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ABSTRACT

‘We explore the properties of a feed-forward neural network whose couplings are chosen
in such a way as to maximize the input-output mutual information, in the case in which
the input-output channel is affected by noise.
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1. Introduction

Even if not directly related to WWW and its applications, the work we briefly
report on in this paper lies in the general frame underlying the theme of the work-
shop, in that it deals with the problem of information processing. In particular,
the subject of this short account is the analysis of a neural network as an informa-
tion processor; while no applications will be considered in what follows, the results
obtained in this kind of approach can be directly relevant to problems such as
information compression, signal analysis and many others.

Neural networks have become a widely used computing tool in the context of
data analyzing and processing, as well as a promising theoretical framework for the
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modelling of neural processing in the cerebral cortex.

It is customary to classify these models as feed forward or attractor neural
networks, according to their architectural and dynamical characteristics. We will
not review here the subject,® assuming that the reader is familiar with the basics of
neural network theory; we only point out, just to define the context for our work,
that we will consider here feed forward networks with unsupervised learning.

It has become progressively clear that meaningful quantities characterizing the
performance of a network can be borrowed from information theory. While in-
formation has a precise mathematical definition, the essence of its meaning can be
understood intuitively in this context quite easily. In a feed forward network a given
output pattern can be in general the result of different input patterns, and therefore
the question arises of the knowledge one gets from the output about the input; the
smaller the uncertainty about the input, given the output, the larger the knowledge
one gets on the input, and the mathematical information gives a measure of the
quality of this knowledge. Also in attractor networks it has long been recognized
that, more than the number of different stored patterns, the relevant quantity is
the number of bits needed to specify them, which is therefore the number of bits
actually stored in the network; for example, this number can be much higher for few
uncorrelated patterns than for many highly correlated patterns. Again, the theory
of information provides a precise definition for this.

The use of information theory in feed forward neural networks modelling the
processing of data flow coming from the external world, possibly in a multistage
data processing, has already been considered by several authors.3—2

2. Information

We give here some definitions in information theory, without any attempt of
completeness, mainly to establish our notations; we refer the interested reader, for
example, to the book by Cover and Thomas.? In the formulas below we restrict
ourselves to random variables that take on only discrete values, with a given prob-
ability distribution; one has to be careful to extend the definitions to continuous
variables, but our relevant quantity, the mutual information, is well defined also in
this case.

Given a random variable z that can take on some discrete values 1, ..., x,
with probabilities P(z1), ..., P(z,), we denote by X the set of the possible values
z;. Then the following quantity defines the entropy H:

n

H(X)=-> P(z;)log P(z;) (2.1)

i=1
where the base of the logarithm defines the unit of H; usually one assumes base
2, so the entropy is measured in bits. The entropy is the average value of the
random variable —log P(z). The nonnegative quantity — log P(z;) is interpreted as

%For a general introduction to the subject, we refer the reader to Refs. 1,2.
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the amount of information required to specify that the variables z has taken on the
value z;, and it is called the self-information of z;. This is intuitively satisfying,
since the smaller P(z;) the larger the self-information; on the other hand, in the
limit P(x;) = 1 the self-information vanishes, since we need not any information
to specify the occurrence of an event that is certain. In conclusion, the entropy
is the average value of the self-information. It is relevant to consider the case in
which we have events specified by the values of two random variables, z and y, and
we are interested in what we can learn, from the knowledge of the value of one
variable, about the other. Thus, with X the set of possible values of z (z1, ...,
Zn) and with Y the set of possible values of y (y1, - ., Ym) an event is specified by
the couple (z;,y;), which occurs with the joint probability distribution P(x;,y;).
The probability of occurrence of a value of z, regardless of the value of y, is given
by P(z;) = Z;nzl P(z;,y;), « = 1,...,n, and analogously for the occurrence of
a value of y regardless of that of z, i.e., P(y;) = Y.i; P(zi,y;), § = 1,...,m.
To avoid burdening the notation, we have used here, as we will do troughout the
paper, the same symbol P for different probability distributions. Then the mutual
information provided about the occurrence of x = z; by the occurrence of y = y;,
or, symmetrically, provided about the occurrence of y = y; by the occurrence of
x = z; is defined by: ( )
_ P .’L’i,yj
1 w) =108 B3Py, )
Its average value is called the average mutual information (or mutual information
for short):

(2.2)

- P(zi,y;)
I(X,Y): P(m,y)log#,
2 2 P 8 b by
which can be shown to be a nonnegative quantity. We just point out that, as
one expects, for z and y independent one has I(X,Y) = 0, since in that case
P(zi,y;) = P(x:)P(y;).
For continuous random variables, which are characterized by probability density
functions P(z,y), P(z) and P(y), the mutual information is given by:

(2.3)

P(z,y)
I(X,Y) = /da:dyP(w,y) log ——". (2.4)
P(z)P(y)
The mutual information is the relevant quantity in our study, that we present
below.

