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The final lecture in the set is on the classical Ising model. We go from basic (and
not so basic) enumeration to the high-temperature expansion of the Ising model,
touch on its exact solution by Kac andWard (1952) and then treat sampling methods:
Metropolis, heatbath, and perfect sampling, to finish with the Wolff (1989) cluster
algorithm.
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8 The Ising model: From the Gray code to cluster algorithms

The Ising model describes spins σk ± 1, (or +/−) for k = 1, . . . , N , on a lattice, for example a
two-dimensional square lattice. In the simplest case, the ferromagnetic Ising model, neighboring
spins prefer to align. This means that pairs {+,+} and {−,−} of neighboring spins direction
have a lower energy than antiparallel spins (pairs {+,−} and {−,+}), as expressed by the energy

E = −J
∑
⟨k,l⟩

σkσl. (8.1)
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The sum is over all pairs of neighbors and, by convention, each edge (pair of neighbors) ⟨k, l⟩ =
⟨l, k⟩ is counted only once. The parameter J is positive (and identical for all pairs k, l), and we
may take it equal to one. We consider the partition function

Z =
∑

{σ1,...,σN}={±1,...,±1}

exp (−βE) (8.2)

that we will, on the one hand, evaluate and, on the other hand, sample.

procedure energy-ising

input {σ1, . . . , σN}
E ← 0
for k = 1, . . . , N :

for n = 1, . . . , d: (d: space dimension, sum over half of nbrs)
j ← Nbr(n, k)
if (j ̸= 0) then{

E ← E − σkσj
output E
——

Algorithm 8.1: energy-ising. Computing the energy of an Ising-model configuration. In order to
avoid overcounting, Nbr(., k) goes only over half the neighbors of k.

8.1 Enumeration: listing and counting

Listing and counting are two aspects of the word enumeration. In this section, we illustrate
both aspects.

8.1.1 Spin enumerations: Naive and minimal-change order (Gray code)

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

i = 9 i = 10 i = 11 i = 12 i = 13 i = 14 i = 15 i = 16

Figure 8.1: List of configurations of the Ising model on a 2× 2 square lattice.

In Fig. 8.1, we list all configurations for a (magnetic) Ising model on a 2× 2 lattice. Without
periodic boundary conditions, configurations i = 1 and i = 16 have an energy E = −4, and con-
figurations i = 7 and i = 10 have an energy E = +4. All others are zero-energy configurations.

In the present subsection, we enumerate all the spin configurations of the Ising model; in
fact, we list them one after another. Most simply, each configuration i = 1, . . . , 2N of N Ising
spins is related to the binary representation of the number i− 1: in Fig. 8.1, zeros in the binary
representation of i−1 correspond to down spins, and ones to up spins. As an example, the binary
representation of the decimal number 10 (configuration i = 11 in Fig. 8.1) is 1010, which yields
a spin configuration {+,−,+,−} to be translated to the lattice with our standard numbering
scheme. In Python, one uses the function bin or one of its variants.

It is faster to compute the change of energy resulting from a spin-flip rather than the energy
itself. In Fig. 8.2, for example, we can find out that Eb = Ea−4, simply because the “molecular
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a b

Figure 8.2: Two configurations of the Ising model connected by the flip of a single spin.

field” acting on the central site equals 2 (it is generated by three up spins and one down spin).
The change in energy is equal to twice the value of the spin at the site times the molecular field.

procedure gray-flip

input {τ0, . . . , τN}
k ← τ0
if k > N exit
τk−1 ← τk
τk ← k + 1
if k ̸= 1 τ0 ← 1
output k, {τ0, . . . , τN}
——

Algorithm 8.2: gray-flip. Gray code for spins {1, . . . , N}. k is the next spin to flip. Initially,
{τ0, . . . , τN} = {1, . . . , N + 1}.

