE12ψsym
12 (x′1, x

′
2)

+ ψsym
22 (x1, x2)e

−βE22ψsym
22 (x′1, x

′
2).

The various terms in this unwieldy object carry different prefactors, if we write the density
matrix in terms of the symmetric wave functions in eq. (7.9). We shall, however, now express the
symmetric density matrix through the many-particle density matrix of distinguishable particles
without symmetry requirements, and see that the different normalization factors disappear.
We rearrange ψsym

11 (x1, x2) as
1
2 [ψ1(x1)ψ1(x2) + ψ1(x2)ψ1(x1)], and analogously for ψsym

22 . We
also write out the part of the density matrix involving ψ12 twice (with a prefactor 1

2). This gives

5

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

the first two lines of the following expression; the third belongs to ψsym
11 and the fourth to ψsym

22 :

1
4 [ψ1(x1)ψ1(x2) + ψ1(x2)ψ1(x1)]

[
ψ1(x

′
1)ψ1(x

′
2) + ψ1(x

′
2)ψ1(x

′
1)
]
e−βE11

1
4 [ψ1(x1)ψ2(x2) + ψ1(x2)ψ2(x1)]

[
ψ1(x

′
1)ψ2(x

′
2) + ψ1(x

′
2)ψ2(x

′
1)
]
e−βE12

1
4 [ψ2(x1)ψ1(x2) + ψ2(x2)ψ1(x1)]

[
ψ2(x

′
1)ψ1(x

′
2) + ψ2(x

′
2)ψ1(x

′
1)
]
e−βE21

1
4 [ψ2(x1)ψ2(x2) + ψ2(x2)ψ2(x1)]︸ ︷︷ ︸

all permutations Q of {x1, x2}

[
ψ2(x

′
1)ψ2(x

′
2) + ψ2(x

′
2)ψ2(x

′
1)
]︸ ︷︷ ︸

all permutations P of {x′1, x′2}

e−βE22

The rows of this expression correspond to a double sum over single-particle states. Each one has
the same prefactor 1/4 (more generally, for N particles, we would obtain (1/N !)2) and carries
a double set (P and Q) of permutations of {x1, x2}, and of {x′1, x′2}. More generally, for N
particles and a sum over states σ, we have

ρsym
(
{x1, . . . , xN}, {x′1, . . . , x′N}, β

)
=

∑
{σ1,...,σN}

∑
Q

∑
P

(
1

N !

)2

× [ψσ1(xQ1) . . . ψσN (xQN
)]
[
ψσ1(x

′
P1
) . . . ψσN (x

′
PN

)
]
e−β(Eσ1+···+EσN

).

This agrees with

ρsym
(
{x1, . . . , xN}, {x′1, . . . , x′N}, β

)
=

1

N !

∑
P

ρ
(
x1, x

′
P1
, β
)
. . . ρ

(
xN , x

′
PN
, β
)
, (7.10)

where we were able to eliminate one set of permutations. We thus reach the bosonic density
matrix in eq. (7.10) from the distinguishable density matrix by summing over permutations and
dividing by 1/N !, writing {x′P1

, . . . , x′PN
} instead of {x′1, . . . , x′N}. The expression obtained for

N ideal bosons—even though we strictly derived it only for two bosons in two states—carries
over to interacting systems, where we find

bosonic density matrix︷ ︸︸ ︷
ρsym

(
{x1, . . . , xN}, {x′1, . . . , x′N}, β

)
=

1

N !

∑
P

ρdist
(
{x1, . . . , xN}, {x′P1

, . . . , x′PN
}, β
)︸ ︷︷ ︸

distinguishable-particle density matrix

. (7.11)

7.2 Bosonic partition function

From the expression for the non-diagonal bosonic density matrix (eq. (7.11) we express the
partition function of a bosonic system (the trace of the bosonic diagonal density matrix) as a
sum over diagonal and nondiagonal density matrices for distinguishable particles:

ZN =
1

N !

∑
P

ZP (7.12)

=
1

N !

