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I. WORKSHEET: THERMODYNAMIC QUANTITIES AND CORRELATION FUNCTIONS IN
SERIES EXPANSIONS

1. Ising model in 2D in magnetic field: high temperature expansion

The model: Consider the high temperature expansion of the classical Ising model, defined on the square
lattice with N sites and energy

E({σ}) = −J
∑
(i,j)

σiσj −H
∑
i

σi , (1)

where (i, j) signifies nearest neighbor pairs and J is assumed to be positive.

(a) Write down the partition function Z in the form that contains products of variables v = tanhβJ
and y = tanhβH. The high temperature expansion derived in the steps to follow will be a series of
powers of v and y.

:

Z = (coshβJ)
2N

(coshβH)
N
∑
{σ}

∏
(i,j)

(1 + σiσjv)
∏
n

(1 + σny) (2)

(b) Show that the terms in Z can be represented by graphs on the square lattice where each graph with
l bonds and m odd vertices contributes a factor 2Nvlym (here an odd vertex refers to there being an
odd number of bonds connected to the vertex).

: Each bond corresponds to one term vσlσm. Any odd vertices have to be “contracted” – multiplied by
an appropriate term σn y from

∏
n (1 + σny) (graphically we can denote this by a cross). Non-

contracted odd vertices give rise to terms that cancel out in
∑
{σ}, whereas each non-zero diagram

sums up to 2N .

The upper two diagrams give zero, the lowest one 2Nvy2.

(c) What diagrams contribute up to O(y4) and O(v2) (or the lowest order in v), and how many of them
are there?

: Since there can only be an even number of odd vertices in a graph, all odd orders of y give zero. The
few lowest order graphs are listed below:
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(d) Write down Z to the fourth order in y.

:

Z = (coshβJ)
2N

(coshβH)
N

2N
(
1 + S0 + y2S2 + y4S4 + ...

)
(3)

where Sm(v,N) is the sum of all graphs with m odd vertices.

(e) Take the logarithm of Z to find the free energy F and expand for small v and y. What can you
say about the contributions coming from disconnected graphs in the Z expansion? Use the linked
cluster theorem below.

:

− βF = 2N ln coshβJ +N ln coshβH +N ln 2 + (S′0 + y2S′2 + y4S′4 + ...) (4)

where S′m(v,N) is the sum of all connected graphs with m odd vertices. The disconnected
graphs in Z cancel out from lnZ due to the linked cluster theorem.

Linked cluster theorem Let

Z = Z0

[
1 +

∑
graphs

]
, (5)

with Z0 including the contribution of the ”vacuum”, i.e., the weight associated to the configuration
without any graphs in the lattice. The theorem states that

log
Z

Z0
=
∑

only connected graphs (6)

One way to show this is by the replica trick

log
Z

Z0
= lim
n→0

(Z/Z0)n − 1

n
(7)

Zn can be written as a single partition function with n different Ising models. Each spin in one of
the model is interacting with all other spins in the same model, but not with the ones inside the
other replicas. Each connected graph in the perturbative expansion of Zn can occur independently
for each replica, therefore it can occur n times. Disconnected graphs of the perturbative expansion
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are instead at least of order n2 (as each of them can occur independently for each replica). Any
configuration containing m connected graphs comes with an additional multeplicity factor equal to
nm. In the limit (7), only the terms that are linear in n survive: those are the term with a number
m = 1 of connected components.

(f) Compute the high temperature series for the zero-field susceptibility.

:

χ = − 1

N

∂2F

∂H2

∣∣∣
H=0

= β + 2βS′2/N (8)

Now we only need to consider the graphs with two odd vertices in order to derive the high tem-
perature series expansion for χ:

χ = β + 2β(2v + 6v2 + 18v3 + ...) (9)

2. Ising model in 2D: connected correlations functions

Reminder: A connected correlation function is the joint cumulant of some random variables. For exam-
ple, indicating the classical spins of a given statistical model by σi ∈ {−1, 1} , we have

〈σj1σj2 · · ·σjn〉c =
∂n

∂J1 · · · ∂Jn
log 〈e

∑
i Jiσji 〉

∣∣∣
J1=···=Jn=0

, (10)

where the subscript c on the left hand side is used to indicate the connected correlation, while on
the right hand side the brackets stand for the mean value.

The model: Consider a classical Ising model in a square lattice with energy

E({σ}) = −J
∑
(i,j)

σiσj − h
∑
i

σi , (11)

where (i, j) means that σj is adjacent to σi and periodic boundary conditions are imposed at the
edges. As well known, for J > 0, the model is ferromagnetic below the critical temperature and
paramagnetic at high temperature. Let then J be positive and N be the total number of spins.