On lattices of any size, the change in energy can be computed in a constant number of opera-
tions, whereas the effort for calculating the energy grows with the number of edges. Therefore it
is interesting that all 2N spin configurations can be enumerated through a sequence of 2N spin-
flips, one at a time. (Equivalently, one may enumerate all numbers {0, . . . , 2N − 1} by changing
a single digit at a time during the enumeration.) Algorithms that perform such enumerations
are called Gray codes, and an application of a Gray code for four spins is shown in Table ??.
How it works can be understood by (mentally) folding Table ?? along the horizontal line be-
tween configurations i = 8 and i = 9: the configurations of the first three spins {σ1, σ2, σ3}
are folded onto each other (the first three spins are the same for i = 8 and i = 9, and also for
i = 7 and i = 10, etc.). The spins {σ1, σ2, σ3} remain unchanged between i = 8 and i = 9,
and this is the only moment at which σ4 flips, namely from − to +. To write down the Gray
code for N = 5, we would fold Table 8.1.1 along the line following configuration i = 16, and
insert {σ5(i = 1), . . . , σ5(i = 16)} = {−, . . . ,−}, and {σ5(i = 17), . . . , σ5(i = 32)} = {+, . . . ,+}.
Algorithm 8.2 (gray-flip) provides a practical implementation. We may couple the Gray code
enumeration to an update of the energy (see Alg. 8.3 (enumerate-ising)). Of course, the Gray
code still has exponential running time, but the enumeration as in Fig. 8.3 gains a factor ∝ N
with respect to naive binary enumeration.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

...

Figure 8.3: List of Ising-model configurations on a 2× 2 square lattice, generated by the Gray code
(only the dark spins flip, see Table ??).

Algorithm 8.3 (enumerate-ising) does not directly compute the partition function at inverse
temperature β, but rather the number of configurations with energy E, in other words, the
density of states N (E) (see Table 8.1.1). We must take care in implementing this program

3



Werner Krauth: Algorithms and Computations in Physics (2024 Oxford lectures)

i {σ1, . . . , σ4}
1 − − − −
2 + − − −
3 + + − −
4 − + − −
5 − + + −
6 + + + −
7 + − + −
8 − − + −
9 − − + +

10 + − + +
11 + + + +
12 − + + +
13 − + − +
14 + + − +
15 + − − +
16 − − − +

Table 8.1: Gray-code enumeration of spins {σ1, . . . , σ4}. Each configuration differs from its
predecessor by one spin only.

because N (E) can easily exceed 231, the largest integer that fits into a standard four-byte
computer word. We note, in our case, that it suffices to generate only half of the configurations,
because E(σ1, . . . , σN ) = E(−σ1, . . . ,−σN ).

8.1.2 Loop-listings in the Ising model

As mentioned, the word “enumeration” may refer to listing items (configurations), but also to
simply counting them. In the list generated by Alg. 8.3 (enumerate-ising), we were able to
pick out any information we wanted, for example the number of configurations of energy E
and magnetization M , that is, the density of states N (E,M). In this subsection we discuss an
alternative enumeration for the Ising model. It enumerates loop configurations which appear in
the high-temperature expansion of the Ising model. This program will then turn, in Sec. 8.1.3,
into an enumeration of the second kind (Kac and Ward, 1954), which sums up all loops and
obtains the exact Z(β) for a two-dimensional Ising system of any size (Kaufman, 1949), and even
for the infinite system (Onsager, 1944). However, it then counts without listing. For example, it
finds the number N (E) of configurations with energy E but does not tell us how many of them
have a magnetization M .