3. Model and Results

We study a feed forward neural network that is supposed to simulate the way in
which the stimuli coming from the external world are processed. Our network has
no hidden layers; the input neurons represent the response of the “receptors” to ex-
ternal signals. Through the synapses connecting the input layer to the output layer
we have, from the output neurons, a new representation of the external stimulus.
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We consider neurons with continuous values of their activities. It is supposed that
the external stimuli to the input neurons can be extracted from a given distribution
function. Therefore, if we have N input neurons and we indicate their activity with
&, =1,...,N), we will have some probability density P for £= (&,...,&n).
The total weighted input to the ¢ — th output neuron (i = 1,...,p) is given by
Z;-Vzl Ji;&;, where the weight J;; connects the ¢ — th output neuron to the j — th
input neuron; we will denote in the following by J the p by N matrix with elements
Jij; we consider only the case p < N. The activity V= (Vi,...,Vp) of the output
neurons, for a given 5, will in turn be distributed according to some probability
density P(V /£), rather that being exactly determined, due to the noise present in
the network. For given functions P(£) and P(V /) we can in principle compute
the information as given in (2.4) (using that P(£,V) = P(SP(I_/"/E)) We will then
suppose that the optimal weights J;; for the network will be those for which I is
maximum.

Here we consider a case where it is possible to compute analytically the maxima
of I, and we will not focus on the problem of how the network finds them, being
only concerned with the analysis of their properties.

The probability distribution which characterizes the environment will be chosen
as gaussian:

_ 1 N N B
PO = =g ¥ IIIE )6} (3.1)
where C is the correlation matrix defined by %Cz'j =< &;&; >. This choice can be jus-
tified on the basis of a principle of “minimum knowledge” about the environment!©
since this defines the maximum entropy probability distribution, given the correla-
tions < &;&; >. The noisy nature of the channel is expressed through the conditional
probability

P(7/8) = (%) : ep{- 5 zp;(v; - é 746)’}, (3.2)

where the parameter b? characterizes tha amount of noise present in the network.
Given these choices, it is possible to calculate the probability distribution of the
output P(V) and the mutual information I. We first define the p by p matrix
Q = b2 1+JCJT, where 1 is the unit matrix and J7T is the transpose matrix of J.
Then we have:

. 1 o
PV) = \/W eXP{— ;Fl vi(Q )UVJ} (3-3)

and . det
I=log ebz(f). (3.4)

Notice that, as intuition suggests, I — 0 as b> — co. From eq. (3.4) it also follows
that for b2 — 0 (noiseless channel, for which we have the deterministic relation
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Vi = Ejvzl Jij€;) the mutual information tends to infinity. This is related to the
general fact that for continuous input variables the input entropy itself is infinite. If
p = N and b? = 0 there is no loss of information through the channel, since once the
output V is known the input 5 is uniquely detemined (the matrix J being invertible),
so I is infinite. For the case p < N and b = 0, let us consider for simplicity the case
p = 1; then the relation for the only output neuron, V = E;VZI J;& = J- {, implies
that, once V is known, the input E is determined apart from an arbitrary vector
orthogonal to f, so that, although there is an infinite loss of information through
the channel, the power of this infinite is lower than that of the input information.
This results again in an infinite mutual information. However, since from Eq. (3.4)
we see that the part to be maximized, log det(Q), is always finite, one can choose to
give a meaning also to the case b> = 0: in this case, the representation of the input
that the network builds through the J’s resulting from the maximization procedure
is related to the principal components of the input distribution (see below and the
comments in the last Section). If, on the other hand, a noise in input is introduced®
(which can be interpreted as the fact that the receptors coding for the input signals
have a finite analog depth), this makes the mutual information finite even for a
noiseless channel; this case will be considered in a paper to be published shortly.

The expression for I also shows that the mutual information is an unbounded
function of the J’s: the couplings can grow without limits, increasing the signal
to noise ratio. Therefore I has to be maximized subjected to some limitations
on the J’s, which can be implemented as a constraint or, as we have done in the
study presented here, introducing a penalty term, i.e., adding to I a simple function
that penalizes the growth of the J’s, and finding the maxima of this new function.
We have chosen to add the term (—1/2) > | Ejvzl J}; (that can be considered as
representing in a rough way a tendency to “forget”). In a gradient ascent dynamics
for the J’s, that can be chosen to find the maxima by computer simulation when it
is not possible to make an analytical calculation, this results in the appearance of
an exponential decay term in the equation for §(J;;):

6(Ji5) = n(% - Jij) (3.5)

where the parameter 7 fixes the time scale of the dynamics. However, for the case
studied in this paper, we can compute the maxima, i.e., the stable zeroes of the right
hand side of Eq. (3.5). We defer to a fuller account to be published an analysis
of possible alternatives for the J dynamics, together with a study of the effects of
input noise.