(a) Assume h = 0 and consider the connected two-point function 〈σ1σ1+n〉c in the paramagnetic phase
(let us assume that the spins σ1 and σ1+n belong to the same line). Perform a high-temperature
expansion and list all the diagrams that give a contribution up to O(tanhn+4(βJ)).

: The expectation value can be written in the form

〈σ1σ1+n〉 =
Zσ1σ1+n

Z
, (12)

where Z is the partition function and Zσ1σ1+n is the same as Z with an auxiliary σ1σ1+n inside
of the sum. The graphs contributing to the numerator and to the denominator are shown in
fig. 2.

(b) Write down the correlator up to O(tanhn+2(βJ)).

: From fig. 2 it follows

tanhn(βJ)[1 + n(n+ 1) tanh2(βJ)] . (13)
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FIG. 1. Left: The configurations, together with their count, which contribute to the high temperature expansion of the
partition function Z of the Ising model on a square lattice; v = tanh(βJ) [From Yeomans.]. Right: The configurations
for Zσ1σ1+n , which appears in the two-point function (the crosses represent the spins σ1 and σ1+n).

(c) Can you draw some physical conclusion in the limit of large distance?

HINT: You can assume n� tanh−2(βJ) and n� tanh−1(βJ).

: If n is large, but sufficiently smaller than tanh−2(βJ), the first terms of the series expansion show
that the connected two-point function (which in this case is equal to the two-point function)
approaches zero exponentially.

(d) Assume again h = 0+ and consider the (connected) one-point function 〈σ1〉 in the ferromagnetic
phase. Perform a low-temperature expansion and compute the correlator at O(e−16βJ).
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FIG. 2. Left: The configurations, together with their count, which contribute to the low temperature expansion of the
partition function Z of the Ising model on a square lattice; x = e−2βJ [From Yeomans.] Right: The configurations
for Zσ1 , which appears in the two-point function (the cross represents the spin σ1).The sign is the value of σ1 in the
configuration considered.

: The expectation value can be written in the form

〈σ1〉 =
Zσ1

Z
, (14)

where Z is the partition function and Zσ1
is the same as Z with an auxiliary σ1 inside of the

sum. Fig. 2 shows the configurations that give the leading contribution at low temperature. We
find (in principle, this expansion is meaningful only for β � logN)

Zσ1
= 1 + (N − 2)e−8βJ + (2N − 8)e−12βJ +

N2 + 5N − 52

2
e−16βJ +O(e−20βJ)

Z = 1 +Ne−8βJ + 2Ne−12βJ +
N2 + 9N

2
e−16βJ +O(e−20βJ) .

(15)
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The inverse of the partition function is

Z−1 = 1−Ne−8βJ − 2Ne−12βJ +
N2 − 9N

2
e−16βJ +O(e−20βJ) . (16)

Thus

〈σ1〉 = 1− 2e−8βJ − 8e−12βJ − 26e−16βJ +O(e−20βJ) . (17)

In fact, we can avoid computing the inverse of the denominator, indeed this will be a function of
the volume with the leading term equal to 1. As a consequence, it can only modify the term that
depend explicitly on N . Since the correlation function is an intensive quantity, the denominator
does not affect the contributions independent of N and simply cancels all the terms that grow
with N in the numerator. This also suggests that such perturbative result is correct even in the
thermodynamic limit.

(e) Compute the connected two-point function 〈σ1σ1+n〉c up to O(e−12βJ). What happens in the limit
of large distance?

: Since we already computed the one-point function, we can focus on the two-point function. The
configurations are similar to the ones shown for the one-point function - fig. 2, but now there are
two crosses. For the distance n > 1 we find

Zσ1σ1+n = 1 + (N − 4)e−8βJ + (2N − 16)e−12βJ +O(e−16βJ) . (18)

As before, the partition function results in the cancellation of all the terms proportional to N .
Thus we find

〈σ1σ1+n〉 ∼ 1 + (N − 4)e−8βJ + (2N − 16)e−12βJ ∼ (1− 2e−8βJ − 8e−12βJ)2 ∼ 〈σ1〉2 . (19)

For n = 1 we obtain

〈σ1σ1+n〉 ∼ 1 + (N − 4)e−8βJ + (2N − 12)e−12βJ ∼ (1− 2e−8βJ − 8e−12βJ)2 + 4e−12βJ . (20)

In conclusion, the connected correlation is given by

〈σ1σ1+n〉c = 4δn1e
−12βJ +O(e−16βJ) . (21)

In the limit of large distance, we find again that the connected two-point function approaches
zero (at the order considered, it is exactly zero).