The story starts with Van der Waerden who, in 1941, noticed that the Ising-model partition
function,

Z =
∑
σ

exp
(
Jβ

∑
⟨k,l⟩

σkσl

)
=

∑
σ

∏
⟨k,l⟩

eJβσkσl , (8.3)

allows each term eJβσkσl to be expanded and rearranged into just two terms, one independent
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procedure enumerate-ising

{N (−2N) , . . . ,N (2N)} ← {0, . . . , 0}
{σ1, . . . , σN} ← {−1, . . . ,−1}
{τ0, . . . , τN} ← {1, . . . , N + 1}
E ← −2N
N (E)← 2
for i = 1, . . . , 2N−1 − 1:

k ← gray-flip ({τ0, . . . , τN})
h←

∑2d
l=1 σNbr(l,k) (field on site k)

E ← E + 2 · σkh
N (E)← N (E) + 2
σk ← −σk

output {N (E) > 0}
——

Algorithm 8.3: enumerate-ising. Single spin-flip (Gray code) enumeration for the Ising model, using
Alg. 8.2 (gray-flip).

of the spins and the other proportional to σkσl:

eβσkσl = 1 + βσkσl +
β2

2!
(σkσl)

2︸ ︷︷ ︸
=1

+
β3

3!
(σkσl)

3︸ ︷︷ ︸
=σkσl

+ · · ·+ · · ·

=

(
1 +

β2

2!
+

β4

4!
+ · · ·

)
︸ ︷︷ ︸

coshβ

+σkσl

(
β +

β3

3!
+

β5

5!
+ · · ·

)
︸ ︷︷ ︸

sinhβ

= (cosh β) (1 + σkσl tanh β) .

Inserted into eq. (8.3), with J = +1, this yields

Z(β) =
∑
σ

∏
⟨k,l⟩

((cosh β) (1 + σkσl tanh β)) . (8.4)

For concreteness, we continue with a 4× 4 square lattice without periodic boundary conditions.
This lattice has 24 edges and 16 sites, so that, by virtue of eq. (8.4), its partition function
Z4×4(β) is the product of 24 parentheses, one for each edge:

Z4×4(β) =
∑

{σ1,...,σ16}

cosh24 β(

edge 1︷ ︸︸ ︷
1 + σ1σ2 tanh β)(

edge 2︷ ︸︸ ︷
1 + σ1σ5 tanh β)

× . . . (1 + σ14σ15 tanh β)(1 + σ15σ16 tanh β︸ ︷︷ ︸
edge 24

). (8.5)

We multiply out this product: for each edge (parenthesis) k, we have a choice between a “one”
and a “tanh” term. This is much like the option of a spin-up or a spin-down in the original
Ising-model enumeration, and can likewise be expressed through a binary variable nk:

nk =

{
0 (≡ edge k in eq. (8.5) contributes 1)

1 (≡ edge k contributes (σskσs′k tanh β))
,

where sk and s′k indicate the sites at the two ends of edge k. Edge k = 1 has {s1, s′1} = {1, 2},
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N (E) = N (−E)
E 2× 2 4× 4 6× 6

0 12 20 524 13 172 279 424
4 0 13 568 11 674 988 208
8 2 6 688 8 196 905 106
12 . 1 728 4 616 013 408
16 . 424 2 122 173 684
20 . 64 808 871 328
24 . 32 260 434 986
28 . 0 71 789 328
32 . 2 17 569 080
36 . . 3 846 576
40 . . 804 078
44 . . 159 840
48 . . 35 148
52 . . 6 048
56 . . 1 620
60 . . 144
64 . . 72
68 . . 0
72 . . 2

Table 8.2: Density of states N (E) for small square lattices with periodic boundary conditions (from
Alg. 8.3 (enumerate-ising))

and edge k = 24 has, from eq. (8.5), {s24, s′24} = {15, 16}. Each factored term can be identified
by variables

{n1, . . . , n24} = {{0, 1}, . . . , {0, 1}}.