We list below a brief summary of the results obtained for the stable fixed points,
without detailing the calculations. We just show the expression that gives the fixed

PHere we refer to the actual continuum limit of the discrete entropy and not to the so called
“differential entropy” f dfp(é log P(é, which is finite (see, e.g., Ref. 9).
®This can be obtained by, e.g., adding to each &; a random variable with gaussian distribution.
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points:
Q7'JC—-J=0. (3.6)

We solve this equation and perform a stability analysis. Then we have the following
situation.

b—0:
Let us define the rows of the coupling matrix J;; as the set of N components
vectors J;,¢ = 1,...,p; it turns out that the J; at the fixed point form an

arbitrary orthonormal basis for a p dimensional subspace spanned by p eigen-
vectors of C'. However, the stability analysis shows that the stable fixed points
are only the j; lying in the subspace spanned by the first p eigenvectors of
C (having sorted the eigenvectors according to the value of the corresponding
eigenvalues \;,i = 1,..., N, ordered in decreasing way). This means that the
J; at the stable fixed point are related to the principal components of the input
distribution!'~!; in particular, if p = 1 the fixed point equations are the same
as those deriving from the Oja’s algorithm,!! resulting in the projection of the

input distribution on the axis of maximal variance.

b finite:

In {his case, we denote by g the number of eigenvalues of C' that are greater
than b2. Then, if ¢ > p, for i = 1,...,p the vectors J; lie in the same subspace
spanned by the first p eigenvectors of C. The vectors j; now, in general, are
neither orthogonal to each other nor of unit length; the p by N matrix J at
the stable fixed point can be obtained, from the p by N matrix formed by the
first p eigenvectors of C, each one of square modulus (\; — b%)/X;,i = 1,...,p,
applying from the left any p by p orthogonal matrix.?

If ¢ < p, (p — q) vectors j; become linearly dependent on ¢ vectors j;, which lie
in the subspace spanned by the first ¢ eigenvectors of C. The j; can be obtained
as in the case ¢ > p, with the difference that, in the p by N matrix of the first
p eigenvectors of C, the modulus of the last (p — q) eigenvectors is 0.

In particular, if ¢ = 1 all the J; are parallel to the first eigenvector of C.

When ¢ = 0, i.e., when b? is greater than the largest eigenvalue of C, the only
stable solution corresponds to the vanishing of all the vectors J:

Therefore, the effect of the noise present in the channel is that of destabilizing
the lower principal components; in other words, a redundancy is introduced via the
linear dependence of the J; in the channel in order to compensate for the effects of
noise.

4. Discussion

Several authors have explored the possibility of deriving from information theory
design principles for the definition of “optimal” neural networks.3~® These devel-
opments have been mainly motivated by an attempt to clarify the possible com-

1t is to be noted that all the eigenvalues of C' are positive.



International Journal of Modern Physics C

putational strategies involved in the visual processing taking place in the nervous
system. The idea of a “factorial code”!%16 as a “novelty detector” with respect
to correlations present in the environment, has proved to be particularly relevant
in this respect, as it can be formulated as a maximum entropy principle; in the
case of linear neurons, under suitable conditions on the input distribution, it is also
equivalent to the projection of the input distribution on the principal components
axes.

As we have seen, this in turn is related to what is obtained when maximizing
the input-output mutual information; we have shown in particular what is the effect
of the channel noise in such a situation, proving that it gradually destabilizes the
solutions for the J’s which correspond to higher and higher eigenvalues of C'.

If this framework is to be interpreted as relevant to the understanding of neurobi-
ological visual processing , the possibility is clearly relevant to formulate a learning
algorithm for the development of the J’s which is local, with the dynamics of J;;
determined only by the activities V; and ;. In this respect, while we have examined
in this paper the properties of the maxima of the mutual information function, it has
been suggested®:'” that, as far as the dynamics of the J’s is concerned, it is possible
to reformulate the problem in such a way as to obtain a local learning algorithm,
provided a suitable redefinition of the network architecture is introduced.

Several details remain to be clarified; however, a general frame seems to emerge,
in which optimization principles derived from information theory appear as good
candidates to serve as theoretical guidelines for neural network modelling of early
visual processing.

As part of the work in progress, we mention that if “real life” conditions have
to be considered, one has to resort to numerical simulations, in order to sample the
input distribution characterizing the environment.
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