∑
P

∫
dNxρdist

(
{x1, . . . , xN}, {xP (1), . . . , xP (N)}, β

)
. (7.13)

For ideal particles, the distinguishable-particle density matrix separates into a product of single-
particle density matrices, but the presence of permutations implies that these single-particle
density matrices are not necessarily diagonal. For concreteness, we consider, for N = 4 particles,
the permutation P = (1 4 2 3

1 2 3 4), which in cycle representation is written as P = (1)(243) (see
Fig. 7.2). This permutation consists of one cycle of length 1 and one cycle of length 3. The

6

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

τ = β

τ = 0
4321

 4 3 2 1

Figure 7.2: The permutation (1 4 2 3
1 2 3 4) represented as a path.

permutation-dependent partition function Z(1)(243) is

Z(1)(243) =

∫
dx1 ρ(x1, x1, β)

∫
dx2

×
[∫

dx3

∫
dx4 ρ(x2, x4, β) ρ(x4, x3, β) ρ(x3, x2, β)

]
︸ ︷︷ ︸

ρ(x2,x2,3β)

. (7.14)

The last line of eq. (7.14) contains a double convolution and can be written as a diagonal single-
particle density matrix at temperature T = 1/(3β), in an elementary, yet elegant, application of
the matrix squaring described in Lecture 7. After performing the last two remaining integrations,
over x1 and x2, we find that the permutation-dependent partition function Z(1)(243) is the product
of single-particle partition functions, one at temperature 1/β and the other at 1/(3β):

Z(1)(243) = z(β)z(3β). (7.15)

Here and in the following, we denote the single-particle partition functions with the symbol z(β):{
single-particle

partition function

}
: z(β) =

∫
dx ρ(x, x, β) =

∑
σ

e−βEσ . (7.16)

7.15 carries the essential message that—for ideal bosons— the N -particle partition function Z(β)
can be expressed as a sum of products of single-particle partition functions. However, this sum
of N ! terms is nontrivial, unlike the one for the gas of ideal distinguishable particles. Only for
small N can we think of writing out the N ! permutations and determining the partition function
via the explicit sum in eq. (7.12). It is better to adapt the recursion formula of Sec. 7.1.2 to the
ideal-boson partition functions. Now, the cycle weights are given by the single-particle density
matrices at temperature kβ. Taking into account that the partition functions carry a factor
1/N ! (see eq. (7.13)), we find

ZN =
1

N

N∑
k=1

zkZN−k (with Z0 = 1). (7.17)

This recursion relation determines the partition function ZN of an ideal boson system with N
particles via the single-particle partition functions zk at temperatures {1/β, . . . , 1/(Nβ)} and
the partition functions {Z0, . . . , ZN−1} of systems with fewer particles.

The partition function zk(β) in the three-dimensional harmonic trap is

zk(β) =

(∞∑
Ex=0

e−kβEx

) ∞∑
Ey=0

e−kβEy

(∞∑
Ez=0

e−kβEz

)
=

(
1

1− e−kβ

)3

(7.18)

(we note that the ground-state energy is now E0 = 0). Together with the recursion formula
of eq. (7.17), it gives a general method for computing the partition function of canonical ideal
bosons (see Alg. 7.3 (canonic-recursion)).

7

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

procedure canonic-recursion

input {z1, . . . , zN} (zk ≡ zk(β), from eq. (7.18))

Z0 ← 1
for M = 1, . . . , N :{

ZM ← (zMZ0 + zM−1Z1 + · · ·+ z1ZM−1)/M
output ZN
——

Algorithm 7.3: canonic-recursion. Obtaining the partition function for N ideal bosons through the
recursion in eq. (7.17).

We pause for a moment to gain a better understanding of the recursion relation, and remember
that each of its components relates to last-element cycles:

ZN ∝ zNZ0︸ ︷︷ ︸
particle N
in cycle of
length N

+ · · ·+ zkZN−k︸ ︷︷ ︸
particle N
in cycle of
length k

+ · · ·+ z1ZN−1︸ ︷︷ ︸
particle N
in cycle of
length 1

. (7.19)

It follows that the cycle probabilities satisfy{
probability of having particle

N in cycle of length k

}
: πk =

1

N

zkZN−k
ZN

. (7.20)

We can compute the cycle probabilities {π1, . . . , πN} with Alg. 7.3 (canonic-recursion). In
the zero-temperature limit, the probability of a particle to be in a cycle of length k becomes
independent of k.

0

1

2

3

4

10 20 30 40

cy
cl

e
pr

ob
ab

ili
ty

 π
k

cycle length k

T/N1/3 = 0.1
0.3
0.5
0.7
0.9

Figure 7.3: Cycle probabilities {π1, . . . , π40} for 40 ideal bosons in the harmonic trap (from modified
Alg. 7.3 (canonic-recursion)).