For {n1, . . . , n24} = {0, . . . , 0}, each parenthesis picks a “one”. Summed over all spin configu-
rations, this gives 216. Most choices of {n1, . . . , n24} average to zero when summed over spin
configurations because the same term is generated with σk = +1 and σk = −1. Only choices
leading to spin products σ0

s , σ
2
s , σ

4
s at each lattice site s remain finite after summing over all

spin configurations. The edges of these terms form loop configurations, such as those shown for
the 4 × 4 lattice in Fig. 8.4. The list of all loop configurations may be generated by Alg. 8.4
(edge-ising), a recycled version of the Gray code for 24 digits, coupled to an incremental calcu-
lation of the number of spins on each site. The {o1, . . . , o16} count the number of times the sites
{1, . . . , 16} are present. The numbers in this vector must all be even for a loop configuration,
and for a nonzero contribution to the sum in eq. (8.5).
For the thermodynamics of the 4× 4 Ising model, we only need to keep track of the number

of edges in each configuration, not the configurations themselves. Table 8.1.2, which shows the
number of loop configurations for any given number of edges, thus yields the exact partition
function for the 4× 4 lattice without periodic boundary conditions:

Z4×4(β) =
(
216 cosh24 β

) (
1 + 9 tanh4 β + 12 tanh6 β

+ · · ·+ 4 tanh18 β + 1 tanh20 β
)
. (8.6)

Partition functions obtained from this expression are easily checked against the Gray-code enu-
meration (if we remember to use the same boundary conditions). Up to a certain power of β,
this approach corresponds to a high-temperature expansion, rather than an enumeration.
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Figure 8.4: The list of all 512 loop configurations for the 4× 4 Ising model without periodic boundary
conditions (from Alg. 8.4 (edge-ising)).
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# Edges # Configs

0 1
4 9
6 12
8 50

10 92
12 158
14 116
16 69
18 4
20 1

Table 8.3: Numbers of loop configurations in Fig. 8.4 with given numbers of edges (the figure contains
one configuration with 0 edges, 9 with 4 edges, etc). (From Alg. 8.4 (edge-ising)).

procedure edge-ising

input {(s1, s′1), . . . , (s24, s′24)}
{n1, . . . , n24} ← {0, . . . , 0}
{τ0, . . . , τ24} ← {1, . . . , 25}
{o1, . . . , o16} ← {0, . . . , 0}
output {n1, . . . , n24}
for i = 1, 224 − 1:

k ← gray-flip ({τ0, . . . , τ24})
nk ← mod (nk + 1, 2)
osk ← osk + 2 · nk − 1
os′k ← os′k + 2 · nk − 1

if ({o1, . . . , o16} all even) then{
output {n1, . . . , n24}

——

Algorithm 8.4: edge-ising. Gray-code enumeration of the loop configurations in Fig. 8.4. The edge
k connects neighboring sites σk and σ′

k.

8.1.3 Counting beyond listing

We do not have time here to elaborate fully (see Ref. [1] for more details), but the high-
temperature sum over loops is closely related to the exact solution of the two-dimensional Ising
model by Onsager (1947), in the formulation of Kac and Ward (1952). That solution is based
on the representation of a determinant of a matrix in terms of the permutation cycles that we
discussed in Lecture 7.
This is possible because the determinant of a matrix U = (ukl) is defined by a sum of per-

mutations P (with signs and weights). As we discussed in Lecture 7, each permutation may be
written as a collection of cycles, a “cycle configuration”. Our task will consist in choosing the
elements ukl of the matrix U in such a way that the signs and weights of each cycle configura-
tions correspond to the loop configurations in the two-dimensional Ising model. This makes us
arrive at a computer program which implements the correspondence, and effectively solves the
enumeration problem for large two-dimensional lattices. To give an idea of how this is done,
we restrict ourselves to square lattices without periodic boundary conditions, and consider the
definition of the determinant of a matrix U ,

detU =
∑

permutations

(signP )u1P1u2P2 . . . uNPN
.

8
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We now represent P in terms of cycles, just as we did in Lecture 7. The sign of a permutation
P of N elements with n cycles is signP = (−1)N+n (see Ref. [1] for a discussion). For matrices
with even N , for which signP = (−1)# of cycles. The determinant for even N is thus

detU =
∑
cycle
configs

(−1)# of cycles uP1P2uP2P3 . . . uPMP1︸ ︷︷ ︸
weight of first cycle

uP ′
1P

′
2
. . .︸ ︷︷ ︸

other cycles

=
∑
cycle
configs

({
(−1)· weight of

first cycle

})
× · · · ×

({
(−1)· weight of

last cycle

})
.

This representation of a determinant in terms of cycle configurations suggests that we should
choose the matrix elements ukl such that each cycle corresponding to a loop on the lattice (for
example (P1, . . . , PM )) gets a negative sign (this means that the sign of uP1P2uP2P3 . . . uPMP1

should be negative). All cycles not corresponding to loops should get zero weight. That this was
at all possible was the good fortune of Kac and Ward. Their work is also discussed in the statis-
tical mechanics book by Feynman [2]. (The final lecture notes will contain an implementation
of a 4N × 4N matrix where the square root of the determinant gives the partition function.)

8.2 Single-spin Monte Carlo updates in the Ising model

Gray-code enumerations, as discussed in Sec. 8.1, succeed only for relatively small systems, and
high-temperature expansions, the subject of Sec. 8.1.3, must usually be stopped after a limited
number of terms, before they get too complicated. Only under exceptional circumstances, as
in the two-dimensional Ising model, can these methods be pushed much further. Often, Monte
Carlo methods alone are able to obtain exact results for large sizes. The price to be paid is that
configurations are sampled rather than enumerated, so that statistical errors are inevitable. The
Ising model has been a major test bed for Monte Carlo simulations and algorithms of all kinds,
and its theoretical analysis has been pushed to a very high level.

8.2.1 Metropolis algorithm

A basic task in statistical physics is to write a local Metropolis algorithm for the Ising model.
This program is even simpler than the Markov-chain algorithm for hard disks that we studied in
Lecture 4. In addition, irreducibility and aperiodicity are easy to establish. The Ising model has
no immediate connection with classical mechanics (there is no molecular dynamics algorithm
for the model). Analogously to Alg. (markov-disks), we randomly pick a site and attempt to
flip the spin at that site (see Fig. 8.5).

a

‘flip’ spin

(move) b

Figure 8.5: Local Monte Carlo move a→ b in the Ising model, to be accepted with probability
min

[
1, e−β(Eb−Ea)

]
.

The proposed move between configuration a, with energy Ea, and configuration b, with energy
Eb, must be accepted with probability min

{
1, e−β(Eb−Ea)

}
, as straightforwardly implemented in

Alg. 8.5 (markov-ising). We can check the results on small lattices against exact enumeration,
before moving on to larger ones, but will find that the algorithm is very slow.

9
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procedure markov-ising

input {σ1, . . . , σN}, E
k ← nran (1, N)

h←
∑2d

l=1 σNbr(l,k)

∆E ← 2hσk
Υ← ran(0, 1)
if (Υ < exp (−β∆E) ) then{

σk ← −σk
E ← E +∆E

output {σ1, . . . , σN}, E
——

Algorithm 8.5: markov-ising. Local Metropolis algorithm for the Ising model in d dimensions.

In Alg. 8.5 (markov-ising), the spin to be updated was chosen randomly. This defines a
reversible algorithm, for which it is easy to establish the detailed-balance condition. Sequential
updates will make the algorithm non-reversible, but we can prove that the global-balance condi-
tion is still satisfied. It appears that any reversible algorithm can be sequentialized in this way,
but this is already the point where we transition from an area where everything is understood
into one where little is known.

8.2.2 Heat-bath algorithm

We discuss an alternative to the Metropolis Monte Carlo method, the heat-bath algorithm.
Rather than flipping a spin at a random site, we now thermalize this spin with its local envi-
ronment (see Fig. 8.6). In the presence of a molecular field h at site k, the spin points up and
down with probabilities π+

h and π−
h , respectively, where

π+
h =

e−βE+

e−βE+ + e−βE− =
1

1 + e−2βh
,

π−
h =

e−βE−

e−βE+ + e−βE− =
1

1 + e+2βh
.