7.2.1 Condensate fraction

Using path integrals, we have so far computed partition functions. We could also have computed
internal energies (see Ref. [?] for details). It remains to be seen how Bose–Einstein condensation
enters the path-integral picture. This is what we work out in two steps. In the present section, we
show that the appearance of long cycles in the distribution of cycle lengths signals condensation
into the ground state. In the next section, we discuss an explicit formula linking the distribution
of cycle lengths to the distribution of condensed particles.
To see the connection of condensation and cycle lengths, we consider the restricted N -particle

partition function Yk,0, where at least k particles are in the ground state. From Fig. 7.4, this

8

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

ZN − k
k

ground state

Figure 7.4: Restricted partition function Yk,0 with at least k = 3 particles in the ground state.

partition function is {
partition function with
≥ k bosons in ground state

}
= Yk,0 = e−βkE0ZN−k.

Analogously, we may write, for k + 1 instead of k,{
partition function with

≥ k + 1 bosons in ground state

}
= Yk+1,0 = e−β(k+1)E0ZN−k−1.

Taking the difference between these two expressions, and paying attention to the special case
k = N , we find {

partition function with
k bosons in ground state

}
=

{
Yk,0 − Yk+1,0 if k < N

Yk,0 if k = N
. (7.21)

Our choice of ground-state energy (E0 = 0) implies Yk,0 = ZN−k, and we may write the proba-
bility of having N0 bosons in the ground state as

π(N0) =
1

ZN

{
ZN−N0 − ZN−(N0+1) if N0 < N

1 if N0 = N
. (7.22)

The condensate fraction, the mean value of N0, is given by

⟨N0⟩ =
N∑
0

N0π(N0) =
1

ZN


N−1∑
N0=1

N0 ·
[
ZN−N0 − ZN−(N0+1)

]
+NZ0

 .

This is a telescopic sum, where similar terms are added and subtracted. It can be written more
simply as

⟨N0⟩ =
ZN−1 + ZN−2 + · · ·+ Z0

ZN
(with E0 = 0). (7.23)

The calculations of the condensate fraction can be incorporated into Alg. 7.3 (canonic-recursion).

7.2.2 Cycle-length distribution

We continue the analysis of restricted partition functions, by simply generalizing the concept of
the restricted partition functions to a state σ, rather than only the ground state (see Fig. 7.5).
From eq. (7.21), we arrive at{

partition function with
≥ k bosons in state σ

}
= Yk,σ = e−βkEσZN−k.

9

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

ZN − k

k

σ

Figure 7.5: Restricted partition function Yk,σ with at least k = 3 particles in state σ (for N = 20
particles).

This equation can be summed over all states, to arrive at a crucial expression,

∑
σ


partition function
with ≥ k bosons

in state σ

 =
∑
σ

e−βkEσ

︸ ︷︷ ︸
zk, see eq. (7.16)

ZN−k ∝


cycle
weight
πk

, (7.24)

because it relates the energy-level description (on the left) with the description in terms of density
matrices and cycle-length distributions (on the right). Indeed, the sum over the exponential
factors gives the partition function of the single-particle system at temperature 1/(kβ), zk =
z(kβ), and the term zkZN−k is proportional to the cycle weight πk. This leads to a relation
between occupation probabilities of states and cycle weights:∑

σ

{
partition function with
k bosons in state σ

}
∝
{
cycle weight

πk

}
−
{
cycle weight

πk+1

}
. (7.25)

To interpret this equation, we note that the probability of having k ≫ 1 in any state other
than the ground state is essentially zero. It follows that the sum in eq. (7.25) is dominated
by the partition function with k particles in the ground state, and this relates the probability
of having k particles in the ground state (the distribution whose mean gives the condensate
fraction) to the integer derivative of the cycle-length distribution. (The difference in eq. (7.25)
constitutes a negative integer derivative: −∆f(k)/∆k = f(k) − f(k + 1).) We arrive at the
conclusion that the condensate distribution is proportional to the integer derivative of the cycle
length distribution.

10007811
cycle length k

cycle weight πk
derivative πk − πk+1

Figure 7.6: Cycle weights πk, and derivative πk − πk+1, for 1000 trapped bosons at T/N1/3 = 0.5
(from Alg. 7.3 (canonic-recursion)).