(8.7)

These probabilities are normalized (π+
h + π−

h = 1), and π+
h is an increasing function of h. To

(with probability π+

h)

a

(with probability π−

h)

b

Figure 8.6: Heat bath algorithm for the Ising model. The spin on the central site has a molecular field
h = 2 (see Alg. 8.6 (heatbath-ising)).

sample the Bernoulli distribution defined in eq. (8.7), we pick a random number Υ = ran(0, 1)
and let the spin point up if Υ < π+

h and down otherwise. The action taken is independent of the
spin’s orientation before the move (see Alg. 8.6 (heatbath-ising)). The heat bath algorithm

10
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is local, just as the Metropolis algorithm, and its performance is essentially the same. The
algorithm is conveniently represented in a diagram of the molecular field h against the random
number Υ (see Fig. 8.7).

procedure heatbath-ising

input {σ1, . . . , σN}, E
k ← nran (1, N)
h←

∑
n σNbr(n,k)

σ′ ← σk
Υ← ran(0, 1)
if (Υ < π+

h ) then (see eq. (8.7)){
σk ← 1

else{
σk ← −1

if σ′ ̸= σk E ← E − 2hσk
output {σ1, . . . , σN}
——

Algorithm 8.6: heatbath-ising. Heat bath algorithm for the Ising model.

−4
−2
0
2
4

0 1
Υ = ran(0,1)

m
ol

ec
ul

ar
 f
ie

ld
 h

π+

−4π
+

−2 π+

0 π+

2 π+

4

m
ake spin dow

n

make spin up

Figure 8.7: Action to be taken in the heat bath algorithm as a function of the molecular field h and
the random number Υ.

A Python implementation of this fundamental algorithm can be found here.

8.2.3 Perfect sampling

We remember from earlier lectures that Markov-chain algorithms, although the distribution they
sample is equal to the stationary distribution π (the Boltzmann distribution of eq. (8.2), in our
context of the Ising model), show the phenomenon of coupling, that can (sometimes) be crafted
into perfect-sampling algorithms. This is what we want to do now.
Let us first consider the Alg. 8.6 (heatbath-ising), but not for one configuration, but for two

configurations {σ1, . . . , σN} and {τ1, . . . , τN} with sl ≤ τl ∀l (see Alg. 8.7 (heatbath-two-ising)).
Using the same random numbers to generate the spin k to flip, and the random number Υ, we
notice that, after one step, the ordering between the two configurations is preserved.
We could now go on and write a last program Alg. (heatbath-three-ising), with three

configurations, say, {ρ1, . . . , ρN}, {σ1, . . . , σN}, and {τ1, . . . , τN} with, initially, ρk ≤ σk ≤ τk.
It suffices to start off this program with ρk = −1, and τk = +1, to see that these extreme
configurations (that, luckily, can be run with Alg. 8.7 (heatbath-two-ising)) “herd in” all
other configurations, and that once σ and τ have coupled, all 2N initial configurations have

11
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procedure heatbath-two-ising

input {σ1, . . . , σN}, {τ1, . . . , τN} (we suppose σl ≤ τl ∀l)
k ← nran (1, N)

hσ ←
∑2d

n=1 σNbr(n,k), hτ ←
∑2d

n=1 τNbr(n,k) (NB: hσ ≤ hτ .)

Υ← ran(0, 1)
if (Υ < π+

hσ
≤ π+

hτ
) then (see eq. (8.7)){

σk ← 1, τk ← 1
else if (π+

hσ
< Υ < π+

hτ
) then{

σk ← −1, τk ← 1
else{

σk ← −1, τk ← −1
output {σ1, . . . , σN}, {τ1, . . . , τN} (NB: σl ≤ τl ∀l)
——

Algorithm 8.7: heatbath-two-ising. Heat bath algorithm for two configurations in the Ising model.
The order between {σ1, . . . , σN} and {τ1, . . . , τN} is preserved.

done also. One easily transforms this algorithm into a coupling-from-the-past algorithm, which
samples perfect configurations from the Boltzmann distribution without any approximation 1,
for any Ising model with ferromagnetic interactions, at any temperature, and in any dimension.
The approach was pioneered by Propp and Wilson [3] in 1996.

8.3 Cluster algorithms

Algorithm 8.5 (markov-ising) and its variants, the classic simulation methods for spin models,
have gradually given way to cluster algorithms, which converge much faster. These algorithms
feature large-scale moves. In the imagery of the heliport game, they propose and accept dis-
placements on the scale of the system, rather than walk about the landing pad in millimeter-size
steps. We now discuss cluster methods in a language stressing the practical aspect of a priori
probabilities, leading to a pseudocode program and a Python implementation.
We recall that single-spin-flip Monte Carlo algorithms are slow close to Tc, because the his-

togram of essential values of the magnetization is wide and the step width of the magnetization
is small. To sample faster, we must foster moves which change the magnetization by more than
±2. However, using the single-spin-flip algorithm in parallel, on several sites at a time, only
hikes up the rejection rate. Neither can we, so to speak, solidly connect all neighboring spins
of the same orientation and flip them all at once. Doing so would quickly lead to a perfectly
aligned state, from which there would be no escape.

8.3.1 Wolff cluster algorithm (Ising model)

Let us analyze a more sophisticated rule for flipping spins. We suppose that, starting from a
random initial spin, a cluster is constructed by adding, with probability p, neighboring sites
with spins of the same orientation. For the moment, this probability is an arbitrary parameter.
The above solid connection between neighboring spins corresponds to p = 1. During the cluster
construction, we keep a list of cluster sites, but also one containing pocket sites, that is, new
members of the cluster that can still make the cluster grow. The cluster construction algorithm
picks one pocket site and removes it from the pocket. It then checks all of this site’s neighbors
outside the cluster with spins of like sign and adds these neighbors, with probability p, to the
pocket and the cluster (see Fig. 8.8). After completion of the construction of the cluster, when the
pocket is empty, all spins in the cluster are flipped. This brings us from the initial configuration

1. . . if perfect random numbers are available
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a to the final configuration b (see Fig. 8.9). From our experience with a priori probabilities, we
know beforehand that a suitable acceptance rule will ensure detailed balance between a and b,
for any 0 < p < 1. In going from a to b, the a priori construction probabilities A(a) and A(b),

Figure 8.8: Ising configuration with 10 cluster sites (the dark and the light gray sites). The dark sites
are pocket sites.

the acceptance probabilities P (a→ b) and P (b→ a), and the Boltzmann weights π(a) and π(b),
must respect the detailed-balance condition generalized to the presence of a priori probabilities,
as discussed in earlier lectures:

π(a)A(a→ b)P (a→ b) = π(b)A(b→ a)P (b→ a). (8.8)

a b

Figure 8.9: Ising-model configurations connected through a cluster flip. In a, 16 edges {+,−} and 14
edges {+,+} cross the boundary.

We must now compute the a priori probability A(a → b), the probability of stopping the
cluster construction process at a given stage rather than continuing and including more sites
(see the cluster of gray sites in configuration a in Fig. 8.9). A(a → b) is given by an interior
part (the two neighbors inside the cluster) and the stopping probability at the boundary: each
sites on the boundary of the cluster was once a pocket site and the construction came to a halt
because none of the possible new edges was included. Precisely, the boundary ∂C of the cluster
(with one spin inside and its neighbor outside) involves two types of edge:

{
cluster in a
in Fig. 8.9

}
:

edges across ∂C︷ ︸︸ ︷ inside outside #
+ − n1

+ + n2

 E|∂C = n1 − n2 (8.9)