10

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

7.2.3 Direct-sampling algorithm for ideal bosons

In the previous subsections, we computed partition functions for ideal bosons by appropriately
summing over all permutations and integrating over all particle positions. We now consider
sampling, the twin brother of integration, in the case of the ideal Bose gas. Specifically, we discuss
a direct-sampling algorithm for ideal bosons, which lies at the heart of some path-integral Monte
Carlo algorithms for interacting bosons in the same way as the children’s algorithm performed
in a square on the beach underlies the Markov-chain Monte Carlo algorithm for hard disks. As
illustrated in eq. (7.13), a boson configuration consists of a permutation and a set of positions,
that are summed and integrated over, respectively, to obtain the partition function. We sample
this sum/integral in a two-step procedure.
For sampling the bosonic partition function, we start with the permutation part. We know

the following from eq. (7.17):

ZN =
1

N
(z1ZN−1︸ ︷︷ ︸
particle N
in cycle of
length 1

+ z2ZN−2︸ ︷︷ ︸
particle N
in cycle of
length 2

+ · · ·+ zN−1Z1︸ ︷︷ ︸
particle N
in cycle of

length N − 1

+ zNZ0︸ ︷︷ ︸
‘particle N
in cycle of
length N

).

Mirroring what we already did for permutations, in Alg. 7.2 (two-cycles), we initially set
M = N and sample the length k of the last-element cycle from M choices, without knowing
anything about the permutations of the N−k particles in other cycles. We then setM =M−k
and continue until we run out of bosons (see Alg. 7.4 (direct-cycles)). Because particles are
indistinguishable, we need only remember the lengths of cycles generated, that is, the histogram
of cycle lengths {m1, . . . ,mN} in one permutation of N particles (mk gives the number of cycles
of length k in the sampled permutation).

procedure direct-cycles

input {z1, . . . , zN}, {Z0, . . . , ZN−1} (from Alg. 7.3 (canonic-recursion))

{m1, . . . ,mN} ← {0, . . . , 0}
M ← N
while M > 0:

k ← sample ({z1ZM−1, . . . , zkZM−k, . . . , zMZ0})
M ←M − k
mk ← mk + 1

output {m1, . . . ,mN} (mk: number of cycles of length k.)

——

Algorithm 7.4: direct-cycles. Sampling a permutation, encoded in the cycle-lengths {m1, . . . ,mn},
for N ideal bosons.

After sampling the permutation, we sample the coordinates {x1, . . . ,xN}. Particles {l+1, l+
2, . . . , l + k} on each permutation cycle of length l form a closed path and their coordinates
{xl+1(0), . . . ,xl+k(0)} can be sampled using the Lévy construction of Lecture 6, at inverse
temperature kβ and with a discretization step ∆τ = β.

The complete program for simulating ideal Bose–Einstein condensates with tens of thousands
of particles in the harmonic trap takes no more than a few dozen lines of computer code (see
Direct-bosons. py on my website, for a Python implementation). We may represent the spatial
distribution of particles (see Fig. 7.7 for a projection in two dimensions). The wide thermal
cloud at temperatures T > Tc suddenly shrinks below Tc because most particles populate the
single-particle ground state or, in our path-integral language, because most particles are on a
few long cycles. The power of the path-integral approach resides in that interactions can be very
simply introduced into the rudimentary Alg. 7.5 (direct-harmonic-bosons) (see Ref. [?] for

11

http://www.lps.ens.fr/~krauth/index.php/Direct_N_bosons.py

Werner Krauth: Algorithms and Computations in Physics (2025 Oxford lectures)

procedure direct-harmonic-bosons

input {z1, . . . , zN}, {Z0, . . . , ZN} (for harmonic trap)

{m1, . . . ,mN} ← direct-cycles ({z1, . . . , zN}, {Z0, . . . , ZN−1})
l← 0
for all mk ̸= 0:

for i = 1, . . . ,mk:
Υ← gauss (...)
{xl+1, . . . , xl+k} ← levy-harmonic-path (Υ,Υ, kβ, k)
l← l + k

output {x1, . . . , xN}
——

Algorithm 7.5: direct-harmonic-bosons. Direct-sampling algorithm for ideal bosons in the
harmonic trap. Only x-coordinates are shown.

−6

−6

6
6

T/N1/3
 = 0.9 T/N1/3

 = 0.7 T/N1/3
 = 0.5

Figure 7.7: Two-dimensional snapshots of 1000 ideal bosons in a three-dimensional harmonic trap
(from Alg. 7.5 (direct-harmonic-bosons)).

more details, as well as for theoretical background on the transition temperature in a harmonic
trap).

References

12

	Quantum statistical mechanics: Bosons
	Preparations
	Counting and sampling permutations
	Recursive permutation counting and sampling
	Symmetric density matrix and N-particle wave functions

	Bosonic partition function
	Condensate fraction
	Cycle-length distribution
	Direct-sampling algorithm for ideal bosons