(in the example of Fig. 8.9, n1 = 16 and n2 = 14). The a priori probability is A(a → b) =
Ain · (1− p)n2 because there were n2 opportunities to let the cluster grow and none was taken.
To evaluate the Boltzmann weight, we concentrate on the energy across the boundary ∂C, given
in eq. (8.9). It follows that π(a) = πinπoute

−β(n1−n2).
We consider the return move from configuration b back to a (see Fig. 8.9 again), and evaluate

13
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the return probability A(b→ a) and the Boltzmann weight π(b). In the cluster for configuration
b, the edges across the boundary ∂C are now

{
cluster in b
in Fig. 8.9

}
:

edges across ∂C︷ ︸︸ ︷ inside outside #
− − n1

− + n2

 E|∂C = −n1 + n2.

The cluster construction probability A(b → a) contains the same interior part as before, but a
new boundary part A(b → a) = Ain · (1 − p)n1 , because there were n1 opportunities to let the
cluster grow and again none was accepted. By an argument similar to that above, the statistical
weight of configuration b is π(b) = πinπoute

−β(n2−n1). The interior and exterior contributions to
the Boltzmann weight are the same as for configuration a. All the ingredients of the detailed-
balance condition in eq. (8.8) are now known:

e−β(n1−n2)(1− p)n2P(a→ b) = e−β(n2−n1)(1− p)n1P(b→ a). (8.10)

The ratio of acceptance probabilities is

P(a→ b)

P(b→ a)
=

e−β(n2−n1)(1− p)n1

e−β(n1−n2)(1− p)n2
, (8.11)

and the “Metropolis” choice for P then is

P(a→ b) = min

[
1,

(
e−2β

1− p

)n2 (1− p

e−2β

)n1
]
, (8.12)

where some terms have been rearranged.
The algorithm is simplest (and at its peak efficiency) at the magic value p = 1−e−2β, when the

acceptance probability is equal to one: we simply construct a cluster, then flip it, build another
one, turns it over . . . . This is the algorithm of Wolff (1989), which generalizes the original cluster
method of Swendsen and Wang (1987). The algorithm is easily implemented with the help of a
pocket P containing the active sites (see Alg. 8.8 (cluster-ising)). A Python implementation
in two dozen lines is found here.
The cluster algorithm moves through configuration space with breath-taking speed. A typical

cluster flip easily involves ∼ 103 spins in a 64×64 Ising model (see Fig. 8.10) and has the system
make a giant leap. Running such a insightful code makes us understand the great potential
payoff from investments in algorithm design.

8.3.2 Cluster algorithms for hard-sphere systems

Here, we discuss the geometric cluster algorithm.

8.3.3 Dimers on a lattice—cluster algorithms

Here, we discuss the geometric cluster algorithm, as applied to dimers on a square lattice.
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procedure cluster-ising

input {σ1, . . . , σN}
j ← nran (1, N)
C ← {j}
P ← {j}
while P ≠ ∅:

k ← any element of P
for (∀ l ̸∈ C with l neighbor of k, σl = σk):

if (ran(0, 1) < p) then{
P ← P ∪ {l}
C ← C ∪ {l}

P ← P \ {k}
for ∀k ∈ C:{

σk ← −σk
output {σ1, . . . , σN}
——

Algorithm 8.8: cluster-ising. Cluster algorithm for the Ising model at the magic value
p = 1− e−2β .

[3] J. G. Propp and D. B. Wilson, “Exact sampling with coupled Markov chains and applications
to statistical mechanics,” Random Structures & Algorithms, vol. 9, no. 1-2, pp. 223–252, 1996.
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Figure 8.10: Large cluster with 1548 “up” spins in a 64× 64 Ising model with periodic boundary
conditions (from Alg. 8.8 (cluster-ising), β = 0.43).
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